# Copyright 2014 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import its.caps import its.device import its.image import its.objects import its.target import matplotlib from matplotlib import pylab import numpy NAME = os.path.basename(__file__).split('.')[0] N = 20 # Number of samples averaged together, in the plot. MEAN_THRESH = 0.01 # PASS/FAIL threshold for gyro mean drift VAR_THRESH = 0.001 # PASS/FAIL threshold for gyro variance drift def main(): """Test if the gyro has stable output when device is stationary. """ with its.device.ItsSession() as cam: props = cam.get_camera_properties() # Only run test if the appropriate caps are claimed. its.caps.skip_unless(its.caps.sensor_fusion(props) and cam.get_sensors().get("gyro")) print 'Collecting gyro events' cam.start_sensor_events() time.sleep(5) gyro_events = cam.get_sensor_events()['gyro'] nevents = (len(gyro_events) / N) * N gyro_events = gyro_events[:nevents] times = numpy.array([(e['time'] - gyro_events[0]['time'])/1000000000.0 for e in gyro_events]) xs = numpy.array([e['x'] for e in gyro_events]) ys = numpy.array([e['y'] for e in gyro_events]) zs = numpy.array([e['z'] for e in gyro_events]) # Group samples into size-N groups and average each together, to get rid # of individual random spikes in the data. times = times[N/2::N] xs = xs.reshape(nevents/N, N).mean(1) ys = ys.reshape(nevents/N, N).mean(1) zs = zs.reshape(nevents/N, N).mean(1) pylab.plot(times, xs, 'r', label='x') pylab.plot(times, ys, 'g', label='y') pylab.plot(times, zs, 'b', label='z') pylab.xlabel('Time (seconds)') pylab.ylabel('Gyro readings (mean of %d samples)'%(N)) pylab.legend() matplotlib.pyplot.savefig('%s_plot.png' % (NAME)) for samples in [xs, ys, zs]: mean = samples.mean() var = numpy.var(samples) assert mean < MEAN_THRESH, 'mean: %.3f, TOL=%.2f' % (mean, MEAN_THRESH) assert var < VAR_THRESH, 'var: %.4f, TOL=%.3f' % (var, VAR_THRESH) if __name__ == '__main__': main()