Kernel  |  4.4

下载     查看原文件
C++程序  |  119行  |  3.76 KB
#ifndef _TOOLS_LINUX_COMPILER_H_
#define _TOOLS_LINUX_COMPILER_H_

/* Optimization barrier */
/* The "volatile" is due to gcc bugs */
#define barrier() __asm__ __volatile__("": : :"memory")

#ifndef __always_inline
# define __always_inline	inline __attribute__((always_inline))
#endif

#define __user

#ifndef __attribute_const__
# define __attribute_const__
#endif

#ifndef __maybe_unused
# define __maybe_unused		__attribute__((unused))
#endif

#ifndef __packed
# define __packed		__attribute__((__packed__))
#endif

#ifndef __force
# define __force
#endif

#ifndef __weak
# define __weak			__attribute__((weak))
#endif

#ifndef likely
# define likely(x)		__builtin_expect(!!(x), 1)
#endif

#ifndef unlikely
# define unlikely(x)		__builtin_expect(!!(x), 0)
#endif

#define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))

#include <linux/types.h>

/*
 * Following functions are taken from kernel sources and
 * break aliasing rules in their original form.
 *
 * While kernel is compiled with -fno-strict-aliasing,
 * perf uses -Wstrict-aliasing=3 which makes build fail
 * under gcc 4.4.
 *
 * Using extra __may_alias__ type to allow aliasing
 * in this case.
 */
typedef __u8  __attribute__((__may_alias__))  __u8_alias_t;
typedef __u16 __attribute__((__may_alias__)) __u16_alias_t;
typedef __u32 __attribute__((__may_alias__)) __u32_alias_t;
typedef __u64 __attribute__((__may_alias__)) __u64_alias_t;

static __always_inline void __read_once_size(const volatile void *p, void *res, int size)
{
	switch (size) {
	case 1: *(__u8_alias_t  *) res = *(volatile __u8_alias_t  *) p; break;
	case 2: *(__u16_alias_t *) res = *(volatile __u16_alias_t *) p; break;
	case 4: *(__u32_alias_t *) res = *(volatile __u32_alias_t *) p; break;
	case 8: *(__u64_alias_t *) res = *(volatile __u64_alias_t *) p; break;
	default:
		barrier();
		__builtin_memcpy((void *)res, (const void *)p, size);
		barrier();
	}
}

static __always_inline void __write_once_size(volatile void *p, void *res, int size)
{
	switch (size) {
	case 1: *(volatile  __u8_alias_t *) p = *(__u8_alias_t  *) res; break;
	case 2: *(volatile __u16_alias_t *) p = *(__u16_alias_t *) res; break;
	case 4: *(volatile __u32_alias_t *) p = *(__u32_alias_t *) res; break;
	case 8: *(volatile __u64_alias_t *) p = *(__u64_alias_t *) res; break;
	default:
		barrier();
		__builtin_memcpy((void *)p, (const void *)res, size);
		barrier();
	}
}

/*
 * Prevent the compiler from merging or refetching reads or writes. The
 * compiler is also forbidden from reordering successive instances of
 * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the
 * compiler is aware of some particular ordering.  One way to make the
 * compiler aware of ordering is to put the two invocations of READ_ONCE,
 * WRITE_ONCE or ACCESS_ONCE() in different C statements.
 *
 * In contrast to ACCESS_ONCE these two macros will also work on aggregate
 * data types like structs or unions. If the size of the accessed data
 * type exceeds the word size of the machine (e.g., 32 bits or 64 bits)
 * READ_ONCE() and WRITE_ONCE()  will fall back to memcpy and print a
 * compile-time warning.
 *
 * Their two major use cases are: (1) Mediating communication between
 * process-level code and irq/NMI handlers, all running on the same CPU,
 * and (2) Ensuring that the compiler does not  fold, spindle, or otherwise
 * mutilate accesses that either do not require ordering or that interact
 * with an explicit memory barrier or atomic instruction that provides the
 * required ordering.
 */

#define READ_ONCE(x) \
	({ union { typeof(x) __val; char __c[1]; } __u; __read_once_size(&(x), __u.__c, sizeof(x)); __u.__val; })

#define WRITE_ONCE(x, val) \
	({ union { typeof(x) __val; char __c[1]; } __u = { .__val = (val) }; __write_once_size(&(x), __u.__c, sizeof(x)); __u.__val; })

#endif /* _TOOLS_LINUX_COMPILER_H */