- 根目录:
- drivers
- staging
- rdma
- hfi1
- verbs.c
/*
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2015 Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* BSD LICENSE
*
* Copyright(c) 2015 Intel Corporation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <rdma/ib_mad.h>
#include <rdma/ib_user_verbs.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/utsname.h>
#include <linux/rculist.h>
#include <linux/mm.h>
#include <linux/random.h>
#include <linux/vmalloc.h>
#include "hfi.h"
#include "common.h"
#include "device.h"
#include "trace.h"
#include "qp.h"
#include "sdma.h"
unsigned int hfi1_lkey_table_size = 16;
module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
S_IRUGO);
MODULE_PARM_DESC(lkey_table_size,
"LKEY table size in bits (2^n, 1 <= n <= 23)");
static unsigned int hfi1_max_pds = 0xFFFF;
module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
MODULE_PARM_DESC(max_pds,
"Maximum number of protection domains to support");
static unsigned int hfi1_max_ahs = 0xFFFF;
module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
unsigned int hfi1_max_cqes = 0x2FFFF;
module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
MODULE_PARM_DESC(max_cqes,
"Maximum number of completion queue entries to support");
unsigned int hfi1_max_cqs = 0x1FFFF;
module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
unsigned int hfi1_max_qp_wrs = 0x3FFF;
module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
unsigned int hfi1_max_qps = 16384;
module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
unsigned int hfi1_max_sges = 0x60;
module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
unsigned int hfi1_max_mcast_grps = 16384;
module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
MODULE_PARM_DESC(max_mcast_grps,
"Maximum number of multicast groups to support");
unsigned int hfi1_max_mcast_qp_attached = 16;
module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
uint, S_IRUGO);
MODULE_PARM_DESC(max_mcast_qp_attached,
"Maximum number of attached QPs to support");
unsigned int hfi1_max_srqs = 1024;
module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
unsigned int hfi1_max_srq_sges = 128;
module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
unsigned int hfi1_max_srq_wrs = 0x1FFFF;
module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
static void verbs_sdma_complete(
struct sdma_txreq *cookie,
int status,
int drained);
/* Length of buffer to create verbs txreq cache name */
#define TXREQ_NAME_LEN 24
/*
* Note that it is OK to post send work requests in the SQE and ERR
* states; hfi1_do_send() will process them and generate error
* completions as per IB 1.2 C10-96.
*/
const int ib_hfi1_state_ops[IB_QPS_ERR + 1] = {
[IB_QPS_RESET] = 0,
[IB_QPS_INIT] = HFI1_POST_RECV_OK,
[IB_QPS_RTR] = HFI1_POST_RECV_OK | HFI1_PROCESS_RECV_OK,
[IB_QPS_RTS] = HFI1_POST_RECV_OK | HFI1_PROCESS_RECV_OK |
HFI1_POST_SEND_OK | HFI1_PROCESS_SEND_OK |
HFI1_PROCESS_NEXT_SEND_OK,
[IB_QPS_SQD] = HFI1_POST_RECV_OK | HFI1_PROCESS_RECV_OK |
HFI1_POST_SEND_OK | HFI1_PROCESS_SEND_OK,
[IB_QPS_SQE] = HFI1_POST_RECV_OK | HFI1_PROCESS_RECV_OK |
HFI1_POST_SEND_OK | HFI1_FLUSH_SEND,
[IB_QPS_ERR] = HFI1_POST_RECV_OK | HFI1_FLUSH_RECV |
HFI1_POST_SEND_OK | HFI1_FLUSH_SEND,
};
struct hfi1_ucontext {
struct ib_ucontext ibucontext;
};
static inline struct hfi1_ucontext *to_iucontext(struct ib_ucontext
*ibucontext)
{
return container_of(ibucontext, struct hfi1_ucontext, ibucontext);
}
/*
* Translate ib_wr_opcode into ib_wc_opcode.
*/
const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
[IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
[IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
[IB_WR_SEND] = IB_WC_SEND,
[IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
[IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
[IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
[IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD
};
/*
* Length of header by opcode, 0 --> not supported
*/
const u8 hdr_len_by_opcode[256] = {
/* RC */
[IB_OPCODE_RC_SEND_FIRST] = 12 + 8,
[IB_OPCODE_RC_SEND_MIDDLE] = 12 + 8,
[IB_OPCODE_RC_SEND_LAST] = 12 + 8,
[IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
[IB_OPCODE_RC_SEND_ONLY] = 12 + 8,
[IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4,
[IB_OPCODE_RC_RDMA_WRITE_FIRST] = 12 + 8 + 16,
[IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = 12 + 8,
[IB_OPCODE_RC_RDMA_WRITE_LAST] = 12 + 8,
[IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
[IB_OPCODE_RC_RDMA_WRITE_ONLY] = 12 + 8 + 16,
[IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
[IB_OPCODE_RC_RDMA_READ_REQUEST] = 12 + 8 + 16,
[IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = 12 + 8 + 4,
[IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = 12 + 8,
[IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = 12 + 8 + 4,
[IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = 12 + 8 + 4,
[IB_OPCODE_RC_ACKNOWLEDGE] = 12 + 8 + 4,
[IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = 12 + 8 + 4,
[IB_OPCODE_RC_COMPARE_SWAP] = 12 + 8 + 28,
[IB_OPCODE_RC_FETCH_ADD] = 12 + 8 + 28,
/* UC */
[IB_OPCODE_UC_SEND_FIRST] = 12 + 8,
[IB_OPCODE_UC_SEND_MIDDLE] = 12 + 8,
[IB_OPCODE_UC_SEND_LAST] = 12 + 8,
[IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
[IB_OPCODE_UC_SEND_ONLY] = 12 + 8,
[IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4,
[IB_OPCODE_UC_RDMA_WRITE_FIRST] = 12 + 8 + 16,
[IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = 12 + 8,
[IB_OPCODE_UC_RDMA_WRITE_LAST] = 12 + 8,
[IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
[IB_OPCODE_UC_RDMA_WRITE_ONLY] = 12 + 8 + 16,
[IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
/* UD */
[IB_OPCODE_UD_SEND_ONLY] = 12 + 8 + 8,
[IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 12
};
static const opcode_handler opcode_handler_tbl[256] = {
/* RC */
[IB_OPCODE_RC_SEND_FIRST] = &hfi1_rc_rcv,
[IB_OPCODE_RC_SEND_MIDDLE] = &hfi1_rc_rcv,
[IB_OPCODE_RC_SEND_LAST] = &hfi1_rc_rcv,
[IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
[IB_OPCODE_RC_SEND_ONLY] = &hfi1_rc_rcv,
[IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
[IB_OPCODE_RC_RDMA_WRITE_FIRST] = &hfi1_rc_rcv,
[IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = &hfi1_rc_rcv,
[IB_OPCODE_RC_RDMA_WRITE_LAST] = &hfi1_rc_rcv,
[IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
[IB_OPCODE_RC_RDMA_WRITE_ONLY] = &hfi1_rc_rcv,
[IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
[IB_OPCODE_RC_RDMA_READ_REQUEST] = &hfi1_rc_rcv,
[IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = &hfi1_rc_rcv,
[IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = &hfi1_rc_rcv,
[IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = &hfi1_rc_rcv,
[IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = &hfi1_rc_rcv,
[IB_OPCODE_RC_ACKNOWLEDGE] = &hfi1_rc_rcv,
[IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = &hfi1_rc_rcv,
[IB_OPCODE_RC_COMPARE_SWAP] = &hfi1_rc_rcv,
[IB_OPCODE_RC_FETCH_ADD] = &hfi1_rc_rcv,
/* UC */
[IB_OPCODE_UC_SEND_FIRST] = &hfi1_uc_rcv,
[IB_OPCODE_UC_SEND_MIDDLE] = &hfi1_uc_rcv,
[IB_OPCODE_UC_SEND_LAST] = &hfi1_uc_rcv,
[IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
[IB_OPCODE_UC_SEND_ONLY] = &hfi1_uc_rcv,
[IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
[IB_OPCODE_UC_RDMA_WRITE_FIRST] = &hfi1_uc_rcv,
[IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = &hfi1_uc_rcv,
[IB_OPCODE_UC_RDMA_WRITE_LAST] = &hfi1_uc_rcv,
[IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
[IB_OPCODE_UC_RDMA_WRITE_ONLY] = &hfi1_uc_rcv,
[IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
/* UD */
[IB_OPCODE_UD_SEND_ONLY] = &hfi1_ud_rcv,
[IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_ud_rcv,
/* CNP */
[IB_OPCODE_CNP] = &hfi1_cnp_rcv
};
/*
* System image GUID.
*/
__be64 ib_hfi1_sys_image_guid;
/**
* hfi1_copy_sge - copy data to SGE memory
* @ss: the SGE state
* @data: the data to copy
* @length: the length of the data
*/
void hfi1_copy_sge(
struct hfi1_sge_state *ss,
void *data, u32 length,
int release)
{
struct hfi1_sge *sge = &ss->sge;
while (length) {
u32 len = sge->length;
if (len > length)
len = length;
if (len > sge->sge_length)
len = sge->sge_length;
WARN_ON_ONCE(len == 0);
memcpy(sge->vaddr, data, len);
sge->vaddr += len;
sge->length -= len;
sge->sge_length -= len;
if (sge->sge_length == 0) {
if (release)
hfi1_put_mr(sge->mr);
if (--ss->num_sge)
*sge = *ss->sg_list++;
} else if (sge->length == 0 && sge->mr->lkey) {
if (++sge->n >= HFI1_SEGSZ) {
if (++sge->m >= sge->mr->mapsz)
break;
sge->n = 0;
}
sge->vaddr =
sge->mr->map[sge->m]->segs[sge->n].vaddr;
sge->length =
sge->mr->map[sge->m]->segs[sge->n].length;
}
data += len;
length -= len;
}
}
/**
* hfi1_skip_sge - skip over SGE memory
* @ss: the SGE state
* @length: the number of bytes to skip
*/
void hfi1_skip_sge(struct hfi1_sge_state *ss, u32 length, int release)
{
struct hfi1_sge *sge = &ss->sge;
while (length) {
u32 len = sge->length;
if (len > length)
len = length;
if (len > sge->sge_length)
len = sge->sge_length;
WARN_ON_ONCE(len == 0);
sge->vaddr += len;
sge->length -= len;
sge->sge_length -= len;
if (sge->sge_length == 0) {
if (release)
hfi1_put_mr(sge->mr);
if (--ss->num_sge)
*sge = *ss->sg_list++;
} else if (sge->length == 0 && sge->mr->lkey) {
if (++sge->n >= HFI1_SEGSZ) {
if (++sge->m >= sge->mr->mapsz)
break;
sge->n = 0;
}
sge->vaddr =
sge->mr->map[sge->m]->segs[sge->n].vaddr;
sge->length =
sge->mr->map[sge->m]->segs[sge->n].length;
}
length -= len;
}
}
/**
* post_one_send - post one RC, UC, or UD send work request
* @qp: the QP to post on
* @wr: the work request to send
*/
static int post_one_send(struct hfi1_qp *qp, struct ib_send_wr *wr)
{
struct hfi1_swqe *wqe;
u32 next;
int i;
int j;
int acc;
struct hfi1_lkey_table *rkt;
struct hfi1_pd *pd;
struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
struct hfi1_pportdata *ppd;
struct hfi1_ibport *ibp;
/* IB spec says that num_sge == 0 is OK. */
if (unlikely(wr->num_sge > qp->s_max_sge))
return -EINVAL;
ppd = &dd->pport[qp->port_num - 1];
ibp = &ppd->ibport_data;
/*
* Don't allow RDMA reads or atomic operations on UC or
* undefined operations.
* Make sure buffer is large enough to hold the result for atomics.
*/
if (qp->ibqp.qp_type == IB_QPT_UC) {
if ((unsigned) wr->opcode >= IB_WR_RDMA_READ)
return -EINVAL;
} else if (qp->ibqp.qp_type != IB_QPT_RC) {
/* Check IB_QPT_SMI, IB_QPT_GSI, IB_QPT_UD opcode */
if (wr->opcode != IB_WR_SEND &&
wr->opcode != IB_WR_SEND_WITH_IMM)
return -EINVAL;
/* Check UD destination address PD */
if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
return -EINVAL;
} else if ((unsigned) wr->opcode > IB_WR_ATOMIC_FETCH_AND_ADD)
return -EINVAL;
else if (wr->opcode >= IB_WR_ATOMIC_CMP_AND_SWP &&
(wr->num_sge == 0 ||
wr->sg_list[0].length < sizeof(u64) ||
wr->sg_list[0].addr & (sizeof(u64) - 1)))
return -EINVAL;
else if (wr->opcode >= IB_WR_RDMA_READ && !qp->s_max_rd_atomic)
return -EINVAL;
next = qp->s_head + 1;
if (next >= qp->s_size)
next = 0;
if (next == qp->s_last)
return -ENOMEM;
rkt = &to_idev(qp->ibqp.device)->lk_table;
pd = to_ipd(qp->ibqp.pd);
wqe = get_swqe_ptr(qp, qp->s_head);
if (qp->ibqp.qp_type != IB_QPT_UC &&
qp->ibqp.qp_type != IB_QPT_RC)
memcpy(&wqe->ud_wr, ud_wr(wr), sizeof(wqe->ud_wr));
else if (wr->opcode == IB_WR_RDMA_WRITE_WITH_IMM ||
wr->opcode == IB_WR_RDMA_WRITE ||
wr->opcode == IB_WR_RDMA_READ)
memcpy(&wqe->rdma_wr, rdma_wr(wr), sizeof(wqe->rdma_wr));
else if (wr->opcode == IB_WR_ATOMIC_CMP_AND_SWP ||
wr->opcode == IB_WR_ATOMIC_FETCH_AND_ADD)
memcpy(&wqe->atomic_wr, atomic_wr(wr), sizeof(wqe->atomic_wr));
else
memcpy(&wqe->wr, wr, sizeof(wqe->wr));
wqe->length = 0;
j = 0;
if (wr->num_sge) {
acc = wr->opcode >= IB_WR_RDMA_READ ?
IB_ACCESS_LOCAL_WRITE : 0;
for (i = 0; i < wr->num_sge; i++) {
u32 length = wr->sg_list[i].length;
int ok;
if (length == 0)
continue;
ok = hfi1_lkey_ok(rkt, pd, &wqe->sg_list[j],
&wr->sg_list[i], acc);
if (!ok)
goto bail_inval_free;
wqe->length += length;
j++;
}
wqe->wr.num_sge = j;
}
if (qp->ibqp.qp_type == IB_QPT_UC ||
qp->ibqp.qp_type == IB_QPT_RC) {
if (wqe->length > 0x80000000U)
goto bail_inval_free;
} else {
struct hfi1_ah *ah = to_iah(ud_wr(wr)->ah);
atomic_inc(&ah->refcount);
}
wqe->ssn = qp->s_ssn++;
qp->s_head = next;
return 0;
bail_inval_free:
/* release mr holds */
while (j) {
struct hfi1_sge *sge = &wqe->sg_list[--j];
hfi1_put_mr(sge->mr);
}
return -EINVAL;
}
/**
* post_send - post a send on a QP
* @ibqp: the QP to post the send on
* @wr: the list of work requests to post
* @bad_wr: the first bad WR is put here
*
* This may be called from interrupt context.
*/
static int post_send(struct ib_qp *ibqp, struct ib_send_wr *wr,
struct ib_send_wr **bad_wr)
{
struct hfi1_qp *qp = to_iqp(ibqp);
int err = 0;
int call_send;
unsigned long flags;
unsigned nreq = 0;
spin_lock_irqsave(&qp->s_lock, flags);
/* Check that state is OK to post send. */
if (unlikely(!(ib_hfi1_state_ops[qp->state] & HFI1_POST_SEND_OK))) {
spin_unlock_irqrestore(&qp->s_lock, flags);
return -EINVAL;
}
/* sq empty and not list -> call send */
call_send = qp->s_head == qp->s_last && !wr->next;
for (; wr; wr = wr->next) {
err = post_one_send(qp, wr);
if (unlikely(err)) {
*bad_wr = wr;
goto bail;
}
nreq++;
}
bail:
if (nreq && !call_send)
hfi1_schedule_send(qp);
spin_unlock_irqrestore(&qp->s_lock, flags);
if (nreq && call_send)
hfi1_do_send(&qp->s_iowait.iowork);
return err;
}
/**
* post_receive - post a receive on a QP
* @ibqp: the QP to post the receive on
* @wr: the WR to post
* @bad_wr: the first bad WR is put here
*
* This may be called from interrupt context.
*/
static int post_receive(struct ib_qp *ibqp, struct ib_recv_wr *wr,
struct ib_recv_wr **bad_wr)
{
struct hfi1_qp *qp = to_iqp(ibqp);
struct hfi1_rwq *wq = qp->r_rq.wq;
unsigned long flags;
int ret;
/* Check that state is OK to post receive. */
if (!(ib_hfi1_state_ops[qp->state] & HFI1_POST_RECV_OK) || !wq) {
*bad_wr = wr;
ret = -EINVAL;
goto bail;
}
for (; wr; wr = wr->next) {
struct hfi1_rwqe *wqe;
u32 next;
int i;
if ((unsigned) wr->num_sge > qp->r_rq.max_sge) {
*bad_wr = wr;
ret = -EINVAL;
goto bail;
}
spin_lock_irqsave(&qp->r_rq.lock, flags);
next = wq->head + 1;
if (next >= qp->r_rq.size)
next = 0;
if (next == wq->tail) {
spin_unlock_irqrestore(&qp->r_rq.lock, flags);
*bad_wr = wr;
ret = -ENOMEM;
goto bail;
}
wqe = get_rwqe_ptr(&qp->r_rq, wq->head);
wqe->wr_id = wr->wr_id;
wqe->num_sge = wr->num_sge;
for (i = 0; i < wr->num_sge; i++)
wqe->sg_list[i] = wr->sg_list[i];
/* Make sure queue entry is written before the head index. */
smp_wmb();
wq->head = next;
spin_unlock_irqrestore(&qp->r_rq.lock, flags);
}
ret = 0;
bail:
return ret;
}
/*
* Make sure the QP is ready and able to accept the given opcode.
*/
static inline int qp_ok(int opcode, struct hfi1_packet *packet)
{
struct hfi1_ibport *ibp;
if (!(ib_hfi1_state_ops[packet->qp->state] & HFI1_PROCESS_RECV_OK))
goto dropit;
if (((opcode & OPCODE_QP_MASK) == packet->qp->allowed_ops) ||
(opcode == IB_OPCODE_CNP))
return 1;
dropit:
ibp = &packet->rcd->ppd->ibport_data;
ibp->n_pkt_drops++;
return 0;
}
/**
* hfi1_ib_rcv - process an incoming packet
* @packet: data packet information
*
* This is called to process an incoming packet at interrupt level.
*
* Tlen is the length of the header + data + CRC in bytes.
*/
void hfi1_ib_rcv(struct hfi1_packet *packet)
{
struct hfi1_ctxtdata *rcd = packet->rcd;
struct hfi1_ib_header *hdr = packet->hdr;
u32 tlen = packet->tlen;
struct hfi1_pportdata *ppd = rcd->ppd;
struct hfi1_ibport *ibp = &ppd->ibport_data;
unsigned long flags;
u32 qp_num;
int lnh;
u8 opcode;
u16 lid;
/* Check for GRH */
lnh = be16_to_cpu(hdr->lrh[0]) & 3;
if (lnh == HFI1_LRH_BTH)
packet->ohdr = &hdr->u.oth;
else if (lnh == HFI1_LRH_GRH) {
u32 vtf;
packet->ohdr = &hdr->u.l.oth;
if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
goto drop;
vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
goto drop;
packet->rcv_flags |= HFI1_HAS_GRH;
} else
goto drop;
trace_input_ibhdr(rcd->dd, hdr);
opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
inc_opstats(tlen, &rcd->opstats->stats[opcode]);
/* Get the destination QP number. */
qp_num = be32_to_cpu(packet->ohdr->bth[1]) & HFI1_QPN_MASK;
lid = be16_to_cpu(hdr->lrh[1]);
if (unlikely((lid >= HFI1_MULTICAST_LID_BASE) &&
(lid != HFI1_PERMISSIVE_LID))) {
struct hfi1_mcast *mcast;
struct hfi1_mcast_qp *p;
if (lnh != HFI1_LRH_GRH)
goto drop;
mcast = hfi1_mcast_find(ibp, &hdr->u.l.grh.dgid);
if (mcast == NULL)
goto drop;
list_for_each_entry_rcu(p, &mcast->qp_list, list) {
packet->qp = p->qp;
spin_lock_irqsave(&packet->qp->r_lock, flags);
if (likely((qp_ok(opcode, packet))))
opcode_handler_tbl[opcode](packet);
spin_unlock_irqrestore(&packet->qp->r_lock, flags);
}
/*
* Notify hfi1_multicast_detach() if it is waiting for us
* to finish.
*/
if (atomic_dec_return(&mcast->refcount) <= 1)
wake_up(&mcast->wait);
} else {
rcu_read_lock();
packet->qp = hfi1_lookup_qpn(ibp, qp_num);
if (!packet->qp) {
rcu_read_unlock();
goto drop;
}
spin_lock_irqsave(&packet->qp->r_lock, flags);
if (likely((qp_ok(opcode, packet))))
opcode_handler_tbl[opcode](packet);
spin_unlock_irqrestore(&packet->qp->r_lock, flags);
rcu_read_unlock();
}
return;
drop:
ibp->n_pkt_drops++;
}
/*
* This is called from a timer to check for QPs
* which need kernel memory in order to send a packet.
*/
static void mem_timer(unsigned long data)
{
struct hfi1_ibdev *dev = (struct hfi1_ibdev *)data;
struct list_head *list = &dev->memwait;
struct hfi1_qp *qp = NULL;
struct iowait *wait;
unsigned long flags;
write_seqlock_irqsave(&dev->iowait_lock, flags);
if (!list_empty(list)) {
wait = list_first_entry(list, struct iowait, list);
qp = container_of(wait, struct hfi1_qp, s_iowait);
list_del_init(&qp->s_iowait.list);
/* refcount held until actual wake up */
if (!list_empty(list))
mod_timer(&dev->mem_timer, jiffies + 1);
}
write_sequnlock_irqrestore(&dev->iowait_lock, flags);
if (qp)
hfi1_qp_wakeup(qp, HFI1_S_WAIT_KMEM);
}
void update_sge(struct hfi1_sge_state *ss, u32 length)
{
struct hfi1_sge *sge = &ss->sge;
sge->vaddr += length;
sge->length -= length;
sge->sge_length -= length;
if (sge->sge_length == 0) {
if (--ss->num_sge)
*sge = *ss->sg_list++;
} else if (sge->length == 0 && sge->mr->lkey) {
if (++sge->n >= HFI1_SEGSZ) {
if (++sge->m >= sge->mr->mapsz)
return;
sge->n = 0;
}
sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
}
}
static noinline struct verbs_txreq *__get_txreq(struct hfi1_ibdev *dev,
struct hfi1_qp *qp)
{
struct verbs_txreq *tx;
unsigned long flags;
tx = kmem_cache_alloc(dev->verbs_txreq_cache, GFP_ATOMIC);
if (!tx) {
spin_lock_irqsave(&qp->s_lock, flags);
write_seqlock(&dev->iowait_lock);
if (ib_hfi1_state_ops[qp->state] & HFI1_PROCESS_RECV_OK &&
list_empty(&qp->s_iowait.list)) {
dev->n_txwait++;
qp->s_flags |= HFI1_S_WAIT_TX;
list_add_tail(&qp->s_iowait.list, &dev->txwait);
trace_hfi1_qpsleep(qp, HFI1_S_WAIT_TX);
atomic_inc(&qp->refcount);
}
qp->s_flags &= ~HFI1_S_BUSY;
write_sequnlock(&dev->iowait_lock);
spin_unlock_irqrestore(&qp->s_lock, flags);
tx = ERR_PTR(-EBUSY);
}
return tx;
}
static inline struct verbs_txreq *get_txreq(struct hfi1_ibdev *dev,
struct hfi1_qp *qp)
{
struct verbs_txreq *tx;
tx = kmem_cache_alloc(dev->verbs_txreq_cache, GFP_ATOMIC);
if (!tx) {
/* call slow path to get the lock */
tx = __get_txreq(dev, qp);
if (IS_ERR(tx))
return tx;
}
tx->qp = qp;
return tx;
}
void hfi1_put_txreq(struct verbs_txreq *tx)
{
struct hfi1_ibdev *dev;
struct hfi1_qp *qp;
unsigned long flags;
unsigned int seq;
qp = tx->qp;
dev = to_idev(qp->ibqp.device);
if (tx->mr) {
hfi1_put_mr(tx->mr);
tx->mr = NULL;
}
sdma_txclean(dd_from_dev(dev), &tx->txreq);
/* Free verbs_txreq and return to slab cache */
kmem_cache_free(dev->verbs_txreq_cache, tx);
do {
seq = read_seqbegin(&dev->iowait_lock);
if (!list_empty(&dev->txwait)) {
struct iowait *wait;
write_seqlock_irqsave(&dev->iowait_lock, flags);
/* Wake up first QP wanting a free struct */
wait = list_first_entry(&dev->txwait, struct iowait,
list);
qp = container_of(wait, struct hfi1_qp, s_iowait);
list_del_init(&qp->s_iowait.list);
/* refcount held until actual wake up */
write_sequnlock_irqrestore(&dev->iowait_lock, flags);
hfi1_qp_wakeup(qp, HFI1_S_WAIT_TX);
break;
}
} while (read_seqretry(&dev->iowait_lock, seq));
}
/*
* This is called with progress side lock held.
*/
/* New API */
static void verbs_sdma_complete(
struct sdma_txreq *cookie,
int status,
int drained)
{
struct verbs_txreq *tx =
container_of(cookie, struct verbs_txreq, txreq);
struct hfi1_qp *qp = tx->qp;
spin_lock(&qp->s_lock);
if (tx->wqe)
hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
else if (qp->ibqp.qp_type == IB_QPT_RC) {
struct hfi1_ib_header *hdr;
hdr = &tx->phdr.hdr;
hfi1_rc_send_complete(qp, hdr);
}
if (drained) {
/*
* This happens when the send engine notes
* a QP in the error state and cannot
* do the flush work until that QP's
* sdma work has finished.
*/
if (qp->s_flags & HFI1_S_WAIT_DMA) {
qp->s_flags &= ~HFI1_S_WAIT_DMA;
hfi1_schedule_send(qp);
}
}
spin_unlock(&qp->s_lock);
hfi1_put_txreq(tx);
}
static int wait_kmem(struct hfi1_ibdev *dev, struct hfi1_qp *qp)
{
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&qp->s_lock, flags);
if (ib_hfi1_state_ops[qp->state] & HFI1_PROCESS_RECV_OK) {
write_seqlock(&dev->iowait_lock);
if (list_empty(&qp->s_iowait.list)) {
if (list_empty(&dev->memwait))
mod_timer(&dev->mem_timer, jiffies + 1);
qp->s_flags |= HFI1_S_WAIT_KMEM;
list_add_tail(&qp->s_iowait.list, &dev->memwait);
trace_hfi1_qpsleep(qp, HFI1_S_WAIT_KMEM);
atomic_inc(&qp->refcount);
}
write_sequnlock(&dev->iowait_lock);
qp->s_flags &= ~HFI1_S_BUSY;
ret = -EBUSY;
}
spin_unlock_irqrestore(&qp->s_lock, flags);
return ret;
}
/*
* This routine calls txadds for each sg entry.
*
* Add failures will revert the sge cursor
*/
static int build_verbs_ulp_payload(
struct sdma_engine *sde,
struct hfi1_sge_state *ss,
u32 length,
struct verbs_txreq *tx)
{
struct hfi1_sge *sg_list = ss->sg_list;
struct hfi1_sge sge = ss->sge;
u8 num_sge = ss->num_sge;
u32 len;
int ret = 0;
while (length) {
len = ss->sge.length;
if (len > length)
len = length;
if (len > ss->sge.sge_length)
len = ss->sge.sge_length;
WARN_ON_ONCE(len == 0);
ret = sdma_txadd_kvaddr(
sde->dd,
&tx->txreq,
ss->sge.vaddr,
len);
if (ret)
goto bail_txadd;
update_sge(ss, len);
length -= len;
}
return ret;
bail_txadd:
/* unwind cursor */
ss->sge = sge;
ss->num_sge = num_sge;
ss->sg_list = sg_list;
return ret;
}
/*
* Build the number of DMA descriptors needed to send length bytes of data.
*
* NOTE: DMA mapping is held in the tx until completed in the ring or
* the tx desc is freed without having been submitted to the ring
*
* This routine insures the following all the helper routine
* calls succeed.
*/
/* New API */
static int build_verbs_tx_desc(
struct sdma_engine *sde,
struct hfi1_sge_state *ss,
u32 length,
struct verbs_txreq *tx,
struct ahg_ib_header *ahdr,
u64 pbc)
{
int ret = 0;
struct hfi1_pio_header *phdr;
u16 hdrbytes = tx->hdr_dwords << 2;
phdr = &tx->phdr;
if (!ahdr->ahgcount) {
ret = sdma_txinit_ahg(
&tx->txreq,
ahdr->tx_flags,
hdrbytes + length,
ahdr->ahgidx,
0,
NULL,
0,
verbs_sdma_complete);
if (ret)
goto bail_txadd;
phdr->pbc = cpu_to_le64(pbc);
memcpy(&phdr->hdr, &ahdr->ibh, hdrbytes - sizeof(phdr->pbc));
/* add the header */
ret = sdma_txadd_kvaddr(
sde->dd,
&tx->txreq,
&tx->phdr,
tx->hdr_dwords << 2);
if (ret)
goto bail_txadd;
} else {
struct hfi1_other_headers *sohdr = &ahdr->ibh.u.oth;
struct hfi1_other_headers *dohdr = &phdr->hdr.u.oth;
/* needed in rc_send_complete() */
phdr->hdr.lrh[0] = ahdr->ibh.lrh[0];
if ((be16_to_cpu(phdr->hdr.lrh[0]) & 3) == HFI1_LRH_GRH) {
sohdr = &ahdr->ibh.u.l.oth;
dohdr = &phdr->hdr.u.l.oth;
}
/* opcode */
dohdr->bth[0] = sohdr->bth[0];
/* PSN/ACK */
dohdr->bth[2] = sohdr->bth[2];
ret = sdma_txinit_ahg(
&tx->txreq,
ahdr->tx_flags,
length,
ahdr->ahgidx,
ahdr->ahgcount,
ahdr->ahgdesc,
hdrbytes,
verbs_sdma_complete);
if (ret)
goto bail_txadd;
}
/* add the ulp payload - if any. ss can be NULL for acks */
if (ss)
ret = build_verbs_ulp_payload(sde, ss, length, tx);
bail_txadd:
return ret;
}
int hfi1_verbs_send_dma(struct hfi1_qp *qp, struct ahg_ib_header *ahdr,
u32 hdrwords, struct hfi1_sge_state *ss, u32 len,
u32 plen, u32 dwords, u64 pbc)
{
struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
struct verbs_txreq *tx;
struct sdma_txreq *stx;
u64 pbc_flags = 0;
struct sdma_engine *sde;
u8 sc5 = qp->s_sc;
int ret;
if (!list_empty(&qp->s_iowait.tx_head)) {
stx = list_first_entry(
&qp->s_iowait.tx_head,
struct sdma_txreq,
list);
list_del_init(&stx->list);
tx = container_of(stx, struct verbs_txreq, txreq);
ret = sdma_send_txreq(tx->sde, &qp->s_iowait, stx);
if (unlikely(ret == -ECOMM))
goto bail_ecomm;
return ret;
}
tx = get_txreq(dev, qp);
if (IS_ERR(tx))
goto bail_tx;
if (!qp->s_hdr->sde) {
tx->sde = sde = qp_to_sdma_engine(qp, sc5);
if (!sde)
goto bail_no_sde;
} else
tx->sde = sde = qp->s_hdr->sde;
if (likely(pbc == 0)) {
u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
/* No vl15 here */
/* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen);
}
tx->wqe = qp->s_wqe;
tx->mr = qp->s_rdma_mr;
if (qp->s_rdma_mr)
qp->s_rdma_mr = NULL;
tx->hdr_dwords = hdrwords + 2;
ret = build_verbs_tx_desc(sde, ss, len, tx, ahdr, pbc);
if (unlikely(ret))
goto bail_build;
trace_output_ibhdr(dd_from_ibdev(qp->ibqp.device), &ahdr->ibh);
ret = sdma_send_txreq(sde, &qp->s_iowait, &tx->txreq);
if (unlikely(ret == -ECOMM))
goto bail_ecomm;
return ret;
bail_no_sde:
hfi1_put_txreq(tx);
bail_ecomm:
/* The current one got "sent" */
return 0;
bail_build:
/* kmalloc or mapping fail */
hfi1_put_txreq(tx);
return wait_kmem(dev, qp);
bail_tx:
return PTR_ERR(tx);
}
/*
* If we are now in the error state, return zero to flush the
* send work request.
*/
static int no_bufs_available(struct hfi1_qp *qp, struct send_context *sc)
{
struct hfi1_devdata *dd = sc->dd;
struct hfi1_ibdev *dev = &dd->verbs_dev;
unsigned long flags;
int ret = 0;
/*
* Note that as soon as want_buffer() is called and
* possibly before it returns, sc_piobufavail()
* could be called. Therefore, put QP on the I/O wait list before
* enabling the PIO avail interrupt.
*/
spin_lock_irqsave(&qp->s_lock, flags);
if (ib_hfi1_state_ops[qp->state] & HFI1_PROCESS_RECV_OK) {
write_seqlock(&dev->iowait_lock);
if (list_empty(&qp->s_iowait.list)) {
struct hfi1_ibdev *dev = &dd->verbs_dev;
int was_empty;
dev->n_piowait++;
qp->s_flags |= HFI1_S_WAIT_PIO;
was_empty = list_empty(&sc->piowait);
list_add_tail(&qp->s_iowait.list, &sc->piowait);
trace_hfi1_qpsleep(qp, HFI1_S_WAIT_PIO);
atomic_inc(&qp->refcount);
/* counting: only call wantpiobuf_intr if first user */
if (was_empty)
hfi1_sc_wantpiobuf_intr(sc, 1);
}
write_sequnlock(&dev->iowait_lock);
qp->s_flags &= ~HFI1_S_BUSY;
ret = -EBUSY;
}
spin_unlock_irqrestore(&qp->s_lock, flags);
return ret;
}
struct send_context *qp_to_send_context(struct hfi1_qp *qp, u8 sc5)
{
struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
struct hfi1_pportdata *ppd = dd->pport + (qp->port_num - 1);
u8 vl;
vl = sc_to_vlt(dd, sc5);
if (vl >= ppd->vls_supported && vl != 15)
return NULL;
return dd->vld[vl].sc;
}
int hfi1_verbs_send_pio(struct hfi1_qp *qp, struct ahg_ib_header *ahdr,
u32 hdrwords, struct hfi1_sge_state *ss, u32 len,
u32 plen, u32 dwords, u64 pbc)
{
struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
u32 *hdr = (u32 *)&ahdr->ibh;
u64 pbc_flags = 0;
u32 sc5;
unsigned long flags = 0;
struct send_context *sc;
struct pio_buf *pbuf;
int wc_status = IB_WC_SUCCESS;
/* vl15 special case taken care of in ud.c */
sc5 = qp->s_sc;
sc = qp_to_send_context(qp, sc5);
if (!sc)
return -EINVAL;
if (likely(pbc == 0)) {
u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
/* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen);
}
pbuf = sc_buffer_alloc(sc, plen, NULL, NULL);
if (unlikely(pbuf == NULL)) {
if (ppd->host_link_state != HLS_UP_ACTIVE) {
/*
* If we have filled the PIO buffers to capacity and are
* not in an active state this request is not going to
* go out to so just complete it with an error or else a
* ULP or the core may be stuck waiting.
*/
hfi1_cdbg(
PIO,
"alloc failed. state not active, completing");
wc_status = IB_WC_GENERAL_ERR;
goto pio_bail;
} else {
/*
* This is a normal occurrence. The PIO buffs are full
* up but we are still happily sending, well we could be
* so lets continue to queue the request.
*/
hfi1_cdbg(PIO, "alloc failed. state active, queuing");
return no_bufs_available(qp, sc);
}
}
if (len == 0) {
pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
} else {
if (ss) {
seg_pio_copy_start(pbuf, pbc, hdr, hdrwords*4);
while (len) {
void *addr = ss->sge.vaddr;
u32 slen = ss->sge.length;
if (slen > len)
slen = len;
update_sge(ss, slen);
seg_pio_copy_mid(pbuf, addr, slen);
len -= slen;
}
seg_pio_copy_end(pbuf);
}
}
trace_output_ibhdr(dd_from_ibdev(qp->ibqp.device), &ahdr->ibh);
if (qp->s_rdma_mr) {
hfi1_put_mr(qp->s_rdma_mr);
qp->s_rdma_mr = NULL;
}
pio_bail:
if (qp->s_wqe) {
spin_lock_irqsave(&qp->s_lock, flags);
hfi1_send_complete(qp, qp->s_wqe, wc_status);
spin_unlock_irqrestore(&qp->s_lock, flags);
} else if (qp->ibqp.qp_type == IB_QPT_RC) {
spin_lock_irqsave(&qp->s_lock, flags);
hfi1_rc_send_complete(qp, &ahdr->ibh);
spin_unlock_irqrestore(&qp->s_lock, flags);
}
return 0;
}
/*
* egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
* being an entry from the ingress partition key table), return 0
* otherwise. Use the matching criteria for egress partition keys
* specified in the OPAv1 spec., section 9.1l.7.
*/
static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
{
u16 mkey = pkey & PKEY_LOW_15_MASK;
u16 ment = ent & PKEY_LOW_15_MASK;
if (mkey == ment) {
/*
* If pkey[15] is set (full partition member),
* is bit 15 in the corresponding table element
* clear (limited member)?
*/
if (pkey & PKEY_MEMBER_MASK)
return !!(ent & PKEY_MEMBER_MASK);
return 1;
}
return 0;
}
/*
* egress_pkey_check - return 0 if hdr's pkey matches according to the
* criteria in the OPAv1 spec., section 9.11.7.
*/
static inline int egress_pkey_check(struct hfi1_pportdata *ppd,
struct hfi1_ib_header *hdr,
struct hfi1_qp *qp)
{
struct hfi1_other_headers *ohdr;
struct hfi1_devdata *dd;
int i = 0;
u16 pkey;
u8 lnh, sc5 = qp->s_sc;
if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
return 0;
/* locate the pkey within the headers */
lnh = be16_to_cpu(hdr->lrh[0]) & 3;
if (lnh == HFI1_LRH_GRH)
ohdr = &hdr->u.l.oth;
else
ohdr = &hdr->u.oth;
pkey = (u16)be32_to_cpu(ohdr->bth[0]);
/* If SC15, pkey[0:14] must be 0x7fff */
if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
goto bad;
/* Is the pkey = 0x0, or 0x8000? */
if ((pkey & PKEY_LOW_15_MASK) == 0)
goto bad;
/* The most likely matching pkey has index qp->s_pkey_index */
if (unlikely(!egress_pkey_matches_entry(pkey,
ppd->pkeys[qp->s_pkey_index]))) {
/* no match - try the entire table */
for (; i < MAX_PKEY_VALUES; i++) {
if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
break;
}
}
if (i < MAX_PKEY_VALUES)
return 0;
bad:
incr_cntr64(&ppd->port_xmit_constraint_errors);
dd = ppd->dd;
if (!(dd->err_info_xmit_constraint.status & OPA_EI_STATUS_SMASK)) {
u16 slid = be16_to_cpu(hdr->lrh[3]);
dd->err_info_xmit_constraint.status |= OPA_EI_STATUS_SMASK;
dd->err_info_xmit_constraint.slid = slid;
dd->err_info_xmit_constraint.pkey = pkey;
}
return 1;
}
/**
* hfi1_verbs_send - send a packet
* @qp: the QP to send on
* @ahdr: the packet header
* @hdrwords: the number of 32-bit words in the header
* @ss: the SGE to send
* @len: the length of the packet in bytes
*
* Return zero if packet is sent or queued OK.
* Return non-zero and clear qp->s_flags HFI1_S_BUSY otherwise.
*/
int hfi1_verbs_send(struct hfi1_qp *qp, struct ahg_ib_header *ahdr,
u32 hdrwords, struct hfi1_sge_state *ss, u32 len)
{
struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
u32 plen;
int ret;
int pio = 0;
unsigned long flags = 0;
u32 dwords = (len + 3) >> 2;
/*
* VL15 packets (IB_QPT_SMI) will always use PIO, so we
* can defer SDMA restart until link goes ACTIVE without
* worrying about just how we got there.
*/
if ((qp->ibqp.qp_type == IB_QPT_SMI) ||
!(dd->flags & HFI1_HAS_SEND_DMA))
pio = 1;
ret = egress_pkey_check(dd->pport, &ahdr->ibh, qp);
if (unlikely(ret)) {
/*
* The value we are returning here does not get propagated to
* the verbs caller. Thus we need to complete the request with
* error otherwise the caller could be sitting waiting on the
* completion event. Only do this for PIO. SDMA has its own
* mechanism for handling the errors. So for SDMA we can just
* return.
*/
if (pio) {
hfi1_cdbg(PIO, "%s() Failed. Completing with err",
__func__);
spin_lock_irqsave(&qp->s_lock, flags);
hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
spin_unlock_irqrestore(&qp->s_lock, flags);
}
return -EINVAL;
}
/*
* Calculate the send buffer trigger address.
* The +2 counts for the pbc control qword
*/
plen = hdrwords + dwords + 2;
if (pio) {
ret = dd->process_pio_send(
qp, ahdr, hdrwords, ss, len, plen, dwords, 0);
} else {
#ifdef CONFIG_SDMA_VERBOSITY
dd_dev_err(dd, "CONFIG SDMA %s:%d %s()\n",
slashstrip(__FILE__), __LINE__, __func__);
dd_dev_err(dd, "SDMA hdrwords = %u, len = %u\n", hdrwords, len);
#endif
ret = dd->process_dma_send(
qp, ahdr, hdrwords, ss, len, plen, dwords, 0);
}
return ret;
}
static int query_device(struct ib_device *ibdev,
struct ib_device_attr *props,
struct ib_udata *uhw)
{
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
struct hfi1_ibdev *dev = to_idev(ibdev);
if (uhw->inlen || uhw->outlen)
return -EINVAL;
memset(props, 0, sizeof(*props));
props->device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE;
props->page_size_cap = PAGE_SIZE;
props->vendor_id =
dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
props->vendor_part_id = dd->pcidev->device;
props->hw_ver = dd->minrev;
props->sys_image_guid = ib_hfi1_sys_image_guid;
props->max_mr_size = ~0ULL;
props->max_qp = hfi1_max_qps;
props->max_qp_wr = hfi1_max_qp_wrs;
props->max_sge = hfi1_max_sges;
props->max_sge_rd = hfi1_max_sges;
props->max_cq = hfi1_max_cqs;
props->max_ah = hfi1_max_ahs;
props->max_cqe = hfi1_max_cqes;
props->max_mr = dev->lk_table.max;
props->max_fmr = dev->lk_table.max;
props->max_map_per_fmr = 32767;
props->max_pd = hfi1_max_pds;
props->max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
props->max_qp_init_rd_atom = 255;
/* props->max_res_rd_atom */
props->max_srq = hfi1_max_srqs;
props->max_srq_wr = hfi1_max_srq_wrs;
props->max_srq_sge = hfi1_max_srq_sges;
/* props->local_ca_ack_delay */
props->atomic_cap = IB_ATOMIC_GLOB;
props->max_pkeys = hfi1_get_npkeys(dd);
props->max_mcast_grp = hfi1_max_mcast_grps;
props->max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
props->max_total_mcast_qp_attach = props->max_mcast_qp_attach *
props->max_mcast_grp;
return 0;
}
static inline u16 opa_speed_to_ib(u16 in)
{
u16 out = 0;
if (in & OPA_LINK_SPEED_25G)
out |= IB_SPEED_EDR;
if (in & OPA_LINK_SPEED_12_5G)
out |= IB_SPEED_FDR;
return out;
}
/*
* Convert a single OPA link width (no multiple flags) to an IB value.
* A zero OPA link width means link down, which means the IB width value
* is a don't care.
*/
static inline u16 opa_width_to_ib(u16 in)
{
switch (in) {
case OPA_LINK_WIDTH_1X:
/* map 2x and 3x to 1x as they don't exist in IB */
case OPA_LINK_WIDTH_2X:
case OPA_LINK_WIDTH_3X:
return IB_WIDTH_1X;
default: /* link down or unknown, return our largest width */
case OPA_LINK_WIDTH_4X:
return IB_WIDTH_4X;
}
}
static int query_port(struct ib_device *ibdev, u8 port,
struct ib_port_attr *props)
{
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
struct hfi1_ibport *ibp = to_iport(ibdev, port);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
u16 lid = ppd->lid;
memset(props, 0, sizeof(*props));
props->lid = lid ? lid : 0;
props->lmc = ppd->lmc;
props->sm_lid = ibp->sm_lid;
props->sm_sl = ibp->sm_sl;
/* OPA logical states match IB logical states */
props->state = driver_lstate(ppd);
props->phys_state = hfi1_ibphys_portstate(ppd);
props->port_cap_flags = ibp->port_cap_flags;
props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
props->max_msg_sz = 0x80000000;
props->pkey_tbl_len = hfi1_get_npkeys(dd);
props->bad_pkey_cntr = ibp->pkey_violations;
props->qkey_viol_cntr = ibp->qkey_violations;
props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
/* see rate_show() in ib core/sysfs.c */
props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
props->max_vl_num = ppd->vls_supported;
props->init_type_reply = 0;
/* Once we are a "first class" citizen and have added the OPA MTUs to
* the core we can advertise the larger MTU enum to the ULPs, for now
* advertise only 4K.
*
* Those applications which are either OPA aware or pass the MTU enum
* from the Path Records to us will get the new 8k MTU. Those that
* attempt to process the MTU enum may fail in various ways.
*/
props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
4096 : hfi1_max_mtu), IB_MTU_4096);
props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
mtu_to_enum(ppd->ibmtu, IB_MTU_2048);
props->subnet_timeout = ibp->subnet_timeout;
return 0;
}
static int port_immutable(struct ib_device *ibdev, u8 port_num,
struct ib_port_immutable *immutable)
{
struct ib_port_attr attr;
int err;
err = query_port(ibdev, port_num, &attr);
if (err)
return err;
memset(immutable, 0, sizeof(*immutable));
immutable->pkey_tbl_len = attr.pkey_tbl_len;
immutable->gid_tbl_len = attr.gid_tbl_len;
immutable->core_cap_flags = RDMA_CORE_PORT_INTEL_OPA;
immutable->max_mad_size = OPA_MGMT_MAD_SIZE;
return 0;
}
static int modify_device(struct ib_device *device,
int device_modify_mask,
struct ib_device_modify *device_modify)
{
struct hfi1_devdata *dd = dd_from_ibdev(device);
unsigned i;
int ret;
if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
IB_DEVICE_MODIFY_NODE_DESC)) {
ret = -EOPNOTSUPP;
goto bail;
}
if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
memcpy(device->node_desc, device_modify->node_desc, 64);
for (i = 0; i < dd->num_pports; i++) {
struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
hfi1_node_desc_chg(ibp);
}
}
if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
ib_hfi1_sys_image_guid =
cpu_to_be64(device_modify->sys_image_guid);
for (i = 0; i < dd->num_pports; i++) {
struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
hfi1_sys_guid_chg(ibp);
}
}
ret = 0;
bail:
return ret;
}
static int modify_port(struct ib_device *ibdev, u8 port,
int port_modify_mask, struct ib_port_modify *props)
{
struct hfi1_ibport *ibp = to_iport(ibdev, port);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
int ret = 0;
ibp->port_cap_flags |= props->set_port_cap_mask;
ibp->port_cap_flags &= ~props->clr_port_cap_mask;
if (props->set_port_cap_mask || props->clr_port_cap_mask)
hfi1_cap_mask_chg(ibp);
if (port_modify_mask & IB_PORT_SHUTDOWN) {
set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
OPA_LINKDOWN_REASON_UNKNOWN);
ret = set_link_state(ppd, HLS_DN_DOWNDEF);
}
if (port_modify_mask & IB_PORT_RESET_QKEY_CNTR)
ibp->qkey_violations = 0;
return ret;
}
static int query_gid(struct ib_device *ibdev, u8 port,
int index, union ib_gid *gid)
{
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
int ret = 0;
if (!port || port > dd->num_pports)
ret = -EINVAL;
else {
struct hfi1_ibport *ibp = to_iport(ibdev, port);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
gid->global.subnet_prefix = ibp->gid_prefix;
if (index == 0)
gid->global.interface_id = cpu_to_be64(ppd->guid);
else if (index < HFI1_GUIDS_PER_PORT)
gid->global.interface_id = ibp->guids[index - 1];
else
ret = -EINVAL;
}
return ret;
}
static struct ib_pd *alloc_pd(struct ib_device *ibdev,
struct ib_ucontext *context,
struct ib_udata *udata)
{
struct hfi1_ibdev *dev = to_idev(ibdev);
struct hfi1_pd *pd;
struct ib_pd *ret;
/*
* This is actually totally arbitrary. Some correctness tests
* assume there's a maximum number of PDs that can be allocated.
* We don't actually have this limit, but we fail the test if
* we allow allocations of more than we report for this value.
*/
pd = kmalloc(sizeof(*pd), GFP_KERNEL);
if (!pd) {
ret = ERR_PTR(-ENOMEM);
goto bail;
}
spin_lock(&dev->n_pds_lock);
if (dev->n_pds_allocated == hfi1_max_pds) {
spin_unlock(&dev->n_pds_lock);
kfree(pd);
ret = ERR_PTR(-ENOMEM);
goto bail;
}
dev->n_pds_allocated++;
spin_unlock(&dev->n_pds_lock);
/* ib_alloc_pd() will initialize pd->ibpd. */
pd->user = udata != NULL;
ret = &pd->ibpd;
bail:
return ret;
}
static int dealloc_pd(struct ib_pd *ibpd)
{
struct hfi1_pd *pd = to_ipd(ibpd);
struct hfi1_ibdev *dev = to_idev(ibpd->device);
spin_lock(&dev->n_pds_lock);
dev->n_pds_allocated--;
spin_unlock(&dev->n_pds_lock);
kfree(pd);
return 0;
}
/*
* convert ah port,sl to sc
*/
u8 ah_to_sc(struct ib_device *ibdev, struct ib_ah_attr *ah)
{
struct hfi1_ibport *ibp = to_iport(ibdev, ah->port_num);
return ibp->sl_to_sc[ah->sl];
}
int hfi1_check_ah(struct ib_device *ibdev, struct ib_ah_attr *ah_attr)
{
struct hfi1_ibport *ibp;
struct hfi1_pportdata *ppd;
struct hfi1_devdata *dd;
u8 sc5;
/* A multicast address requires a GRH (see ch. 8.4.1). */
if (ah_attr->dlid >= HFI1_MULTICAST_LID_BASE &&
ah_attr->dlid != HFI1_PERMISSIVE_LID &&
!(ah_attr->ah_flags & IB_AH_GRH))
goto bail;
if ((ah_attr->ah_flags & IB_AH_GRH) &&
ah_attr->grh.sgid_index >= HFI1_GUIDS_PER_PORT)
goto bail;
if (ah_attr->dlid == 0)
goto bail;
if (ah_attr->port_num < 1 ||
ah_attr->port_num > ibdev->phys_port_cnt)
goto bail;
if (ah_attr->static_rate != IB_RATE_PORT_CURRENT &&
ib_rate_to_mbps(ah_attr->static_rate) < 0)
goto bail;
if (ah_attr->sl >= OPA_MAX_SLS)
goto bail;
/* test the mapping for validity */
ibp = to_iport(ibdev, ah_attr->port_num);
ppd = ppd_from_ibp(ibp);
sc5 = ibp->sl_to_sc[ah_attr->sl];
dd = dd_from_ppd(ppd);
if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
goto bail;
return 0;
bail:
return -EINVAL;
}
/**
* create_ah - create an address handle
* @pd: the protection domain
* @ah_attr: the attributes of the AH
*
* This may be called from interrupt context.
*/
static struct ib_ah *create_ah(struct ib_pd *pd,
struct ib_ah_attr *ah_attr)
{
struct hfi1_ah *ah;
struct ib_ah *ret;
struct hfi1_ibdev *dev = to_idev(pd->device);
unsigned long flags;
if (hfi1_check_ah(pd->device, ah_attr)) {
ret = ERR_PTR(-EINVAL);
goto bail;
}
ah = kmalloc(sizeof(*ah), GFP_ATOMIC);
if (!ah) {
ret = ERR_PTR(-ENOMEM);
goto bail;
}
spin_lock_irqsave(&dev->n_ahs_lock, flags);
if (dev->n_ahs_allocated == hfi1_max_ahs) {
spin_unlock_irqrestore(&dev->n_ahs_lock, flags);
kfree(ah);
ret = ERR_PTR(-ENOMEM);
goto bail;
}
dev->n_ahs_allocated++;
spin_unlock_irqrestore(&dev->n_ahs_lock, flags);
/* ib_create_ah() will initialize ah->ibah. */
ah->attr = *ah_attr;
atomic_set(&ah->refcount, 0);
ret = &ah->ibah;
bail:
return ret;
}
struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u16 dlid)
{
struct ib_ah_attr attr;
struct ib_ah *ah = ERR_PTR(-EINVAL);
struct hfi1_qp *qp0;
memset(&attr, 0, sizeof(attr));
attr.dlid = dlid;
attr.port_num = ppd_from_ibp(ibp)->port;
rcu_read_lock();
qp0 = rcu_dereference(ibp->qp[0]);
if (qp0)
ah = ib_create_ah(qp0->ibqp.pd, &attr);
rcu_read_unlock();
return ah;
}
/**
* destroy_ah - destroy an address handle
* @ibah: the AH to destroy
*
* This may be called from interrupt context.
*/
static int destroy_ah(struct ib_ah *ibah)
{
struct hfi1_ibdev *dev = to_idev(ibah->device);
struct hfi1_ah *ah = to_iah(ibah);
unsigned long flags;
if (atomic_read(&ah->refcount) != 0)
return -EBUSY;
spin_lock_irqsave(&dev->n_ahs_lock, flags);
dev->n_ahs_allocated--;
spin_unlock_irqrestore(&dev->n_ahs_lock, flags);
kfree(ah);
return 0;
}
static int modify_ah(struct ib_ah *ibah, struct ib_ah_attr *ah_attr)
{
struct hfi1_ah *ah = to_iah(ibah);
if (hfi1_check_ah(ibah->device, ah_attr))
return -EINVAL;
ah->attr = *ah_attr;
return 0;
}
static int query_ah(struct ib_ah *ibah, struct ib_ah_attr *ah_attr)
{
struct hfi1_ah *ah = to_iah(ibah);
*ah_attr = ah->attr;
return 0;
}
/**
* hfi1_get_npkeys - return the size of the PKEY table for context 0
* @dd: the hfi1_ib device
*/
unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
{
return ARRAY_SIZE(dd->pport[0].pkeys);
}
static int query_pkey(struct ib_device *ibdev, u8 port, u16 index,
u16 *pkey)
{
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
int ret;
if (index >= hfi1_get_npkeys(dd)) {
ret = -EINVAL;
goto bail;
}
*pkey = hfi1_get_pkey(to_iport(ibdev, port), index);
ret = 0;
bail:
return ret;
}
/**
* alloc_ucontext - allocate a ucontest
* @ibdev: the infiniband device
* @udata: not used by the driver
*/
static struct ib_ucontext *alloc_ucontext(struct ib_device *ibdev,
struct ib_udata *udata)
{
struct hfi1_ucontext *context;
struct ib_ucontext *ret;
context = kmalloc(sizeof(*context), GFP_KERNEL);
if (!context) {
ret = ERR_PTR(-ENOMEM);
goto bail;
}
ret = &context->ibucontext;
bail:
return ret;
}
static int dealloc_ucontext(struct ib_ucontext *context)
{
kfree(to_iucontext(context));
return 0;
}
static void init_ibport(struct hfi1_pportdata *ppd)
{
struct hfi1_ibport *ibp = &ppd->ibport_data;
size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
int i;
for (i = 0; i < sz; i++) {
ibp->sl_to_sc[i] = i;
ibp->sc_to_sl[i] = i;
}
spin_lock_init(&ibp->lock);
/* Set the prefix to the default value (see ch. 4.1.1) */
ibp->gid_prefix = IB_DEFAULT_GID_PREFIX;
ibp->sm_lid = 0;
/* Below should only set bits defined in OPA PortInfo.CapabilityMask */
ibp->port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
IB_PORT_CAP_MASK_NOTICE_SUP;
ibp->pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
ibp->pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
ibp->pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
ibp->pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
ibp->pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
RCU_INIT_POINTER(ibp->qp[0], NULL);
RCU_INIT_POINTER(ibp->qp[1], NULL);
}
static void verbs_txreq_kmem_cache_ctor(void *obj)
{
struct verbs_txreq *tx = obj;
memset(tx, 0, sizeof(*tx));
}
/**
* hfi1_register_ib_device - register our device with the infiniband core
* @dd: the device data structure
* Return 0 if successful, errno if unsuccessful.
*/
int hfi1_register_ib_device(struct hfi1_devdata *dd)
{
struct hfi1_ibdev *dev = &dd->verbs_dev;
struct ib_device *ibdev = &dev->ibdev;
struct hfi1_pportdata *ppd = dd->pport;
unsigned i, lk_tab_size;
int ret;
size_t lcpysz = IB_DEVICE_NAME_MAX;
u16 descq_cnt;
char buf[TXREQ_NAME_LEN];
ret = hfi1_qp_init(dev);
if (ret)
goto err_qp_init;
for (i = 0; i < dd->num_pports; i++)
init_ibport(ppd + i);
/* Only need to initialize non-zero fields. */
spin_lock_init(&dev->n_pds_lock);
spin_lock_init(&dev->n_ahs_lock);
spin_lock_init(&dev->n_cqs_lock);
spin_lock_init(&dev->n_qps_lock);
spin_lock_init(&dev->n_srqs_lock);
spin_lock_init(&dev->n_mcast_grps_lock);
init_timer(&dev->mem_timer);
dev->mem_timer.function = mem_timer;
dev->mem_timer.data = (unsigned long) dev;
/*
* The top hfi1_lkey_table_size bits are used to index the
* table. The lower 8 bits can be owned by the user (copied from
* the LKEY). The remaining bits act as a generation number or tag.
*/
spin_lock_init(&dev->lk_table.lock);
dev->lk_table.max = 1 << hfi1_lkey_table_size;
/* ensure generation is at least 4 bits (keys.c) */
if (hfi1_lkey_table_size > MAX_LKEY_TABLE_BITS) {
dd_dev_warn(dd, "lkey bits %u too large, reduced to %u\n",
hfi1_lkey_table_size, MAX_LKEY_TABLE_BITS);
hfi1_lkey_table_size = MAX_LKEY_TABLE_BITS;
}
lk_tab_size = dev->lk_table.max * sizeof(*dev->lk_table.table);
dev->lk_table.table = (struct hfi1_mregion __rcu **)
vmalloc(lk_tab_size);
if (dev->lk_table.table == NULL) {
ret = -ENOMEM;
goto err_lk;
}
RCU_INIT_POINTER(dev->dma_mr, NULL);
for (i = 0; i < dev->lk_table.max; i++)
RCU_INIT_POINTER(dev->lk_table.table[i], NULL);
INIT_LIST_HEAD(&dev->pending_mmaps);
spin_lock_init(&dev->pending_lock);
seqlock_init(&dev->iowait_lock);
dev->mmap_offset = PAGE_SIZE;
spin_lock_init(&dev->mmap_offset_lock);
INIT_LIST_HEAD(&dev->txwait);
INIT_LIST_HEAD(&dev->memwait);
descq_cnt = sdma_get_descq_cnt();
snprintf(buf, sizeof(buf), "hfi1_%u_vtxreq_cache", dd->unit);
/* SLAB_HWCACHE_ALIGN for AHG */
dev->verbs_txreq_cache = kmem_cache_create(buf,
sizeof(struct verbs_txreq),
0, SLAB_HWCACHE_ALIGN,
verbs_txreq_kmem_cache_ctor);
if (!dev->verbs_txreq_cache) {
ret = -ENOMEM;
goto err_verbs_txreq;
}
/*
* The system image GUID is supposed to be the same for all
* HFIs in a single system but since there can be other
* device types in the system, we can't be sure this is unique.
*/
if (!ib_hfi1_sys_image_guid)
ib_hfi1_sys_image_guid = cpu_to_be64(ppd->guid);
lcpysz = strlcpy(ibdev->name, class_name(), lcpysz);
strlcpy(ibdev->name + lcpysz, "_%d", IB_DEVICE_NAME_MAX - lcpysz);
ibdev->owner = THIS_MODULE;
ibdev->node_guid = cpu_to_be64(ppd->guid);
ibdev->uverbs_abi_ver = HFI1_UVERBS_ABI_VERSION;
ibdev->uverbs_cmd_mask =
(1ull << IB_USER_VERBS_CMD_GET_CONTEXT) |
(1ull << IB_USER_VERBS_CMD_QUERY_DEVICE) |
(1ull << IB_USER_VERBS_CMD_QUERY_PORT) |
(1ull << IB_USER_VERBS_CMD_ALLOC_PD) |
(1ull << IB_USER_VERBS_CMD_DEALLOC_PD) |
(1ull << IB_USER_VERBS_CMD_CREATE_AH) |
(1ull << IB_USER_VERBS_CMD_MODIFY_AH) |
(1ull << IB_USER_VERBS_CMD_QUERY_AH) |
(1ull << IB_USER_VERBS_CMD_DESTROY_AH) |
(1ull << IB_USER_VERBS_CMD_REG_MR) |
(1ull << IB_USER_VERBS_CMD_DEREG_MR) |
(1ull << IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
(1ull << IB_USER_VERBS_CMD_CREATE_CQ) |
(1ull << IB_USER_VERBS_CMD_RESIZE_CQ) |
(1ull << IB_USER_VERBS_CMD_DESTROY_CQ) |
(1ull << IB_USER_VERBS_CMD_POLL_CQ) |
(1ull << IB_USER_VERBS_CMD_REQ_NOTIFY_CQ) |
(1ull << IB_USER_VERBS_CMD_CREATE_QP) |
(1ull << IB_USER_VERBS_CMD_QUERY_QP) |
(1ull << IB_USER_VERBS_CMD_MODIFY_QP) |
(1ull << IB_USER_VERBS_CMD_DESTROY_QP) |
(1ull << IB_USER_VERBS_CMD_POST_SEND) |
(1ull << IB_USER_VERBS_CMD_POST_RECV) |
(1ull << IB_USER_VERBS_CMD_ATTACH_MCAST) |
(1ull << IB_USER_VERBS_CMD_DETACH_MCAST) |
(1ull << IB_USER_VERBS_CMD_CREATE_SRQ) |
(1ull << IB_USER_VERBS_CMD_MODIFY_SRQ) |
(1ull << IB_USER_VERBS_CMD_QUERY_SRQ) |
(1ull << IB_USER_VERBS_CMD_DESTROY_SRQ) |
(1ull << IB_USER_VERBS_CMD_POST_SRQ_RECV);
ibdev->node_type = RDMA_NODE_IB_CA;
ibdev->phys_port_cnt = dd->num_pports;
ibdev->num_comp_vectors = 1;
ibdev->dma_device = &dd->pcidev->dev;
ibdev->query_device = query_device;
ibdev->modify_device = modify_device;
ibdev->query_port = query_port;
ibdev->modify_port = modify_port;
ibdev->query_pkey = query_pkey;
ibdev->query_gid = query_gid;
ibdev->alloc_ucontext = alloc_ucontext;
ibdev->dealloc_ucontext = dealloc_ucontext;
ibdev->alloc_pd = alloc_pd;
ibdev->dealloc_pd = dealloc_pd;
ibdev->create_ah = create_ah;
ibdev->destroy_ah = destroy_ah;
ibdev->modify_ah = modify_ah;
ibdev->query_ah = query_ah;
ibdev->create_srq = hfi1_create_srq;
ibdev->modify_srq = hfi1_modify_srq;
ibdev->query_srq = hfi1_query_srq;
ibdev->destroy_srq = hfi1_destroy_srq;
ibdev->create_qp = hfi1_create_qp;
ibdev->modify_qp = hfi1_modify_qp;
ibdev->query_qp = hfi1_query_qp;
ibdev->destroy_qp = hfi1_destroy_qp;
ibdev->post_send = post_send;
ibdev->post_recv = post_receive;
ibdev->post_srq_recv = hfi1_post_srq_receive;
ibdev->create_cq = hfi1_create_cq;
ibdev->destroy_cq = hfi1_destroy_cq;
ibdev->resize_cq = hfi1_resize_cq;
ibdev->poll_cq = hfi1_poll_cq;
ibdev->req_notify_cq = hfi1_req_notify_cq;
ibdev->get_dma_mr = hfi1_get_dma_mr;
ibdev->reg_phys_mr = hfi1_reg_phys_mr;
ibdev->reg_user_mr = hfi1_reg_user_mr;
ibdev->dereg_mr = hfi1_dereg_mr;
ibdev->alloc_mr = hfi1_alloc_mr;
ibdev->alloc_fmr = hfi1_alloc_fmr;
ibdev->map_phys_fmr = hfi1_map_phys_fmr;
ibdev->unmap_fmr = hfi1_unmap_fmr;
ibdev->dealloc_fmr = hfi1_dealloc_fmr;
ibdev->attach_mcast = hfi1_multicast_attach;
ibdev->detach_mcast = hfi1_multicast_detach;
ibdev->process_mad = hfi1_process_mad;
ibdev->mmap = hfi1_mmap;
ibdev->dma_ops = &hfi1_dma_mapping_ops;
ibdev->get_port_immutable = port_immutable;
strncpy(ibdev->node_desc, init_utsname()->nodename,
sizeof(ibdev->node_desc));
ret = ib_register_device(ibdev, hfi1_create_port_files);
if (ret)
goto err_reg;
ret = hfi1_create_agents(dev);
if (ret)
goto err_agents;
ret = hfi1_verbs_register_sysfs(dd);
if (ret)
goto err_class;
goto bail;
err_class:
hfi1_free_agents(dev);
err_agents:
ib_unregister_device(ibdev);
err_reg:
err_verbs_txreq:
kmem_cache_destroy(dev->verbs_txreq_cache);
vfree(dev->lk_table.table);
err_lk:
hfi1_qp_exit(dev);
err_qp_init:
dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
bail:
return ret;
}
void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
{
struct hfi1_ibdev *dev = &dd->verbs_dev;
struct ib_device *ibdev = &dev->ibdev;
hfi1_verbs_unregister_sysfs(dd);
hfi1_free_agents(dev);
ib_unregister_device(ibdev);
if (!list_empty(&dev->txwait))
dd_dev_err(dd, "txwait list not empty!\n");
if (!list_empty(&dev->memwait))
dd_dev_err(dd, "memwait list not empty!\n");
if (dev->dma_mr)
dd_dev_err(dd, "DMA MR not NULL!\n");
hfi1_qp_exit(dev);
del_timer_sync(&dev->mem_timer);
kmem_cache_destroy(dev->verbs_txreq_cache);
vfree(dev->lk_table.table);
}
/*
* This must be called with s_lock held.
*/
void hfi1_schedule_send(struct hfi1_qp *qp)
{
if (hfi1_send_ok(qp)) {
struct hfi1_ibport *ibp =
to_iport(qp->ibqp.device, qp->port_num);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
iowait_schedule(&qp->s_iowait, ppd->hfi1_wq);
}
}
void hfi1_cnp_rcv(struct hfi1_packet *packet)
{
struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data;
if (packet->qp->ibqp.qp_type == IB_QPT_UC)
hfi1_uc_rcv(packet);
else if (packet->qp->ibqp.qp_type == IB_QPT_UD)
hfi1_ud_rcv(packet);
else
ibp->n_pkt_drops++;
}