接上篇Linker源码详解(一),本文继续来分析Linker的链接过程。为了更好的理解Unidbg的原理,我们需要了解很多细节。虽然一个模拟二进制执行框架的弊端很多,但也是未来二进制分析的一个很好的思路。
上篇文章我们讲解了Linker的装载,将So文件按PT_LOAD段的指示来将So加载到内存,那么我们这篇文章就来分析一下加载完之后又干了什么呢?
http://androidxref.com/4.4.4_r1/xref/bionic/linker/linker.cpp#702
static soinfo* load_library(const char* name) {
//...
ElfReader elf_reader(name, fd);
if (!elf_reader.Load()) {
return NULL;
}
const char* bname = strrchr(name, '/');
soinfo* si = soinfo_alloc(bname ? bname + 1 : name);
if (si == NULL) {
return NULL;
}
si->base = elf_reader.load_start();
si->size = elf_reader.load_size();
si->load_bias = elf_reader.load_bias();
si->flags = 0;
si->entry = 0;
si->dynamic = NULL;
si->phnum = elf_reader.phdr_count();
si->phdr = elf_reader.loaded_phdr();
return si;
}
上篇我们进入了elf_reader.Load()函数,阅读了Linker的装载源码,当装载结束后,对soinfo结构体进行赋值(So文件的头信息/装载的结果),并插入到链表,接着我们回到上层函数继续看。
http://androidxref.com/4.4.4_r1/xref/bionic/linker/linker.cpp#751
static soinfo* find_library_internal(const char* name) {
//...
si = load_library(name);
if (si == NULL) {
return NULL;
}
// At this point we know that whatever is loaded @ base is a valid ELF
// shared library whose segments are properly mapped in.
TRACE("[ init_library base=0x%08x sz=0x%08x name='%s' ]",
si->base, si->size, si->name);
if (!soinfo_link_image(si)) {
munmap(reinterpret_cast<void*>(si->base), si->size);
soinfo_free(si);
return NULL;
}
return si;
}
我们从上面这个函数中看到,当调用了load_library函数之后,又调用了soinfo_link_image这个函数。这个函数也就是我们今天分析的一个主要入口--链接。
下面的这个函数很长,我给大家把不相关的代码去掉,大家先通过注释来看一遍这个函数在干什么。
http://androidxref.com/4.4.4_r1/xref/bionic/linker/linker.cpp#1303
static bool soinfo_link_image(soinfo* si) {
//拿到地址、段表指针、段表数
Elf32_Addr base = si->load_bias;
const Elf32_Phdr *phdr = si->phdr;
int phnum = si->phnum;
//...
size_t dynamic_count;
Elf32_Word dynamic_flags;
//这个函数很简单,就是遍历段表,找到类型为PT_DYNAMIC的段
phdr_table_get_dynamic_section(phdr, phnum, base, &si->dynamic,
&dynamic_count, &dynamic_flags);
if (si->dynamic == NULL) {
if (!relocating_linker) {
DL_ERR("missing PT_DYNAMIC in \"%s\"", si->name);
}
return false;
}
#ifdef ANDROID_ARM_LINKER
//异常相关,有兴趣的同学可以看看
(void) phdr_table_get_arm_exidx(phdr, phnum, base,
&si->ARM_exidx, &si->ARM_exidx_count);
#endif
//上面我们解析到了Dynamic段的地址跟数量,下面就开始遍历Dynamic信息
uint32_t needed_count = 0;
//DT_NULL表示结束
for (Elf32_Dyn* d = si->dynamic; d->d_tag != DT_NULL; ++d) {
DEBUG("d = %p, d[0](tag) = 0x%08x d[1](val) = 0x%08x", d, d->d_tag, d->d_un.d_val);
switch(d->d_tag){
case DT_HASH:
//哈希表
si->nbucket = ((unsigned *) (base + d->d_un.d_ptr))[0];
si->nchain = ((unsigned *) (base + d->d_un.d_ptr))[1];
si->bucket = (unsigned *) (base + d->d_un.d_ptr + 8);
si->chain = (unsigned *) (base + d->d_un.d_ptr + 8 + si->nbucket * 4);
break;
case DT_STRTAB:
//字符串表
si->strtab = (const char *) (base + d->d_un.d_ptr);
break;
case DT_SYMTAB:
//符号表
si->symtab = (Elf32_Sym *) (base + d->d_un.d_ptr);
break;
case DT_PLTREL:
//未处理
if (d->d_un.d_val != DT_REL) {
DL_ERR("unsupported DT_RELA in \"%s\"", si->name);
return false;
}
break;
case DT_JMPREL:
//PLT重定位表
si->plt_rel = (Elf32_Rel*) (base + d->d_un.d_ptr);
break;
case DT_PLTRELSZ:
//PLT重定位表大小
si->plt_rel_count = d->d_un.d_val / sizeof(Elf32_Rel);
break;
case DT_REL:
//重定位表
si->rel = (Elf32_Rel*) (base + d->d_un.d_ptr);
break;
case DT_RELSZ:
//重定位表大小
si->rel_count = d->d_un.d_val / sizeof(Elf32_Rel);
break;
case DT_PLTGOT:
//GOT全局偏移表,跟PLT延时绑定相关,此处未处理,在Unidbg中也没有处理此项
si->plt_got = (unsigned *)(base + d->d_un.d_ptr);
break;
case DT_DEBUG:
//调试相关, Unidbg未处理,不必理会
if ((dynamic_flags & PF_W) != 0) {
d->d_un.d_val = (int) &_r_debug;
}
break;
case DT_RELA:
//RELA表跟REL表在Unidbg中的处理方案是相同的,这两个值有哪个就用哪个,RELA只是比REL表多了一个adden常量
DL_ERR("unsupported DT_RELA in \"%s\"", si->name);
return false;
case DT_INIT:
//初始化函数
si->init_func = reinterpret_cast<linker_function_t>(base + d->d_un.d_ptr);
DEBUG("%s constructors (DT_INIT) found at %p", si->name, si->init_func);
break;
case DT_FINI:
//析构函数
si->fini_func = reinterpret_cast<linker_function_t>(base + d->d_un.d_ptr);
DEBUG("%s destructors (DT_FINI) found at %p", si->name, si->fini_func);
break;
case DT_INIT_ARRAY:
//init.array 初始化函数列表,后面我们会看到这些初始化函数的调用顺序
si->init_array = reinterpret_cast<linker_function_t*>(base + d->d_un.d_ptr);
DEBUG("%s constructors (DT_INIT_ARRAY) found at %p", si->name, si->init_array);
break;
case DT_INIT_ARRAYSZ:
//init.array 大小
si->init_array_count = ((unsigned)d->d_un.d_val) / sizeof(Elf32_Addr);
break;
case DT_FINI_ARRAY:
//析构函数列表
si->fini_array = reinterpret_cast<linker_function_t*>(base + d->d_un.d_ptr);
DEBUG("%s destructors (DT_FINI_ARRAY) found at %p", si->name, si->fini_array);
break;
case DT_FINI_ARRAYSZ:
//fini.array 大小
si->fini_array_count = ((unsigned)d->d_un.d_val) / sizeof(Elf32_Addr);
break;
case DT_PREINIT_ARRAY:
//也是初始化函数,但是跟init.array不同,这个段大多只出现在可执行文件中,在So中我选择了忽略
si->preinit_array = reinterpret_cast<linker_function_t*>(base + d->d_un.d_ptr);
DEBUG("%s constructors (DT_PREINIT_ARRAY) found at %p", si->name, si->preinit_array);
break;
case DT_PREINIT_ARRAYSZ:
//preinit 列表大小
si->preinit_array_count = ((unsigned)d->d_un.d_val) / sizeof(Elf32_Addr);
break;
case DT_TEXTREL:
si->has_text_relocations = true;
break;
case DT_SYMBOLIC:
si->has_DT_SYMBOLIC = true;
break;
case DT_NEEDED:
//当前So的依赖
++needed_count;
break;
#if defined DT_FLAGS
// TODO: why is DT_FLAGS not defined?
case DT_FLAGS:
if (d->d_un.d_val & DF_TEXTREL) {
si->has_text_relocations = true;
}
if (d->d_un.d_val & DF_SYMBOLIC) {
si->has_DT_SYMBOLIC = true;
}
break;
#endif
}
}
//... Sanity checks.
//至此,Dynamic段的信息就解析完毕了,其中想表达的信息也被处理后放到了soinfo中,后面直接就可以拿来用了
// 开辟依赖库的soinfo空间,准备处理依赖
soinfo** needed = (soinfo**) alloca((1 + needed_count) * sizeof(soinfo*));
soinfo** pneeded = needed;
//再次遍历Dynamic段
for (Elf32_Dyn* d = si->dynamic; d->d_tag != DT_NULL; ++d) {
if (d->d_tag == DT_NEEDED) {
//查找DT_NEEDED项
const char* library_name = si->strtab + d->d_un.d_val;
DEBUG("%s needs %s", si->name, library_name);
//进行依赖处理,跟加载so一样的路线,还是已加载直接返回,未加载进行查找加载
soinfo* lsi = find_library(library_name);
if (lsi == NULL) {
strlcpy(tmp_err_buf, linker_get_error_buffer(), sizeof(tmp_err_buf));
DL_ERR("could not load library \"%s\" needed by \"%s\"; caused by %s",
library_name, si->name, tmp_err_buf);
return false;
}
*pneeded++ = lsi;
}
}
*pneeded = NULL;
//至此依赖库也已经加载完毕
//处理重定位
if (si->plt_rel != NULL) {
DEBUG("[ relocating %s plt ]", si->name );
if (soinfo_relocate(si, si->plt_rel, si->plt_rel_count, needed)) {
return false;
}
}
if (si->rel != NULL) {
DEBUG("[ relocating %s ]", si->name );
if (soinfo_relocate(si, si->rel, si->rel_count, needed)) {
return false;
}
}
//设置soinfo的LINKED标志,表示已进行链接
si->flags |= FLAG_LINKED;
DEBUG("[ finished linking %s ]", si->name);
//...
return true;
}
上面的函数虽然很长,但是它想表达的意思很简单,我们再来回顾下它干了什么事情:
下面我们就来分析它的soinfo_relocate函数,我们看到它调用了两次,只不过入参不同,分别是我们的重定位表和PLT重定位表。
http://androidxref.com/4.4.4_r1/xref/bionic/linker/linker.cpp#848
static int soinfo_relocate(soinfo* si, Elf32_Rel* rel, unsigned count,
soinfo* needed[])
{
//拿到符号表和字符串表,定义一些变量
Elf32_Sym* symtab = si->symtab;
const char* strtab = si->strtab;
Elf32_Sym* s;
Elf32_Rel* start = rel;
soinfo* lsi;
//遍历重定位表
for (size_t idx = 0; idx < count; ++idx, ++rel) {
//拿到重定位类型
unsigned type = ELF32_R_TYPE(rel->r_info);
//拿到重定位符号
unsigned sym = ELF32_R_SYM(rel->r_info);
//计算需要重定位的地址
Elf32_Addr reloc = static_cast<Elf32_Addr>(rel->r_offset + si->load_bias);
Elf32_Addr sym_addr = 0;
char* sym_name = NULL;
DEBUG("Processing '%s' relocation at index %d", si->name, idx);
if (type == 0) { // R_*_NONE
continue;
}
if (sym != 0) {
//如果sym不为0,说明重定位需要用到符号,先来找符号,拿到符号名
sym_name = (char *)(strtab + symtab[sym].st_name);
//下面这个函数大家有兴趣的可以看一下,就是根据符号名来从依赖so中查找所需要的符号
s = soinfo_do_lookup(si, sym_name, &lsi, needed);
if (s == NULL) {
//如果没找到,就用本身So的符号
s = &symtab[sym];
if (ELF32_ST_BIND(s->st_info) != STB_WEAK) {
DL_ERR("cannot locate symbol \"%s\" referenced by \"%s\"...", sym_name, si->name);
return -1;
}
switch (type) {
//下面是如果符号不为外部符号,就只能为以下几种类型
#if defined(ANDROID_ARM_LINKER)
case R_ARM_JUMP_SLOT:
case R_ARM_GLOB_DAT:
case R_ARM_ABS32:
case R_ARM_RELATIVE: /* Don't care. */
#endif /* ANDROID_*_LINKER */
/* sym_addr was initialized to be zero above or relocation
code below does not care about value of sym_addr.
No need to do anything. */
break;
#if defined(ANDROID_ARM_LINKER)
case R_ARM_COPY:
/* Fall through. Can't really copy if weak symbol is
not found in run-time. */
#endif /* ANDROID_ARM_LINKER */
default:
DL_ERR("unknown weak reloc type %d @ %p (%d)",
type, rel, (int) (rel - start));
return -1;
}
} else {
//如果我们找到了外部符号,取到外部符号的地址
sym_addr = static_cast<Elf32_Addr>(s->st_value + lsi->load_bias);
}
count_relocation(kRelocSymbol);
} else {
//如果sym为0,就说明当前重定位用不到符号
s = NULL;
}
//下面根据重定位类型来处理重定位
switch(type){
#if defined(ANDROID_ARM_LINKER)
case R_ARM_JUMP_SLOT:
count_relocation(kRelocAbsolute);
MARK(rel->r_offset);
TRACE_TYPE(RELO, "RELO JMP_SLOT %08x <- %08x %s", reloc, sym_addr, sym_name);
//直接将需要重定位的地方,写入获取到的符号地址
*reinterpret_cast<Elf32_Addr*>(reloc) = sym_addr;
break;
case R_ARM_GLOB_DAT:
count_relocation(kRelocAbsolute);
MARK(rel->r_offset);
TRACE_TYPE(RELO, "RELO GLOB_DAT %08x <- %08x %s", reloc, sym_addr, sym_name);
//直接将需要重定位的地方,写入获取到的符号地址,与R_ARM_JUMP_SLOT相同
*reinterpret_cast<Elf32_Addr*>(reloc) = sym_addr;
break;
case R_ARM_ABS32:
count_relocation(kRelocAbsolute);
MARK(rel->r_offset);
TRACE_TYPE(RELO, "RELO ABS %08x <- %08x %s", reloc, sym_addr, sym_name);
//先读出需要重定位地方的数据,将其和符号地址相加,写入需要重定位的地方
*reinterpret_cast<Elf32_Addr*>(reloc) += sym_addr;
break;
case R_ARM_REL32:
count_relocation(kRelocRelative);
MARK(rel->r_offset);
TRACE_TYPE(RELO, "RELO REL32 %08x <- %08x - %08x %s",
reloc, sym_addr, rel->r_offset, sym_name);
//先读出需要重定位地方的数据,将其和符号地址相加,再与重定位的地址相减,重定位的写入需要重定位的地方。此处Unidbg并未处理,也可忽略,应该是用不到的
*reinterpret_cast<Elf32_Addr*>(reloc) += sym_addr - rel->r_offset;
break;
#endif /* ANDROID_*_LINKER */
#if defined(ANDROID_ARM_LINKER)
case R_ARM_RELATIVE:
#endif /* ANDROID_*_LINKER */
count_relocation(kRelocRelative);
MARK(rel->r_offset);
if (sym) {
DL_ERR("odd RELATIVE form...");
return -1;
}
TRACE_TYPE(RELO, "RELO RELATIVE %08x <- +%08x", reloc, si->base);
//先读出需要重定位地方的数据,将其和So的基址相加,写入需要重定位的地方
*reinterpret_cast<Elf32_Addr*>(reloc) += si->base;
break;
#ifdef ANDROID_ARM_LINKER
case R_ARM_COPY:
//.. 进行了一些错误处理
break;
#endif /* ANDROID_ARM_LINKER */
default:
DL_ERR("unknown reloc type %d @ %p (%d)",
type, rel, (int) (rel - start));
return -1;
}
}
return 0;
}
上面这个函数就是在处理重定位相关的信息了,我们看到从Dynamic段中拿到的跟重定位相关的表,会经过这个函数来处理,将So本身的地址引用进行重定位,使其可以正常运行。其实在32位So中,需要处理的重定位类型并不是很多,就4种类型需要处理,而且还有两种处理方式相同。
现在So就重定位完成了,现在So已经就可以跑起来了,下面我们就来看看从Dynamic段中拿到的各种初始化函数是怎么处理的,还记得吧。 我们回到do_dlopen函数。
http://androidxref.com/4.4.4_r1/xref/bionic/linker/linker.cpp#823
soinfo* do_dlopen(const char* name, int flags) {
if ((flags & ~(RTLD_NOW|RTLD_LAZY|RTLD_LOCAL|RTLD_GLOBAL)) != 0) {
DL_ERR("invalid flags to dlopen: %x", flags);
return NULL;
}
set_soinfo_pool_protection(PROT_READ | PROT_WRITE);
soinfo* si = find_library(name);
if (si != NULL) {
si->CallConstructors();
}
set_soinfo_pool_protection(PROT_READ);
return si;
}
此时我们的find_library函数已经处理完了,So已经被装载且链接过了,最后一步它调用了soinfo的CallConstructors函数,我们来看看这个函数处理了什么。
http://androidxref.com/4.4.4_r1/xref/bionic/linker/linker.cpp#1192
void soinfo::CallConstructors() {
if (constructors_called) {
return;
}
constructors_called = true;
if ((flags & FLAG_EXE) == 0 && preinit_array != NULL) {
// The GNU dynamic linker silently ignores these, but we warn the developer.
PRINT("\"%s\": ignoring %d-entry DT_PREINIT_ARRAY in shared library!",
name, preinit_array_count);
}
//如果Dynamic段不为空,先处理依赖库的初始化
if (dynamic != NULL) {
for (Elf32_Dyn* d = dynamic; d->d_tag != DT_NULL; ++d) {
if (d->d_tag == DT_NEEDED) {
const char* library_name = strtab + d->d_un.d_val;
TRACE("\"%s\": calling constructors in DT_NEEDED \"%s\"", name, library_name);
find_loaded_library(library_name)->CallConstructors();
}
}
}
TRACE("\"%s\": calling constructors", name);
//我们来看下面一句英文注释,非常重要。他说如果DT_INIT和DT_INIT_ARRAY都存在,DT_INIT应该在DT_INIT_ARRAY之前被调用
// DT_INIT should be called before DT_INIT_ARRAY if both are present.
//下面就是在调用两者,CallArray只是在循环调用CallFunction,我们看一下CallFunction
CallFunction("DT_INIT", init_func);
CallArray("DT_INIT_ARRAY", init_array, init_array_count, false);
}
http://androidxref.com/4.4.4_r1/xref/bionic/linker/linker.cpp#1172
void soinfo::CallFunction(const char* function_name UNUSED, linker_function_t function) {
if (function == NULL || reinterpret_cast<uintptr_t>(function) == static_cast<uintptr_t>(-1)) {
return;
}
TRACE("[ Calling %s @ %p for '%s' ]", function_name, function, name);
//在这里被调用了,其他没啥好说的
function();
TRACE("[ Done calling %s @ %p for '%s' ]", function_name, function, name);
// The function may have called dlopen(3) or dlclose(3), so we need to ensure our data structures
// are still writable. This happens with our debug malloc (see http://b/7941716).
set_soinfo_pool_protection(PROT_READ | PROT_WRITE);
}
至此,Linker就分析结束了。
我们在最后说一个Unidbg细节的bug,但是现在已经被修复了,就是作为一个扩展吧。我们来看下面一段Unidbg加载So的代码。
if (elfFile.file_type == ElfFile.FT_DYN) { // not executable
int init = dynamicStructure.getInit();
if (init != 0) {
initFunctionList.add(new LinuxInitFunction(load_base, soName, init));
//new LinuxInitFunction(load_base, soName, init).call(emulator);
}
int initArraySize = dynamicStructure.getInitArraySize();
int count = initArraySize / emulator.getPointerSize();
if (count > 0) {
Pointer pointer = UnidbgPointer.pointer(emulator, load_base + dynamicStructure.getInitArrayOffset());
if (pointer == null) {
throw new IllegalStateException("DT_INIT_ARRAY is null");
}
for (int i = 0; i < count; i++) {
Pointer func = pointer.getPointer((long) i * emulator.getPointerSize());
if (func != null) {
initFunctionList.add(new AbsoluteInitFunction(load_base, soName, ((UnidbgPointer) func).peer));
}
}
}
}
如果我们细心的阅读Linker的源码,就会发现Unidbg这里处理的是不恰当的。在本文的最后,我们看到了初始化函数的调用,是DT_INIT函数先被执行,后面再处理DT_INIT_ARRAY,而Unidbg这里就是将他们都添加到一个List,再一起调用。
这样就会产生一个问题,在某些加壳的So中,它的DT_INIT_ARRAY是在DT_INIT函数执行之后,才会有值的(进行修复),所以按照Unidbg这个写法就无法执行INIT_ARRAY或部分INIT_ARRAY无法执行。处理方法也很简单,注释在上面了,只需要让DT_INIT先执行就可以了。
Copyright© 2013-2019