/* libs/graphics/sgl/SkScan_AntiPath.cpp ** ** Copyright 2006, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #include "SkScanPriv.h" #include "SkPath.h" #include "SkMatrix.h" #include "SkBlitter.h" #include "SkRegion.h" #include "SkAntiRun.h" #define SHIFT 2 #define SCALE (1 << SHIFT) #define MASK (SCALE - 1) /////////////////////////////////////////////////////////////////////////////////////////// class BaseSuperBlitter : public SkBlitter { public: BaseSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip); virtual void blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]) { SkASSERT(!"How did I get here?"); } virtual void blitV(int x, int y, int height, SkAlpha alpha) { SkASSERT(!"How did I get here?"); } virtual void blitRect(int x, int y, int width, int height) { SkASSERT(!"How did I get here?"); } protected: SkBlitter* fRealBlitter; int fCurrIY; int fWidth, fLeft, fSuperLeft; SkDEBUGCODE(int fCurrX;) SkDEBUGCODE(int fCurrY;) }; BaseSuperBlitter::BaseSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip) { fRealBlitter = realBlitter; // take the union of the ir bounds and clip, since we may be called with an // inverse filltype const int left = SkMin32(ir.fLeft, clip.getBounds().fLeft); const int right = SkMax32(ir.fRight, clip.getBounds().fRight); fLeft = left; fSuperLeft = left << SHIFT; fWidth = right - left; fCurrIY = -1; SkDEBUGCODE(fCurrX = -1; fCurrY = -1;) } class SuperBlitter : public BaseSuperBlitter { public: SuperBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip); virtual ~SuperBlitter() { this->flush(); sk_free(fRuns.fRuns); } void flush(); virtual void blitH(int x, int y, int width); private: SkAlphaRuns fRuns; }; SuperBlitter::SuperBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip) : BaseSuperBlitter(realBlitter, ir, clip) { const int width = fWidth; // extra one to store the zero at the end fRuns.fRuns = (int16_t*)sk_malloc_throw((width + 1 + (width + 2)/2) * sizeof(int16_t)); fRuns.fAlpha = (uint8_t*)(fRuns.fRuns + width + 1); fRuns.reset(width); } void SuperBlitter::flush() { if (fCurrIY >= 0) { if (!fRuns.empty()) { // SkDEBUGCODE(fRuns.dump();) fRealBlitter->blitAntiH(fLeft, fCurrIY, fRuns.fAlpha, fRuns.fRuns); fRuns.reset(fWidth); } fCurrIY = -1; SkDEBUGCODE(fCurrX = -1;) } } static inline int coverage_to_alpha(int aa) { aa <<= 8 - 2*SHIFT; aa -= aa >> (8 - SHIFT - 1); return aa; } #define SUPER_Mask ((1 << SHIFT) - 1) void SuperBlitter::blitH(int x, int y, int width) { int iy = y >> SHIFT; SkASSERT(iy >= fCurrIY); x -= fSuperLeft; // hack, until I figure out why my cubics (I think) go beyond the bounds if (x < 0) { width += x; x = 0; } #ifdef SK_DEBUG SkASSERT(y >= fCurrY); SkASSERT(y != fCurrY || x >= fCurrX); fCurrY = y; #endif if (iy != fCurrIY) // new scanline { this->flush(); fCurrIY = iy; } // we sub 1 from maxValue 1 time for each block, so that we don't // hit 256 as a summed max, but 255. // int maxValue = (1 << (8 - SHIFT)) - (((y & MASK) + 1) >> SHIFT); #if 0 SkAntiRun<SHIFT> arun; arun.set(x, x + width); fRuns.add(x >> SHIFT, arun.getStartAlpha(), arun.getMiddleCount(), arun.getStopAlpha(), maxValue); #else { int start = x; int stop = x + width; SkASSERT(start >= 0 && stop > start); int fb = start & SUPER_Mask; int fe = stop & SUPER_Mask; int n = (stop >> SHIFT) - (start >> SHIFT) - 1; if (n < 0) { fb = fe - fb; n = 0; fe = 0; } else { if (fb == 0) n += 1; else fb = (1 << SHIFT) - fb; } fRuns.add(x >> SHIFT, coverage_to_alpha(fb), n, coverage_to_alpha(fe), (1 << (8 - SHIFT)) - (((y & MASK) + 1) >> SHIFT)); } #endif #ifdef SK_DEBUG fRuns.assertValid(y & MASK, (1 << (8 - SHIFT))); fCurrX = x + width; #endif } /////////////////////////////////////////////////////////////////////////////// class MaskSuperBlitter : public BaseSuperBlitter { public: MaskSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip); virtual ~MaskSuperBlitter() { fRealBlitter->blitMask(fMask, fClipRect); } virtual void blitH(int x, int y, int width); static bool CanHandleRect(const SkIRect& bounds) { int width = bounds.width(); int rb = SkAlign4(width); return (width <= MaskSuperBlitter::kMAX_WIDTH) && (rb * bounds.height() <= MaskSuperBlitter::kMAX_STORAGE); } private: enum { kMAX_WIDTH = 32, // so we don't try to do very wide things, where the RLE blitter would be faster kMAX_STORAGE = 1024 }; SkMask fMask; SkIRect fClipRect; // we add 1 because add_aa_span can write (unchanged) 1 extra byte at the end, rather than // perform a test to see if stopAlpha != 0 uint32_t fStorage[(kMAX_STORAGE >> 2) + 1]; }; MaskSuperBlitter::MaskSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip) : BaseSuperBlitter(realBlitter, ir, clip) { SkASSERT(CanHandleRect(ir)); fMask.fImage = (uint8_t*)fStorage; fMask.fBounds = ir; fMask.fRowBytes = ir.width(); fMask.fFormat = SkMask::kA8_Format; fClipRect = ir; fClipRect.intersect(clip.getBounds()); // For valgrind, write 1 extra byte at the end so we don't read // uninitialized memory. See comment in add_aa_span and fStorage[]. memset(fStorage, 0, fMask.fBounds.height() * fMask.fRowBytes + 1); } static void add_aa_span(uint8_t* alpha, U8CPU startAlpha) { /* I should be able to just add alpha[x] + startAlpha. However, if the trailing edge of the previous span and the leading edge of the current span round to the same super-sampled x value, I might overflow to 256 with this add, hence the funny subtract. */ unsigned tmp = *alpha + startAlpha; SkASSERT(tmp <= 256); *alpha = SkToU8(tmp - (tmp >> 8)); } static void add_aa_span(uint8_t* alpha, U8CPU startAlpha, int middleCount, U8CPU stopAlpha, U8CPU maxValue) { SkASSERT(middleCount >= 0); /* I should be able to just add alpha[x] + startAlpha. However, if the trailing edge of the previous span and the leading edge of the current span round to the same super-sampled x value, I might overflow to 256 with this add, hence the funny subtract. */ unsigned tmp = *alpha + startAlpha; SkASSERT(tmp <= 256); *alpha++ = SkToU8(tmp - (tmp >> 8)); while (--middleCount >= 0) { alpha[0] = SkToU8(alpha[0] + maxValue); alpha += 1; } // potentially this can be off the end of our "legal" alpha values, but that // only happens if stopAlpha is also 0. Rather than test for stopAlpha != 0 // every time (slow), we just do it, and ensure that we've allocated extra space // (see the + 1 comment in fStorage[] *alpha = SkToU8(*alpha + stopAlpha); } void MaskSuperBlitter::blitH(int x, int y, int width) { int iy = (y >> SHIFT); SkASSERT(iy >= fMask.fBounds.fTop && iy < fMask.fBounds.fBottom); iy -= fMask.fBounds.fTop; // make it relative to 0 #ifdef SK_DEBUG { int ix = x >> SHIFT; SkASSERT(ix >= fMask.fBounds.fLeft && ix < fMask.fBounds.fRight); } #endif x -= (fMask.fBounds.fLeft << SHIFT); // hack, until I figure out why my cubics (I think) go beyond the bounds if (x < 0) { width += x; x = 0; } // we sub 1 from maxValue 1 time for each block, so that we don't // hit 256 as a summed max, but 255. // int maxValue = (1 << (8 - SHIFT)) - (((y & MASK) + 1) >> SHIFT); uint8_t* row = fMask.fImage + iy * fMask.fRowBytes + (x >> SHIFT); int start = x; int stop = x + width; SkASSERT(start >= 0 && stop > start); int fb = start & SUPER_Mask; int fe = stop & SUPER_Mask; int n = (stop >> SHIFT) - (start >> SHIFT) - 1; if (n < 0) { add_aa_span(row, coverage_to_alpha(fe - fb)); } else { fb = (1 << SHIFT) - fb; add_aa_span(row, coverage_to_alpha(fb), n, coverage_to_alpha(fe), (1 << (8 - SHIFT)) - (((y & MASK) + 1) >> SHIFT)); } #ifdef SK_DEBUG fCurrX = x + width; #endif } /////////////////////////////////////////////////////////////////////////////// /* Returns non-zero if (value << shift) overflows a short, which would mean we could not shift it up and then convert to SkFixed. i.e. is x expressible as signed (16-shift) bits? */ static int overflows_short_shift(int value, int shift) { const int s = 16 + shift; return (value << s >> s) - value; } void SkScan::AntiFillPath(const SkPath& path, const SkRegion& clip, SkBlitter* blitter) { if (clip.isEmpty()) { return; } SkRect r; SkIRect ir; path.computeBounds(&r, SkPath::kFast_BoundsType); r.roundOut(&ir); if (ir.isEmpty()) { return; } // use bit-or since we expect all to pass, so no need to go slower with // a short-circuiting logical-or if (overflows_short_shift(ir.fLeft, SHIFT) | overflows_short_shift(ir.fRight, SHIFT) | overflows_short_shift(ir.fTop, SHIFT) | overflows_short_shift(ir.fBottom, SHIFT)) { // can't supersample, so draw w/o antialiasing SkScan::FillPath(path, clip, blitter); return; } SkScanClipper clipper(blitter, &clip, ir); const SkIRect* clipRect = clipper.getClipRect(); if (clipper.getBlitter() == NULL) { // clipped out if (path.isInverseFillType()) { blitter->blitRegion(clip); } return; } // now use the (possibly wrapped) blitter blitter = clipper.getBlitter(); if (path.isInverseFillType()) { sk_blit_above_and_below(blitter, ir, clip); } SkIRect superRect, *superClipRect = NULL; if (clipRect) { superRect.set( clipRect->fLeft << SHIFT, clipRect->fTop << SHIFT, clipRect->fRight << SHIFT, clipRect->fBottom << SHIFT); superClipRect = &superRect; } // MaskSuperBlitter can't handle drawing outside of ir, so we can't use it // if we're an inverse filltype if (!path.isInverseFillType() && MaskSuperBlitter::CanHandleRect(ir)) { MaskSuperBlitter superBlit(blitter, ir, clip); sk_fill_path(path, superClipRect, &superBlit, ir.fBottom, SHIFT, clip); } else { SuperBlitter superBlit(blitter, ir, clip); sk_fill_path(path, superClipRect, &superBlit, ir.fBottom, SHIFT, clip); } }