# Copyright 2014 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os.path import its.caps import its.device import its.image import its.objects import matplotlib from matplotlib import pylab GR_PLANE = 1 # GR plane index in RGGB data IMG_STATS_GRID = 9 # find used to find the center 11.11% NAME = os.path.basename(__file__).split(".")[0] NUM_STEPS = 5 VAR_THRESH = 1.01 # each shot must be 1% noisier than previous def main(): """Capture a set of raw images with increasing gains and measure the noise. Capture raw-only, in a burst. """ with its.device.ItsSession() as cam: props = cam.get_camera_properties() its.caps.skip_unless(its.caps.raw16(props) and its.caps.manual_sensor(props) and its.caps.read_3a(props) and its.caps.per_frame_control(props) and not its.caps.mono_camera(props)) debug = its.caps.debug_mode() # Expose for the scene with min sensitivity sens_min, _ = props["android.sensor.info.sensitivityRange"] # Digital gains might not be visible on RAW data sens_max = props["android.sensor.maxAnalogSensitivity"] sens_step = (sens_max - sens_min) / NUM_STEPS s_ae, e_ae, _, _, f_dist = cam.do_3a(get_results=True) s_e_prod = s_ae * e_ae reqs = [] settings = [] for s in range(sens_min, sens_max, sens_step): e = int(s_e_prod / float(s)) req = its.objects.manual_capture_request(s, e, f_dist) reqs.append(req) settings.append((s, e)) if debug: caps = cam.do_capture(reqs, cam.CAP_RAW) else: # Get the active array width and height. aax = props["android.sensor.info.preCorrectionActiveArraySize"]["left"] aay = props["android.sensor.info.preCorrectionActiveArraySize"]["top"] aaw = props["android.sensor.info.preCorrectionActiveArraySize"]["right"]-aax aah = props["android.sensor.info.preCorrectionActiveArraySize"]["bottom"]-aay # Compute stats on a grid across each image. caps = cam.do_capture(reqs, {"format": "rawStats", "gridWidth": aaw/IMG_STATS_GRID, "gridHeight": aah/IMG_STATS_GRID}) variances = [] for i, cap in enumerate(caps): (s, e) = settings[i] # Each shot should be noisier than the previous shot (as the gain # is increasing). Use the variance of the center stats grid cell. if debug: gr = its.image.convert_capture_to_planes(cap, props)[1] tile = its.image.get_image_patch(gr, 0.445, 0.445, 0.11, 0.11) var = its.image.compute_image_variances(tile)[0] img = its.image.convert_capture_to_rgb_image(cap, props=props) its.image.write_image(img, "%s_s=%05d_var=%f.jpg" % (NAME, s, var)) else: # find white level white_level = float(props["android.sensor.info.whiteLevel"]) _, var_image = its.image.unpack_rawstats_capture(cap) cfa_idxs = its.image.get_canonical_cfa_order(props) var = var_image[IMG_STATS_GRID/2, IMG_STATS_GRID/2, cfa_idxs[GR_PLANE]]/white_level**2 variances.append(var) print "s=%d, e=%d, var=%e" % (s, e, var) x = range(len(variances)) pylab.plot(x, variances, "-ro") pylab.xticks(x) pylab.xlabel("Setting Combination") pylab.ylabel("Image Center Patch Variance") matplotlib.pyplot.savefig("%s_variances.png" % NAME) # Test that each shot is noisier than the previous one. x.pop() # remove last element in x index for i in x: msg = 'variances [i]: %.5f, [i+1]: %.5f, THRESH: %.2f' % ( variances[i], variances[i+1], VAR_THRESH) assert variances[i] < variances[i+1] / VAR_THRESH, msg if __name__ == "__main__": main()