# Copyright 2014 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os.path
import its.caps
import its.device
import its.image
import its.objects
import matplotlib
from matplotlib import pylab
GR_PLANE = 1 # GR plane index in RGGB data
IMG_STATS_GRID = 9 # find used to find the center 11.11%
NAME = os.path.basename(__file__).split(".")[0]
NUM_STEPS = 5
VAR_THRESH = 1.01 # each shot must be 1% noisier than previous
def main():
"""Capture a set of raw images with increasing gains and measure the noise.
Capture raw-only, in a burst.
"""
with its.device.ItsSession() as cam:
props = cam.get_camera_properties()
its.caps.skip_unless(its.caps.raw16(props) and
its.caps.manual_sensor(props) and
its.caps.read_3a(props) and
its.caps.per_frame_control(props) and
not its.caps.mono_camera(props))
debug = its.caps.debug_mode()
# Expose for the scene with min sensitivity
sens_min, _ = props["android.sensor.info.sensitivityRange"]
# Digital gains might not be visible on RAW data
sens_max = props["android.sensor.maxAnalogSensitivity"]
sens_step = (sens_max - sens_min) / NUM_STEPS
s_ae, e_ae, _, _, f_dist = cam.do_3a(get_results=True)
s_e_prod = s_ae * e_ae
reqs = []
settings = []
for s in range(sens_min, sens_max, sens_step):
e = int(s_e_prod / float(s))
req = its.objects.manual_capture_request(s, e, f_dist)
reqs.append(req)
settings.append((s, e))
if debug:
caps = cam.do_capture(reqs, cam.CAP_RAW)
else:
# Get the active array width and height.
aax = props["android.sensor.info.preCorrectionActiveArraySize"]["left"]
aay = props["android.sensor.info.preCorrectionActiveArraySize"]["top"]
aaw = props["android.sensor.info.preCorrectionActiveArraySize"]["right"]-aax
aah = props["android.sensor.info.preCorrectionActiveArraySize"]["bottom"]-aay
# Compute stats on a grid across each image.
caps = cam.do_capture(reqs,
{"format": "rawStats",
"gridWidth": aaw/IMG_STATS_GRID,
"gridHeight": aah/IMG_STATS_GRID})
variances = []
for i, cap in enumerate(caps):
(s, e) = settings[i]
# Each shot should be noisier than the previous shot (as the gain
# is increasing). Use the variance of the center stats grid cell.
if debug:
gr = its.image.convert_capture_to_planes(cap, props)[1]
tile = its.image.get_image_patch(gr, 0.445, 0.445, 0.11, 0.11)
var = its.image.compute_image_variances(tile)[0]
img = its.image.convert_capture_to_rgb_image(cap, props=props)
its.image.write_image(img,
"%s_s=%05d_var=%f.jpg" % (NAME, s, var))
else:
# find white level
white_level = float(props["android.sensor.info.whiteLevel"])
_, var_image = its.image.unpack_rawstats_capture(cap)
cfa_idxs = its.image.get_canonical_cfa_order(props)
var = var_image[IMG_STATS_GRID/2, IMG_STATS_GRID/2,
cfa_idxs[GR_PLANE]]/white_level**2
variances.append(var)
print "s=%d, e=%d, var=%e" % (s, e, var)
x = range(len(variances))
pylab.plot(x, variances, "-ro")
pylab.xticks(x)
pylab.xlabel("Setting Combination")
pylab.ylabel("Image Center Patch Variance")
matplotlib.pyplot.savefig("%s_variances.png" % NAME)
# Test that each shot is noisier than the previous one.
x.pop() # remove last element in x index
for i in x:
msg = 'variances [i]: %.5f, [i+1]: %.5f, THRESH: %.2f' % (
variances[i], variances[i+1], VAR_THRESH)
assert variances[i] < variances[i+1] / VAR_THRESH, msg
if __name__ == "__main__":
main()