/* libs/graphics/sgl/SkScan_AntiPath.cpp
**
** Copyright 2006, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#include "SkScanPriv.h"
#include "SkPath.h"
#include "SkMatrix.h"
#include "SkBlitter.h"
#include "SkRegion.h"
#include "SkAntiRun.h"
#define SHIFT 2
#define SCALE (1 << SHIFT)
#define MASK (SCALE - 1)
///////////////////////////////////////////////////////////////////////////////////////////
class BaseSuperBlitter : public SkBlitter {
public:
BaseSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
const SkRegion& clip);
virtual void blitAntiH(int x, int y, const SkAlpha antialias[],
const int16_t runs[]) {
SkASSERT(!"How did I get here?");
}
virtual void blitV(int x, int y, int height, SkAlpha alpha) {
SkASSERT(!"How did I get here?");
}
virtual void blitRect(int x, int y, int width, int height) {
SkASSERT(!"How did I get here?");
}
protected:
SkBlitter* fRealBlitter;
int fCurrIY;
int fWidth, fLeft, fSuperLeft;
SkDEBUGCODE(int fCurrX;)
SkDEBUGCODE(int fCurrY;)
};
BaseSuperBlitter::BaseSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
const SkRegion& clip) {
fRealBlitter = realBlitter;
// take the union of the ir bounds and clip, since we may be called with an
// inverse filltype
const int left = SkMin32(ir.fLeft, clip.getBounds().fLeft);
const int right = SkMax32(ir.fRight, clip.getBounds().fRight);
fLeft = left;
fSuperLeft = left << SHIFT;
fWidth = right - left;
fCurrIY = -1;
SkDEBUGCODE(fCurrX = -1; fCurrY = -1;)
}
class SuperBlitter : public BaseSuperBlitter {
public:
SuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
const SkRegion& clip);
virtual ~SuperBlitter() {
this->flush();
sk_free(fRuns.fRuns);
}
void flush();
virtual void blitH(int x, int y, int width);
private:
SkAlphaRuns fRuns;
};
SuperBlitter::SuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
const SkRegion& clip)
: BaseSuperBlitter(realBlitter, ir, clip) {
const int width = fWidth;
// extra one to store the zero at the end
fRuns.fRuns = (int16_t*)sk_malloc_throw((width + 1 + (width + 2)/2) * sizeof(int16_t));
fRuns.fAlpha = (uint8_t*)(fRuns.fRuns + width + 1);
fRuns.reset(width);
}
void SuperBlitter::flush()
{
if (fCurrIY >= 0)
{
if (!fRuns.empty())
{
// SkDEBUGCODE(fRuns.dump();)
fRealBlitter->blitAntiH(fLeft, fCurrIY, fRuns.fAlpha, fRuns.fRuns);
fRuns.reset(fWidth);
}
fCurrIY = -1;
SkDEBUGCODE(fCurrX = -1;)
}
}
static inline int coverage_to_alpha(int aa)
{
aa <<= 8 - 2*SHIFT;
aa -= aa >> (8 - SHIFT - 1);
return aa;
}
#define SUPER_Mask ((1 << SHIFT) - 1)
void SuperBlitter::blitH(int x, int y, int width)
{
int iy = y >> SHIFT;
SkASSERT(iy >= fCurrIY);
x -= fSuperLeft;
// hack, until I figure out why my cubics (I think) go beyond the bounds
if (x < 0)
{
width += x;
x = 0;
}
#ifdef SK_DEBUG
SkASSERT(y >= fCurrY);
SkASSERT(y != fCurrY || x >= fCurrX);
fCurrY = y;
#endif
if (iy != fCurrIY) // new scanline
{
this->flush();
fCurrIY = iy;
}
// we sub 1 from maxValue 1 time for each block, so that we don't
// hit 256 as a summed max, but 255.
// int maxValue = (1 << (8 - SHIFT)) - (((y & MASK) + 1) >> SHIFT);
#if 0
SkAntiRun<SHIFT> arun;
arun.set(x, x + width);
fRuns.add(x >> SHIFT, arun.getStartAlpha(), arun.getMiddleCount(), arun.getStopAlpha(), maxValue);
#else
{
int start = x;
int stop = x + width;
SkASSERT(start >= 0 && stop > start);
int fb = start & SUPER_Mask;
int fe = stop & SUPER_Mask;
int n = (stop >> SHIFT) - (start >> SHIFT) - 1;
if (n < 0)
{
fb = fe - fb;
n = 0;
fe = 0;
}
else
{
if (fb == 0)
n += 1;
else
fb = (1 << SHIFT) - fb;
}
fRuns.add(x >> SHIFT, coverage_to_alpha(fb), n, coverage_to_alpha(fe),
(1 << (8 - SHIFT)) - (((y & MASK) + 1) >> SHIFT));
}
#endif
#ifdef SK_DEBUG
fRuns.assertValid(y & MASK, (1 << (8 - SHIFT)));
fCurrX = x + width;
#endif
}
///////////////////////////////////////////////////////////////////////////////
class MaskSuperBlitter : public BaseSuperBlitter {
public:
MaskSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
const SkRegion& clip);
virtual ~MaskSuperBlitter() {
fRealBlitter->blitMask(fMask, fClipRect);
}
virtual void blitH(int x, int y, int width);
static bool CanHandleRect(const SkIRect& bounds)
{
int width = bounds.width();
int rb = SkAlign4(width);
return (width <= MaskSuperBlitter::kMAX_WIDTH) &&
(rb * bounds.height() <= MaskSuperBlitter::kMAX_STORAGE);
}
private:
enum {
kMAX_WIDTH = 32, // so we don't try to do very wide things, where the RLE blitter would be faster
kMAX_STORAGE = 1024
};
SkMask fMask;
SkIRect fClipRect;
// we add 1 because add_aa_span can write (unchanged) 1 extra byte at the end, rather than
// perform a test to see if stopAlpha != 0
uint32_t fStorage[(kMAX_STORAGE >> 2) + 1];
};
MaskSuperBlitter::MaskSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
const SkRegion& clip)
: BaseSuperBlitter(realBlitter, ir, clip) {
SkASSERT(CanHandleRect(ir));
fMask.fImage = (uint8_t*)fStorage;
fMask.fBounds = ir;
fMask.fRowBytes = ir.width();
fMask.fFormat = SkMask::kA8_Format;
fClipRect = ir;
fClipRect.intersect(clip.getBounds());
// For valgrind, write 1 extra byte at the end so we don't read
// uninitialized memory. See comment in add_aa_span and fStorage[].
memset(fStorage, 0, fMask.fBounds.height() * fMask.fRowBytes + 1);
}
static void add_aa_span(uint8_t* alpha, U8CPU startAlpha)
{
/* I should be able to just add alpha[x] + startAlpha.
However, if the trailing edge of the previous span and the leading
edge of the current span round to the same super-sampled x value,
I might overflow to 256 with this add, hence the funny subtract.
*/
unsigned tmp = *alpha + startAlpha;
SkASSERT(tmp <= 256);
*alpha = SkToU8(tmp - (tmp >> 8));
}
static void add_aa_span(uint8_t* alpha, U8CPU startAlpha, int middleCount, U8CPU stopAlpha, U8CPU maxValue)
{
SkASSERT(middleCount >= 0);
/* I should be able to just add alpha[x] + startAlpha.
However, if the trailing edge of the previous span and the leading
edge of the current span round to the same super-sampled x value,
I might overflow to 256 with this add, hence the funny subtract.
*/
unsigned tmp = *alpha + startAlpha;
SkASSERT(tmp <= 256);
*alpha++ = SkToU8(tmp - (tmp >> 8));
while (--middleCount >= 0)
{
alpha[0] = SkToU8(alpha[0] + maxValue);
alpha += 1;
}
// potentially this can be off the end of our "legal" alpha values, but that
// only happens if stopAlpha is also 0. Rather than test for stopAlpha != 0
// every time (slow), we just do it, and ensure that we've allocated extra space
// (see the + 1 comment in fStorage[]
*alpha = SkToU8(*alpha + stopAlpha);
}
void MaskSuperBlitter::blitH(int x, int y, int width)
{
int iy = (y >> SHIFT);
SkASSERT(iy >= fMask.fBounds.fTop && iy < fMask.fBounds.fBottom);
iy -= fMask.fBounds.fTop; // make it relative to 0
#ifdef SK_DEBUG
{
int ix = x >> SHIFT;
SkASSERT(ix >= fMask.fBounds.fLeft && ix < fMask.fBounds.fRight);
}
#endif
x -= (fMask.fBounds.fLeft << SHIFT);
// hack, until I figure out why my cubics (I think) go beyond the bounds
if (x < 0)
{
width += x;
x = 0;
}
// we sub 1 from maxValue 1 time for each block, so that we don't
// hit 256 as a summed max, but 255.
// int maxValue = (1 << (8 - SHIFT)) - (((y & MASK) + 1) >> SHIFT);
uint8_t* row = fMask.fImage + iy * fMask.fRowBytes + (x >> SHIFT);
int start = x;
int stop = x + width;
SkASSERT(start >= 0 && stop > start);
int fb = start & SUPER_Mask;
int fe = stop & SUPER_Mask;
int n = (stop >> SHIFT) - (start >> SHIFT) - 1;
if (n < 0)
{
add_aa_span(row, coverage_to_alpha(fe - fb));
}
else
{
fb = (1 << SHIFT) - fb;
add_aa_span(row, coverage_to_alpha(fb), n, coverage_to_alpha(fe),
(1 << (8 - SHIFT)) - (((y & MASK) + 1) >> SHIFT));
}
#ifdef SK_DEBUG
fCurrX = x + width;
#endif
}
///////////////////////////////////////////////////////////////////////////////
/* Returns non-zero if (value << shift) overflows a short, which would mean
we could not shift it up and then convert to SkFixed.
i.e. is x expressible as signed (16-shift) bits?
*/
static int overflows_short_shift(int value, int shift) {
const int s = 16 + shift;
return (value << s >> s) - value;
}
void SkScan::AntiFillPath(const SkPath& path, const SkRegion& clip,
SkBlitter* blitter) {
if (clip.isEmpty()) {
return;
}
SkRect r;
SkIRect ir;
path.computeBounds(&r, SkPath::kFast_BoundsType);
r.roundOut(&ir);
if (ir.isEmpty()) {
return;
}
// use bit-or since we expect all to pass, so no need to go slower with
// a short-circuiting logical-or
if (overflows_short_shift(ir.fLeft, SHIFT) |
overflows_short_shift(ir.fRight, SHIFT) |
overflows_short_shift(ir.fTop, SHIFT) |
overflows_short_shift(ir.fBottom, SHIFT)) {
// can't supersample, so draw w/o antialiasing
SkScan::FillPath(path, clip, blitter);
return;
}
SkScanClipper clipper(blitter, &clip, ir);
const SkIRect* clipRect = clipper.getClipRect();
if (clipper.getBlitter() == NULL) { // clipped out
if (path.isInverseFillType()) {
blitter->blitRegion(clip);
}
return;
}
// now use the (possibly wrapped) blitter
blitter = clipper.getBlitter();
if (path.isInverseFillType()) {
sk_blit_above_and_below(blitter, ir, clip);
}
SkIRect superRect, *superClipRect = NULL;
if (clipRect)
{
superRect.set( clipRect->fLeft << SHIFT, clipRect->fTop << SHIFT,
clipRect->fRight << SHIFT, clipRect->fBottom << SHIFT);
superClipRect = &superRect;
}
// MaskSuperBlitter can't handle drawing outside of ir, so we can't use it
// if we're an inverse filltype
if (!path.isInverseFillType() && MaskSuperBlitter::CanHandleRect(ir))
{
MaskSuperBlitter superBlit(blitter, ir, clip);
sk_fill_path(path, superClipRect, &superBlit, ir.fBottom, SHIFT, clip);
}
else
{
SuperBlitter superBlit(blitter, ir, clip);
sk_fill_path(path, superClipRect, &superBlit, ir.fBottom, SHIFT, clip);
}
}