# Copyright 2014 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import its.caps
import its.device
import its.image
import its.objects
import its.target
import matplotlib
from matplotlib import pylab
import numpy
NAME = os.path.basename(__file__).split('.')[0]
N = 20 # Number of samples averaged together, in the plot.
MEAN_THRESH = 0.01 # PASS/FAIL threshold for gyro mean drift
VAR_THRESH = 0.001 # PASS/FAIL threshold for gyro variance drift
def main():
"""Test if the gyro has stable output when device is stationary.
"""
with its.device.ItsSession() as cam:
props = cam.get_camera_properties()
# Only run test if the appropriate caps are claimed.
its.caps.skip_unless(its.caps.sensor_fusion(props) and
cam.get_sensors().get("gyro"))
print 'Collecting gyro events'
cam.start_sensor_events()
time.sleep(5)
gyro_events = cam.get_sensor_events()['gyro']
nevents = (len(gyro_events) / N) * N
gyro_events = gyro_events[:nevents]
times = numpy.array([(e['time'] - gyro_events[0]['time'])/1000000000.0
for e in gyro_events])
xs = numpy.array([e['x'] for e in gyro_events])
ys = numpy.array([e['y'] for e in gyro_events])
zs = numpy.array([e['z'] for e in gyro_events])
# Group samples into size-N groups and average each together, to get rid
# of individual random spikes in the data.
times = times[N/2::N]
xs = xs.reshape(nevents/N, N).mean(1)
ys = ys.reshape(nevents/N, N).mean(1)
zs = zs.reshape(nevents/N, N).mean(1)
pylab.plot(times, xs, 'r', label='x')
pylab.plot(times, ys, 'g', label='y')
pylab.plot(times, zs, 'b', label='z')
pylab.xlabel('Time (seconds)')
pylab.ylabel('Gyro readings (mean of %d samples)'%(N))
pylab.legend()
matplotlib.pyplot.savefig('%s_plot.png' % (NAME))
for samples in [xs, ys, zs]:
mean = samples.mean()
var = numpy.var(samples)
assert mean < MEAN_THRESH, 'mean: %.3f, TOL=%.2f' % (mean, MEAN_THRESH)
assert var < VAR_THRESH, 'var: %.4f, TOL=%.3f' % (var, VAR_THRESH)
if __name__ == '__main__':
main()