- 根目录:
- drivers
- staging
- rdma
- hfi1
- sdma.h
#ifndef _HFI1_SDMA_H
#define _HFI1_SDMA_H
/*
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2015 Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* BSD LICENSE
*
* Copyright(c) 2015 Intel Corporation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <linux/types.h>
#include <linux/list.h>
#include <asm/byteorder.h>
#include <linux/workqueue.h>
#include <linux/rculist.h>
#include "hfi.h"
#include "verbs.h"
/* increased for AHG */
#define NUM_DESC 6
/* Hardware limit */
#define MAX_DESC 64
/* Hardware limit for SDMA packet size */
#define MAX_SDMA_PKT_SIZE ((16 * 1024) - 1)
#define SDMA_TXREQ_S_OK 0
#define SDMA_TXREQ_S_SENDERROR 1
#define SDMA_TXREQ_S_ABORTED 2
#define SDMA_TXREQ_S_SHUTDOWN 3
/* flags bits */
#define SDMA_TXREQ_F_URGENT 0x0001
#define SDMA_TXREQ_F_AHG_COPY 0x0002
#define SDMA_TXREQ_F_USE_AHG 0x0004
#define SDMA_MAP_NONE 0
#define SDMA_MAP_SINGLE 1
#define SDMA_MAP_PAGE 2
#define SDMA_AHG_VALUE_MASK 0xffff
#define SDMA_AHG_VALUE_SHIFT 0
#define SDMA_AHG_INDEX_MASK 0xf
#define SDMA_AHG_INDEX_SHIFT 16
#define SDMA_AHG_FIELD_LEN_MASK 0xf
#define SDMA_AHG_FIELD_LEN_SHIFT 20
#define SDMA_AHG_FIELD_START_MASK 0x1f
#define SDMA_AHG_FIELD_START_SHIFT 24
#define SDMA_AHG_UPDATE_ENABLE_MASK 0x1
#define SDMA_AHG_UPDATE_ENABLE_SHIFT 31
/* AHG modes */
/*
* Be aware the ordering and values
* for SDMA_AHG_APPLY_UPDATE[123]
* are assumed in generating a skip
* count in submit_tx() in sdma.c
*/
#define SDMA_AHG_NO_AHG 0
#define SDMA_AHG_COPY 1
#define SDMA_AHG_APPLY_UPDATE1 2
#define SDMA_AHG_APPLY_UPDATE2 3
#define SDMA_AHG_APPLY_UPDATE3 4
/*
* Bits defined in the send DMA descriptor.
*/
#define SDMA_DESC0_FIRST_DESC_FLAG (1ULL << 63)
#define SDMA_DESC0_LAST_DESC_FLAG (1ULL << 62)
#define SDMA_DESC0_BYTE_COUNT_SHIFT 48
#define SDMA_DESC0_BYTE_COUNT_WIDTH 14
#define SDMA_DESC0_BYTE_COUNT_MASK \
((1ULL << SDMA_DESC0_BYTE_COUNT_WIDTH) - 1)
#define SDMA_DESC0_BYTE_COUNT_SMASK \
(SDMA_DESC0_BYTE_COUNT_MASK << SDMA_DESC0_BYTE_COUNT_SHIFT)
#define SDMA_DESC0_PHY_ADDR_SHIFT 0
#define SDMA_DESC0_PHY_ADDR_WIDTH 48
#define SDMA_DESC0_PHY_ADDR_MASK \
((1ULL << SDMA_DESC0_PHY_ADDR_WIDTH) - 1)
#define SDMA_DESC0_PHY_ADDR_SMASK \
(SDMA_DESC0_PHY_ADDR_MASK << SDMA_DESC0_PHY_ADDR_SHIFT)
#define SDMA_DESC1_HEADER_UPDATE1_SHIFT 32
#define SDMA_DESC1_HEADER_UPDATE1_WIDTH 32
#define SDMA_DESC1_HEADER_UPDATE1_MASK \
((1ULL << SDMA_DESC1_HEADER_UPDATE1_WIDTH) - 1)
#define SDMA_DESC1_HEADER_UPDATE1_SMASK \
(SDMA_DESC1_HEADER_UPDATE1_MASK << SDMA_DESC1_HEADER_UPDATE1_SHIFT)
#define SDMA_DESC1_HEADER_MODE_SHIFT 13
#define SDMA_DESC1_HEADER_MODE_WIDTH 3
#define SDMA_DESC1_HEADER_MODE_MASK \
((1ULL << SDMA_DESC1_HEADER_MODE_WIDTH) - 1)
#define SDMA_DESC1_HEADER_MODE_SMASK \
(SDMA_DESC1_HEADER_MODE_MASK << SDMA_DESC1_HEADER_MODE_SHIFT)
#define SDMA_DESC1_HEADER_INDEX_SHIFT 8
#define SDMA_DESC1_HEADER_INDEX_WIDTH 5
#define SDMA_DESC1_HEADER_INDEX_MASK \
((1ULL << SDMA_DESC1_HEADER_INDEX_WIDTH) - 1)
#define SDMA_DESC1_HEADER_INDEX_SMASK \
(SDMA_DESC1_HEADER_INDEX_MASK << SDMA_DESC1_HEADER_INDEX_SHIFT)
#define SDMA_DESC1_HEADER_DWS_SHIFT 4
#define SDMA_DESC1_HEADER_DWS_WIDTH 4
#define SDMA_DESC1_HEADER_DWS_MASK \
((1ULL << SDMA_DESC1_HEADER_DWS_WIDTH) - 1)
#define SDMA_DESC1_HEADER_DWS_SMASK \
(SDMA_DESC1_HEADER_DWS_MASK << SDMA_DESC1_HEADER_DWS_SHIFT)
#define SDMA_DESC1_GENERATION_SHIFT 2
#define SDMA_DESC1_GENERATION_WIDTH 2
#define SDMA_DESC1_GENERATION_MASK \
((1ULL << SDMA_DESC1_GENERATION_WIDTH) - 1)
#define SDMA_DESC1_GENERATION_SMASK \
(SDMA_DESC1_GENERATION_MASK << SDMA_DESC1_GENERATION_SHIFT)
#define SDMA_DESC1_INT_REQ_FLAG (1ULL << 1)
#define SDMA_DESC1_HEAD_TO_HOST_FLAG (1ULL << 0)
enum sdma_states {
sdma_state_s00_hw_down,
sdma_state_s10_hw_start_up_halt_wait,
sdma_state_s15_hw_start_up_clean_wait,
sdma_state_s20_idle,
sdma_state_s30_sw_clean_up_wait,
sdma_state_s40_hw_clean_up_wait,
sdma_state_s50_hw_halt_wait,
sdma_state_s60_idle_halt_wait,
sdma_state_s80_hw_freeze,
sdma_state_s82_freeze_sw_clean,
sdma_state_s99_running,
};
enum sdma_events {
sdma_event_e00_go_hw_down,
sdma_event_e10_go_hw_start,
sdma_event_e15_hw_halt_done,
sdma_event_e25_hw_clean_up_done,
sdma_event_e30_go_running,
sdma_event_e40_sw_cleaned,
sdma_event_e50_hw_cleaned,
sdma_event_e60_hw_halted,
sdma_event_e70_go_idle,
sdma_event_e80_hw_freeze,
sdma_event_e81_hw_frozen,
sdma_event_e82_hw_unfreeze,
sdma_event_e85_link_down,
sdma_event_e90_sw_halted,
};
struct sdma_set_state_action {
unsigned op_enable:1;
unsigned op_intenable:1;
unsigned op_halt:1;
unsigned op_cleanup:1;
unsigned go_s99_running_tofalse:1;
unsigned go_s99_running_totrue:1;
};
struct sdma_state {
struct kref kref;
struct completion comp;
enum sdma_states current_state;
unsigned current_op;
unsigned go_s99_running;
/* debugging/development */
enum sdma_states previous_state;
unsigned previous_op;
enum sdma_events last_event;
};
/**
* DOC: sdma exported routines
*
* These sdma routines fit into three categories:
* - The SDMA API for building and submitting packets
* to the ring
*
* - Initialization and tear down routines to buildup
* and tear down SDMA
*
* - ISR entrances to handle interrupts, state changes
* and errors
*/
/**
* DOC: sdma PSM/verbs API
*
* The sdma API is designed to be used by both PSM
* and verbs to supply packets to the SDMA ring.
*
* The usage of the API is as follows:
*
* Embed a struct iowait in the QP or
* PQ. The iowait should be initialized with a
* call to iowait_init().
*
* The user of the API should create an allocation method
* for their version of the txreq. slabs, pre-allocated lists,
* and dma pools can be used. Once the user's overload of
* the sdma_txreq has been allocated, the sdma_txreq member
* must be initialized with sdma_txinit() or sdma_txinit_ahg().
*
* The txreq must be declared with the sdma_txreq first.
*
* The tx request, once initialized, is manipulated with calls to
* sdma_txadd_daddr(), sdma_txadd_page(), or sdma_txadd_kvaddr()
* for each disjoint memory location. It is the user's responsibility
* to understand the packet boundaries and page boundaries to do the
* appropriate number of sdma_txadd_* calls.. The user
* must be prepared to deal with failures from these routines due to
* either memory allocation or dma_mapping failures.
*
* The mapping specifics for each memory location are recorded
* in the tx. Memory locations added with sdma_txadd_page()
* and sdma_txadd_kvaddr() are automatically mapped when added
* to the tx and nmapped as part of the progress processing in the
* SDMA interrupt handling.
*
* sdma_txadd_daddr() is used to add an dma_addr_t memory to the
* tx. An example of a use case would be a pre-allocated
* set of headers allocated via dma_pool_alloc() or
* dma_alloc_coherent(). For these memory locations, it
* is the responsibility of the user to handle that unmapping.
* (This would usually be at an unload or job termination.)
*
* The routine sdma_send_txreq() is used to submit
* a tx to the ring after the appropriate number of
* sdma_txadd_* have been done.
*
* If it is desired to send a burst of sdma_txreqs, sdma_send_txlist()
* can be used to submit a list of packets.
*
* The user is free to use the link overhead in the struct sdma_txreq as
* long as the tx isn't in flight.
*
* The extreme degenerate case of the number of descriptors
* exceeding the ring size is automatically handled as
* memory locations are added. An overflow of the descriptor
* array that is part of the sdma_txreq is also automatically
* handled.
*
*/
/**
* DOC: Infrastructure calls
*
* sdma_init() is used to initialize data structures and
* CSRs for the desired number of SDMA engines.
*
* sdma_start() is used to kick the SDMA engines initialized
* with sdma_init(). Interrupts must be enabled at this
* point since aspects of the state machine are interrupt
* driven.
*
* sdma_engine_error() and sdma_engine_interrupt() are
* entrances for interrupts.
*
* sdma_map_init() is for the management of the mapping
* table when the number of vls is changed.
*
*/
/*
* struct hw_sdma_desc - raw 128 bit SDMA descriptor
*
* This is the raw descriptor in the SDMA ring
*/
struct hw_sdma_desc {
/* private: don't use directly */
__le64 qw[2];
};
/*
* struct sdma_desc - canonical fragment descriptor
*
* This is the descriptor carried in the tx request
* corresponding to each fragment.
*
*/
struct sdma_desc {
/* private: don't use directly */
u64 qw[2];
};
struct sdma_txreq;
typedef void (*callback_t)(struct sdma_txreq *, int, int);
/**
* struct sdma_txreq - the sdma_txreq structure (one per packet)
* @list: for use by user and by queuing for wait
*
* This is the representation of a packet which consists of some
* number of fragments. Storage is provided to within the structure.
* for all fragments.
*
* The storage for the descriptors are automatically extended as needed
* when the currently allocation is exceeded.
*
* The user (Verbs or PSM) may overload this structure with fields
* specific to their use by putting this struct first in their struct.
* The method of allocation of the overloaded structure is user dependent
*
* The list is the only public field in the structure.
*
*/
struct sdma_txreq {
struct list_head list;
/* private: */
struct sdma_desc *descp;
/* private: */
void *coalesce_buf;
/* private: */
u16 coalesce_idx;
/* private: */
struct iowait *wait;
/* private: */
callback_t complete;
#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
u64 sn;
#endif
/* private: - used in coalesce/pad processing */
u16 packet_len;
/* private: - down-counted to trigger last */
u16 tlen;
/* private: flags */
u16 flags;
/* private: */
u16 num_desc;
/* private: */
u16 desc_limit;
/* private: */
u16 next_descq_idx;
/* private: */
struct sdma_desc descs[NUM_DESC];
};
struct verbs_txreq {
struct hfi1_pio_header phdr;
struct sdma_txreq txreq;
struct hfi1_qp *qp;
struct hfi1_swqe *wqe;
struct hfi1_mregion *mr;
struct hfi1_sge_state *ss;
struct sdma_engine *sde;
u16 hdr_dwords;
u16 hdr_inx;
};
/**
* struct sdma_engine - Data pertaining to each SDMA engine.
* @dd: a back-pointer to the device data
* @ppd: per port back-pointer
* @imask: mask for irq manipulation
* @idle_mask: mask for determining if an interrupt is due to sdma_idle
*
* This structure has the state for each sdma_engine.
*
* Accessing to non public fields are not supported
* since the private members are subject to change.
*/
struct sdma_engine {
/* read mostly */
struct hfi1_devdata *dd;
struct hfi1_pportdata *ppd;
/* private: */
void __iomem *tail_csr;
u64 imask; /* clear interrupt mask */
u64 idle_mask;
u64 progress_mask;
/* private: */
struct workqueue_struct *wq;
/* private: */
volatile __le64 *head_dma; /* DMA'ed by chip */
/* private: */
dma_addr_t head_phys;
/* private: */
struct hw_sdma_desc *descq;
/* private: */
unsigned descq_full_count;
struct sdma_txreq **tx_ring;
/* private: */
dma_addr_t descq_phys;
/* private */
u32 sdma_mask;
/* private */
struct sdma_state state;
/* private: */
u8 sdma_shift;
/* private: */
u8 this_idx; /* zero relative engine */
/* protect changes to senddmactrl shadow */
spinlock_t senddmactrl_lock;
/* private: */
u64 p_senddmactrl; /* shadow per-engine SendDmaCtrl */
/* read/write using tail_lock */
spinlock_t tail_lock ____cacheline_aligned_in_smp;
#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
/* private: */
u64 tail_sn;
#endif
/* private: */
u32 descq_tail;
/* private: */
unsigned long ahg_bits;
/* private: */
u16 desc_avail;
/* private: */
u16 tx_tail;
/* private: */
u16 descq_cnt;
/* read/write using head_lock */
/* private: */
seqlock_t head_lock ____cacheline_aligned_in_smp;
#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
/* private: */
u64 head_sn;
#endif
/* private: */
u32 descq_head;
/* private: */
u16 tx_head;
/* private: */
u64 last_status;
/* private: */
struct list_head dmawait;
/* CONFIG SDMA for now, just blindly duplicate */
/* private: */
struct tasklet_struct sdma_hw_clean_up_task
____cacheline_aligned_in_smp;
/* private: */
struct tasklet_struct sdma_sw_clean_up_task
____cacheline_aligned_in_smp;
/* private: */
struct work_struct err_halt_worker;
/* private */
struct timer_list err_progress_check_timer;
u32 progress_check_head;
/* private: */
struct work_struct flush_worker;
spinlock_t flushlist_lock;
/* private: */
struct list_head flushlist;
};
int sdma_init(struct hfi1_devdata *dd, u8 port);
void sdma_start(struct hfi1_devdata *dd);
void sdma_exit(struct hfi1_devdata *dd);
void sdma_all_running(struct hfi1_devdata *dd);
void sdma_all_idle(struct hfi1_devdata *dd);
void sdma_freeze_notify(struct hfi1_devdata *dd, int go_idle);
void sdma_freeze(struct hfi1_devdata *dd);
void sdma_unfreeze(struct hfi1_devdata *dd);
void sdma_wait(struct hfi1_devdata *dd);
/**
* sdma_empty() - idle engine test
* @engine: sdma engine
*
* Currently used by verbs as a latency optimization.
*
* Return:
* 1 - empty, 0 - non-empty
*/
static inline int sdma_empty(struct sdma_engine *sde)
{
return sde->descq_tail == sde->descq_head;
}
static inline u16 sdma_descq_freecnt(struct sdma_engine *sde)
{
return sde->descq_cnt -
(sde->descq_tail -
ACCESS_ONCE(sde->descq_head)) - 1;
}
static inline u16 sdma_descq_inprocess(struct sdma_engine *sde)
{
return sde->descq_cnt - sdma_descq_freecnt(sde);
}
/*
* Either head_lock or tail lock required to see
* a steady state.
*/
static inline int __sdma_running(struct sdma_engine *engine)
{
return engine->state.current_state == sdma_state_s99_running;
}
/**
* sdma_running() - state suitability test
* @engine: sdma engine
*
* sdma_running probes the internal state to determine if it is suitable
* for submitting packets.
*
* Return:
* 1 - ok to submit, 0 - not ok to submit
*
*/
static inline int sdma_running(struct sdma_engine *engine)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&engine->tail_lock, flags);
ret = __sdma_running(engine);
spin_unlock_irqrestore(&engine->tail_lock, flags);
return ret;
}
void _sdma_txreq_ahgadd(
struct sdma_txreq *tx,
u8 num_ahg,
u8 ahg_entry,
u32 *ahg,
u8 ahg_hlen);
/**
* sdma_txinit_ahg() - initialize an sdma_txreq struct with AHG
* @tx: tx request to initialize
* @flags: flags to key last descriptor additions
* @tlen: total packet length (pbc + headers + data)
* @ahg_entry: ahg entry to use (0 - 31)
* @num_ahg: ahg descriptor for first descriptor (0 - 9)
* @ahg: array of AHG descriptors (up to 9 entries)
* @ahg_hlen: number of bytes from ASIC entry to use
* @cb: callback
*
* The allocation of the sdma_txreq and it enclosing structure is user
* dependent. This routine must be called to initialize the user independent
* fields.
*
* The currently supported flags are SDMA_TXREQ_F_URGENT,
* SDMA_TXREQ_F_AHG_COPY, and SDMA_TXREQ_F_USE_AHG.
*
* SDMA_TXREQ_F_URGENT is used for latency sensitive situations where the
* completion is desired as soon as possible.
*
* SDMA_TXREQ_F_AHG_COPY causes the header in the first descriptor to be
* copied to chip entry. SDMA_TXREQ_F_USE_AHG causes the code to add in
* the AHG descriptors into the first 1 to 3 descriptors.
*
* Completions of submitted requests can be gotten on selected
* txreqs by giving a completion routine callback to sdma_txinit() or
* sdma_txinit_ahg(). The environment in which the callback runs
* can be from an ISR, a tasklet, or a thread, so no sleeping
* kernel routines can be used. Aspects of the sdma ring may
* be locked so care should be taken with locking.
*
* The callback pointer can be NULL to avoid any callback for the packet
* being submitted. The callback will be provided this tx, a status, and a flag.
*
* The status will be one of SDMA_TXREQ_S_OK, SDMA_TXREQ_S_SENDERROR,
* SDMA_TXREQ_S_ABORTED, or SDMA_TXREQ_S_SHUTDOWN.
*
* The flag, if the is the iowait had been used, indicates the iowait
* sdma_busy count has reached zero.
*
* user data portion of tlen should be precise. The sdma_txadd_* entrances
* will pad with a descriptor references 1 - 3 bytes when the number of bytes
* specified in tlen have been supplied to the sdma_txreq.
*
* ahg_hlen is used to determine the number of on-chip entry bytes to
* use as the header. This is for cases where the stored header is
* larger than the header to be used in a packet. This is typical
* for verbs where an RDMA_WRITE_FIRST is larger than the packet in
* and RDMA_WRITE_MIDDLE.
*
*/
static inline int sdma_txinit_ahg(
struct sdma_txreq *tx,
u16 flags,
u16 tlen,
u8 ahg_entry,
u8 num_ahg,
u32 *ahg,
u8 ahg_hlen,
void (*cb)(struct sdma_txreq *, int, int))
{
if (tlen == 0)
return -ENODATA;
if (tlen > MAX_SDMA_PKT_SIZE)
return -EMSGSIZE;
tx->desc_limit = ARRAY_SIZE(tx->descs);
tx->descp = &tx->descs[0];
INIT_LIST_HEAD(&tx->list);
tx->num_desc = 0;
tx->flags = flags;
tx->complete = cb;
tx->coalesce_buf = NULL;
tx->wait = NULL;
tx->tlen = tx->packet_len = tlen;
tx->descs[0].qw[0] = SDMA_DESC0_FIRST_DESC_FLAG;
tx->descs[0].qw[1] = 0;
if (flags & SDMA_TXREQ_F_AHG_COPY)
tx->descs[0].qw[1] |=
(((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
<< SDMA_DESC1_HEADER_INDEX_SHIFT) |
(((u64)SDMA_AHG_COPY & SDMA_DESC1_HEADER_MODE_MASK)
<< SDMA_DESC1_HEADER_MODE_SHIFT);
else if (flags & SDMA_TXREQ_F_USE_AHG && num_ahg)
_sdma_txreq_ahgadd(tx, num_ahg, ahg_entry, ahg, ahg_hlen);
return 0;
}
/**
* sdma_txinit() - initialize an sdma_txreq struct (no AHG)
* @tx: tx request to initialize
* @flags: flags to key last descriptor additions
* @tlen: total packet length (pbc + headers + data)
* @cb: callback pointer
*
* The allocation of the sdma_txreq and it enclosing structure is user
* dependent. This routine must be called to initialize the user
* independent fields.
*
* The currently supported flags is SDMA_TXREQ_F_URGENT.
*
* SDMA_TXREQ_F_URGENT is used for latency sensitive situations where the
* completion is desired as soon as possible.
*
* Completions of submitted requests can be gotten on selected
* txreqs by giving a completion routine callback to sdma_txinit() or
* sdma_txinit_ahg(). The environment in which the callback runs
* can be from an ISR, a tasklet, or a thread, so no sleeping
* kernel routines can be used. The head size of the sdma ring may
* be locked so care should be taken with locking.
*
* The callback pointer can be NULL to avoid any callback for the packet
* being submitted.
*
* The callback, if non-NULL, will be provided this tx and a status. The
* status will be one of SDMA_TXREQ_S_OK, SDMA_TXREQ_S_SENDERROR,
* SDMA_TXREQ_S_ABORTED, or SDMA_TXREQ_S_SHUTDOWN.
*
*/
static inline int sdma_txinit(
struct sdma_txreq *tx,
u16 flags,
u16 tlen,
void (*cb)(struct sdma_txreq *, int, int))
{
return sdma_txinit_ahg(tx, flags, tlen, 0, 0, NULL, 0, cb);
}
/* helpers - don't use */
static inline int sdma_mapping_type(struct sdma_desc *d)
{
return (d->qw[1] & SDMA_DESC1_GENERATION_SMASK)
>> SDMA_DESC1_GENERATION_SHIFT;
}
static inline size_t sdma_mapping_len(struct sdma_desc *d)
{
return (d->qw[0] & SDMA_DESC0_BYTE_COUNT_SMASK)
>> SDMA_DESC0_BYTE_COUNT_SHIFT;
}
static inline dma_addr_t sdma_mapping_addr(struct sdma_desc *d)
{
return (d->qw[0] & SDMA_DESC0_PHY_ADDR_SMASK)
>> SDMA_DESC0_PHY_ADDR_SHIFT;
}
static inline void make_tx_sdma_desc(
struct sdma_txreq *tx,
int type,
dma_addr_t addr,
size_t len)
{
struct sdma_desc *desc = &tx->descp[tx->num_desc];
if (!tx->num_desc) {
/* qw[0] zero; qw[1] first, ahg mode already in from init */
desc->qw[1] |= ((u64)type & SDMA_DESC1_GENERATION_MASK)
<< SDMA_DESC1_GENERATION_SHIFT;
} else {
desc->qw[0] = 0;
desc->qw[1] = ((u64)type & SDMA_DESC1_GENERATION_MASK)
<< SDMA_DESC1_GENERATION_SHIFT;
}
desc->qw[0] |= (((u64)addr & SDMA_DESC0_PHY_ADDR_MASK)
<< SDMA_DESC0_PHY_ADDR_SHIFT) |
(((u64)len & SDMA_DESC0_BYTE_COUNT_MASK)
<< SDMA_DESC0_BYTE_COUNT_SHIFT);
}
/* helper to extend txreq */
int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
int type, void *kvaddr, struct page *page,
unsigned long offset, u16 len);
int _pad_sdma_tx_descs(struct hfi1_devdata *, struct sdma_txreq *);
void sdma_txclean(struct hfi1_devdata *, struct sdma_txreq *);
/* helpers used by public routines */
static inline void _sdma_close_tx(struct hfi1_devdata *dd,
struct sdma_txreq *tx)
{
tx->descp[tx->num_desc].qw[0] |=
SDMA_DESC0_LAST_DESC_FLAG;
tx->descp[tx->num_desc].qw[1] |=
dd->default_desc1;
if (tx->flags & SDMA_TXREQ_F_URGENT)
tx->descp[tx->num_desc].qw[1] |=
(SDMA_DESC1_HEAD_TO_HOST_FLAG|
SDMA_DESC1_INT_REQ_FLAG);
}
static inline int _sdma_txadd_daddr(
struct hfi1_devdata *dd,
int type,
struct sdma_txreq *tx,
dma_addr_t addr,
u16 len)
{
int rval = 0;
make_tx_sdma_desc(
tx,
type,
addr, len);
WARN_ON(len > tx->tlen);
tx->tlen -= len;
/* special cases for last */
if (!tx->tlen) {
if (tx->packet_len & (sizeof(u32) - 1))
rval = _pad_sdma_tx_descs(dd, tx);
else
_sdma_close_tx(dd, tx);
}
tx->num_desc++;
return rval;
}
/**
* sdma_txadd_page() - add a page to the sdma_txreq
* @dd: the device to use for mapping
* @tx: tx request to which the page is added
* @page: page to map
* @offset: offset within the page
* @len: length in bytes
*
* This is used to add a page/offset/length descriptor.
*
* The mapping/unmapping of the page/offset/len is automatically handled.
*
* Return:
* 0 - success, -ENOSPC - mapping fail, -ENOMEM - couldn't
* extend/coalesce descriptor array
*/
static inline int sdma_txadd_page(
struct hfi1_devdata *dd,
struct sdma_txreq *tx,
struct page *page,
unsigned long offset,
u16 len)
{
dma_addr_t addr;
int rval;
if ((unlikely(tx->num_desc == tx->desc_limit))) {
rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_PAGE,
NULL, page, offset, len);
if (rval <= 0)
return rval;
}
addr = dma_map_page(
&dd->pcidev->dev,
page,
offset,
len,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
sdma_txclean(dd, tx);
return -ENOSPC;
}
return _sdma_txadd_daddr(
dd, SDMA_MAP_PAGE, tx, addr, len);
}
/**
* sdma_txadd_daddr() - add a dma address to the sdma_txreq
* @dd: the device to use for mapping
* @tx: sdma_txreq to which the page is added
* @addr: dma address mapped by caller
* @len: length in bytes
*
* This is used to add a descriptor for memory that is already dma mapped.
*
* In this case, there is no unmapping as part of the progress processing for
* this memory location.
*
* Return:
* 0 - success, -ENOMEM - couldn't extend descriptor array
*/
static inline int sdma_txadd_daddr(
struct hfi1_devdata *dd,
struct sdma_txreq *tx,
dma_addr_t addr,
u16 len)
{
int rval;
if ((unlikely(tx->num_desc == tx->desc_limit))) {
rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_NONE,
NULL, NULL, 0, 0);
if (rval <= 0)
return rval;
}
return _sdma_txadd_daddr(dd, SDMA_MAP_NONE, tx, addr, len);
}
/**
* sdma_txadd_kvaddr() - add a kernel virtual address to sdma_txreq
* @dd: the device to use for mapping
* @tx: sdma_txreq to which the page is added
* @kvaddr: the kernel virtual address
* @len: length in bytes
*
* This is used to add a descriptor referenced by the indicated kvaddr and
* len.
*
* The mapping/unmapping of the kvaddr and len is automatically handled.
*
* Return:
* 0 - success, -ENOSPC - mapping fail, -ENOMEM - couldn't extend/coalesce
* descriptor array
*/
static inline int sdma_txadd_kvaddr(
struct hfi1_devdata *dd,
struct sdma_txreq *tx,
void *kvaddr,
u16 len)
{
dma_addr_t addr;
int rval;
if ((unlikely(tx->num_desc == tx->desc_limit))) {
rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_SINGLE,
kvaddr, NULL, 0, len);
if (rval <= 0)
return rval;
}
addr = dma_map_single(
&dd->pcidev->dev,
kvaddr,
len,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
sdma_txclean(dd, tx);
return -ENOSPC;
}
return _sdma_txadd_daddr(
dd, SDMA_MAP_SINGLE, tx, addr, len);
}
struct iowait;
int sdma_send_txreq(struct sdma_engine *sde,
struct iowait *wait,
struct sdma_txreq *tx);
int sdma_send_txlist(struct sdma_engine *sde,
struct iowait *wait,
struct list_head *tx_list);
int sdma_ahg_alloc(struct sdma_engine *sde);
void sdma_ahg_free(struct sdma_engine *sde, int ahg_index);
/**
* sdma_build_ahg - build ahg descriptor
* @data
* @dwindex
* @startbit
* @bits
*
* Build and return a 32 bit descriptor.
*/
static inline u32 sdma_build_ahg_descriptor(
u16 data,
u8 dwindex,
u8 startbit,
u8 bits)
{
return (u32)(1UL << SDMA_AHG_UPDATE_ENABLE_SHIFT |
((startbit & SDMA_AHG_FIELD_START_MASK) <<
SDMA_AHG_FIELD_START_SHIFT) |
((bits & SDMA_AHG_FIELD_LEN_MASK) <<
SDMA_AHG_FIELD_LEN_SHIFT) |
((dwindex & SDMA_AHG_INDEX_MASK) <<
SDMA_AHG_INDEX_SHIFT) |
((data & SDMA_AHG_VALUE_MASK) <<
SDMA_AHG_VALUE_SHIFT));
}
/**
* sdma_progress - use seq number of detect head progress
* @sde: sdma_engine to check
* @seq: base seq count
* @tx: txreq for which we need to check descriptor availability
*
* This is used in the appropriate spot in the sleep routine
* to check for potential ring progress. This routine gets the
* seqcount before queuing the iowait structure for progress.
*
* If the seqcount indicates that progress needs to be checked,
* re-submission is detected by checking whether the descriptor
* queue has enough descriptor for the txreq.
*/
static inline unsigned sdma_progress(struct sdma_engine *sde, unsigned seq,
struct sdma_txreq *tx)
{
if (read_seqretry(&sde->head_lock, seq)) {
sde->desc_avail = sdma_descq_freecnt(sde);
if (tx->num_desc > sde->desc_avail)
return 0;
return 1;
}
return 0;
}
/**
* sdma_iowait_schedule() - initialize wait structure
* @sde: sdma_engine to schedule
* @wait: wait struct to schedule
*
* This function initializes the iowait
* structure embedded in the QP or PQ.
*
*/
static inline void sdma_iowait_schedule(
struct sdma_engine *sde,
struct iowait *wait)
{
iowait_schedule(wait, sde->wq);
}
/* for use by interrupt handling */
void sdma_engine_error(struct sdma_engine *sde, u64 status);
void sdma_engine_interrupt(struct sdma_engine *sde, u64 status);
/*
*
* The diagram below details the relationship of the mapping structures
*
* Since the mapping now allows for non-uniform engines per vl, the
* number of engines for a vl is either the vl_engines[vl] or
* a computation based on num_sdma/num_vls:
*
* For example:
* nactual = vl_engines ? vl_engines[vl] : num_sdma/num_vls
*
* n = roundup to next highest power of 2 using nactual
*
* In the case where there are num_sdma/num_vls doesn't divide
* evenly, the extras are added from the last vl downward.
*
* For the case where n > nactual, the engines are assigned
* in a round robin fashion wrapping back to the first engine
* for a particular vl.
*
* dd->sdma_map
* | sdma_map_elem[0]
* | +--------------------+
* v | mask |
* sdma_vl_map |--------------------|
* +--------------------------+ | sde[0] -> eng 1 |
* | list (RCU) | |--------------------|
* |--------------------------| ->| sde[1] -> eng 2 |
* | mask | --/ |--------------------|
* |--------------------------| -/ | * |
* | actual_vls (max 8) | -/ |--------------------|
* |--------------------------| --/ | sde[n] -> eng n |
* | vls (max 8) | -/ +--------------------+
* |--------------------------| --/
* | map[0] |-/
* |--------------------------| +--------------------+
* | map[1] |--- | mask |
* |--------------------------| \---- |--------------------|
* | * | \-- | sde[0] -> eng 1+n |
* | * | \---- |--------------------|
* | * | \->| sde[1] -> eng 2+n |
* |--------------------------| |--------------------|
* | map[vls - 1] |- | * |
* +--------------------------+ \- |--------------------|
* \- | sde[m] -> eng m+n |
* \ +--------------------+
* \-
* \
* \- +--------------------+
* \- | mask |
* \ |--------------------|
* \- | sde[0] -> eng 1+m+n|
* \- |--------------------|
* >| sde[1] -> eng 2+m+n|
* |--------------------|
* | * |
* |--------------------|
* | sde[o] -> eng o+m+n|
* +--------------------+
*
*/
/**
* struct sdma_map_elem - mapping for a vl
* @mask - selector mask
* @sde - array of engines for this vl
*
* The mask is used to "mod" the selector
* to produce index into the trailing
* array of sdes.
*/
struct sdma_map_elem {
u32 mask;
struct sdma_engine *sde[0];
};
/**
* struct sdma_map_el - mapping for a vl
* @list - rcu head for free callback
* @mask - vl mask to "mod" the vl to produce an index to map array
* @actual_vls - number of vls
* @vls - number of vls rounded to next power of 2
* @map - array of sdma_map_elem entries
*
* This is the parent mapping structure. The trailing
* members of the struct point to sdma_map_elem entries, which
* in turn point to an array of sde's for that vl.
*/
struct sdma_vl_map {
struct rcu_head list;
u32 mask;
u8 actual_vls;
u8 vls;
struct sdma_map_elem *map[0];
};
int sdma_map_init(
struct hfi1_devdata *dd,
u8 port,
u8 num_vls,
u8 *vl_engines);
/* slow path */
void _sdma_engine_progress_schedule(struct sdma_engine *sde);
/**
* sdma_engine_progress_schedule() - schedule progress on engine
* @sde: sdma_engine to schedule progress
*
* This is the fast path.
*
*/
static inline void sdma_engine_progress_schedule(
struct sdma_engine *sde)
{
if (!sde || sdma_descq_inprocess(sde) < (sde->descq_cnt / 8))
return;
_sdma_engine_progress_schedule(sde);
}
struct sdma_engine *sdma_select_engine_sc(
struct hfi1_devdata *dd,
u32 selector,
u8 sc5);
struct sdma_engine *sdma_select_engine_vl(
struct hfi1_devdata *dd,
u32 selector,
u8 vl);
void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *);
#ifdef CONFIG_SDMA_VERBOSITY
void sdma_dumpstate(struct sdma_engine *);
#endif
static inline char *slashstrip(char *s)
{
char *r = s;
while (*s)
if (*s++ == '/')
r = s;
return r;
}
u16 sdma_get_descq_cnt(void);
extern uint mod_num_sdma;
void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid);
#endif