- 根目录:
- drivers
- net
- wireless
- rt2x00
- rt2x00.h
/*
Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
<http://rt2x00.serialmonkey.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*
Module: rt2x00
Abstract: rt2x00 global information.
*/
#ifndef RT2X00_H
#define RT2X00_H
#include <linux/bitops.h>
#include <linux/interrupt.h>
#include <linux/skbuff.h>
#include <linux/workqueue.h>
#include <linux/firmware.h>
#include <linux/leds.h>
#include <linux/mutex.h>
#include <linux/etherdevice.h>
#include <linux/input-polldev.h>
#include <linux/kfifo.h>
#include <linux/hrtimer.h>
#include <linux/average.h>
#include <net/mac80211.h>
#include "rt2x00debug.h"
#include "rt2x00dump.h"
#include "rt2x00leds.h"
#include "rt2x00reg.h"
#include "rt2x00queue.h"
/*
* Module information.
*/
#define DRV_VERSION "2.3.0"
#define DRV_PROJECT "http://rt2x00.serialmonkey.com"
/* Debug definitions.
* Debug output has to be enabled during compile time.
*/
#ifdef CONFIG_RT2X00_DEBUG
#define DEBUG
#endif /* CONFIG_RT2X00_DEBUG */
/* Utility printing macros
* rt2x00_probe_err is for messages when rt2x00_dev is uninitialized
*/
#define rt2x00_probe_err(fmt, ...) \
printk(KERN_ERR KBUILD_MODNAME ": %s: Error - " fmt, \
__func__, ##__VA_ARGS__)
#define rt2x00_err(dev, fmt, ...) \
wiphy_err((dev)->hw->wiphy, "%s: Error - " fmt, \
__func__, ##__VA_ARGS__)
#define rt2x00_warn(dev, fmt, ...) \
wiphy_warn((dev)->hw->wiphy, "%s: Warning - " fmt, \
__func__, ##__VA_ARGS__)
#define rt2x00_info(dev, fmt, ...) \
wiphy_info((dev)->hw->wiphy, "%s: Info - " fmt, \
__func__, ##__VA_ARGS__)
/* Various debug levels */
#define rt2x00_dbg(dev, fmt, ...) \
wiphy_dbg((dev)->hw->wiphy, "%s: Debug - " fmt, \
__func__, ##__VA_ARGS__)
#define rt2x00_eeprom_dbg(dev, fmt, ...) \
wiphy_dbg((dev)->hw->wiphy, "%s: EEPROM recovery - " fmt, \
__func__, ##__VA_ARGS__)
/*
* Duration calculations
* The rate variable passed is: 100kbs.
* To convert from bytes to bits we multiply size with 8,
* then the size is multiplied with 10 to make the
* real rate -> rate argument correction.
*/
#define GET_DURATION(__size, __rate) (((__size) * 8 * 10) / (__rate))
#define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate))
/*
* Determine the number of L2 padding bytes required between the header and
* the payload.
*/
#define L2PAD_SIZE(__hdrlen) (-(__hdrlen) & 3)
/*
* Determine the alignment requirement,
* to make sure the 802.11 payload is padded to a 4-byte boundrary
* we must determine the address of the payload and calculate the
* amount of bytes needed to move the data.
*/
#define ALIGN_SIZE(__skb, __header) \
( ((unsigned long)((__skb)->data + (__header))) & 3 )
/*
* Constants for extra TX headroom for alignment purposes.
*/
#define RT2X00_ALIGN_SIZE 4 /* Only whole frame needs alignment */
#define RT2X00_L2PAD_SIZE 8 /* Both header & payload need alignment */
/*
* Standard timing and size defines.
* These values should follow the ieee80211 specifications.
*/
#define ACK_SIZE 14
#define IEEE80211_HEADER 24
#define PLCP 48
#define BEACON 100
#define PREAMBLE 144
#define SHORT_PREAMBLE 72
#define SLOT_TIME 20
#define SHORT_SLOT_TIME 9
#define SIFS 10
#define PIFS ( SIFS + SLOT_TIME )
#define SHORT_PIFS ( SIFS + SHORT_SLOT_TIME )
#define DIFS ( PIFS + SLOT_TIME )
#define SHORT_DIFS ( SHORT_PIFS + SHORT_SLOT_TIME )
#define EIFS ( SIFS + DIFS + \
GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10) )
#define SHORT_EIFS ( SIFS + SHORT_DIFS + \
GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10) )
enum rt2x00_chip_intf {
RT2X00_CHIP_INTF_PCI,
RT2X00_CHIP_INTF_PCIE,
RT2X00_CHIP_INTF_USB,
RT2X00_CHIP_INTF_SOC,
};
/*
* Chipset identification
* The chipset on the device is composed of a RT and RF chip.
* The chipset combination is important for determining device capabilities.
*/
struct rt2x00_chip {
u16 rt;
#define RT2460 0x2460
#define RT2560 0x2560
#define RT2570 0x2570
#define RT2661 0x2661
#define RT2573 0x2573
#define RT2860 0x2860 /* 2.4GHz */
#define RT2872 0x2872 /* WSOC */
#define RT2883 0x2883 /* WSOC */
#define RT3070 0x3070
#define RT3071 0x3071
#define RT3090 0x3090 /* 2.4GHz PCIe */
#define RT3290 0x3290
#define RT3352 0x3352 /* WSOC */
#define RT3390 0x3390
#define RT3572 0x3572
#define RT3593 0x3593
#define RT3883 0x3883 /* WSOC */
#define RT5390 0x5390 /* 2.4GHz */
#define RT5392 0x5392 /* 2.4GHz */
#define RT5592 0x5592
u16 rf;
u16 rev;
enum rt2x00_chip_intf intf;
};
/*
* RF register values that belong to a particular channel.
*/
struct rf_channel {
int channel;
u32 rf1;
u32 rf2;
u32 rf3;
u32 rf4;
};
/*
* Channel information structure
*/
struct channel_info {
unsigned int flags;
#define GEOGRAPHY_ALLOWED 0x00000001
short max_power;
short default_power1;
short default_power2;
short default_power3;
};
/*
* Antenna setup values.
*/
struct antenna_setup {
enum antenna rx;
enum antenna tx;
u8 rx_chain_num;
u8 tx_chain_num;
};
/*
* Quality statistics about the currently active link.
*/
struct link_qual {
/*
* Statistics required for Link tuning by driver
* The rssi value is provided by rt2x00lib during the
* link_tuner() callback function.
* The false_cca field is filled during the link_stats()
* callback function and could be used during the
* link_tuner() callback function.
*/
int rssi;
int false_cca;
/*
* VGC levels
* Hardware driver will tune the VGC level during each call
* to the link_tuner() callback function. This vgc_level is
* is determined based on the link quality statistics like
* average RSSI and the false CCA count.
*
* In some cases the drivers need to differentiate between
* the currently "desired" VGC level and the level configured
* in the hardware. The latter is important to reduce the
* number of BBP register reads to reduce register access
* overhead. For this reason we store both values here.
*/
u8 vgc_level;
u8 vgc_level_reg;
/*
* Statistics required for Signal quality calculation.
* These fields might be changed during the link_stats()
* callback function.
*/
int rx_success;
int rx_failed;
int tx_success;
int tx_failed;
};
DECLARE_EWMA(rssi, 1024, 8)
/*
* Antenna settings about the currently active link.
*/
struct link_ant {
/*
* Antenna flags
*/
unsigned int flags;
#define ANTENNA_RX_DIVERSITY 0x00000001
#define ANTENNA_TX_DIVERSITY 0x00000002
#define ANTENNA_MODE_SAMPLE 0x00000004
/*
* Currently active TX/RX antenna setup.
* When software diversity is used, this will indicate
* which antenna is actually used at this time.
*/
struct antenna_setup active;
/*
* RSSI history information for the antenna.
* Used to determine when to switch antenna
* when using software diversity.
*/
int rssi_history;
/*
* Current RSSI average of the currently active antenna.
* Similar to the avg_rssi in the link_qual structure
* this value is updated by using the walking average.
*/
struct ewma_rssi rssi_ant;
};
/*
* To optimize the quality of the link we need to store
* the quality of received frames and periodically
* optimize the link.
*/
struct link {
/*
* Link tuner counter
* The number of times the link has been tuned
* since the radio has been switched on.
*/
u32 count;
/*
* Quality measurement values.
*/
struct link_qual qual;
/*
* TX/RX antenna setup.
*/
struct link_ant ant;
/*
* Currently active average RSSI value
*/
struct ewma_rssi avg_rssi;
/*
* Work structure for scheduling periodic link tuning.
*/
struct delayed_work work;
/*
* Work structure for scheduling periodic watchdog monitoring.
* This work must be scheduled on the kernel workqueue, while
* all other work structures must be queued on the mac80211
* workqueue. This guarantees that the watchdog can schedule
* other work structures and wait for their completion in order
* to bring the device/driver back into the desired state.
*/
struct delayed_work watchdog_work;
/*
* Work structure for scheduling periodic AGC adjustments.
*/
struct delayed_work agc_work;
/*
* Work structure for scheduling periodic VCO calibration.
*/
struct delayed_work vco_work;
};
enum rt2x00_delayed_flags {
DELAYED_UPDATE_BEACON,
};
/*
* Interface structure
* Per interface configuration details, this structure
* is allocated as the private data for ieee80211_vif.
*/
struct rt2x00_intf {
/*
* beacon->skb must be protected with the mutex.
*/
struct mutex beacon_skb_mutex;
/*
* Entry in the beacon queue which belongs to
* this interface. Each interface has its own
* dedicated beacon entry.
*/
struct queue_entry *beacon;
bool enable_beacon;
/*
* Actions that needed rescheduling.
*/
unsigned long delayed_flags;
/*
* Software sequence counter, this is only required
* for hardware which doesn't support hardware
* sequence counting.
*/
atomic_t seqno;
};
static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif)
{
return (struct rt2x00_intf *)vif->drv_priv;
}
/**
* struct hw_mode_spec: Hardware specifications structure
*
* Details about the supported modes, rates and channels
* of a particular chipset. This is used by rt2x00lib
* to build the ieee80211_hw_mode array for mac80211.
*
* @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz).
* @supported_rates: Rate types which are supported (CCK, OFDM).
* @num_channels: Number of supported channels. This is used as array size
* for @tx_power_a, @tx_power_bg and @channels.
* @channels: Device/chipset specific channel values (See &struct rf_channel).
* @channels_info: Additional information for channels (See &struct channel_info).
* @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap).
*/
struct hw_mode_spec {
unsigned int supported_bands;
#define SUPPORT_BAND_2GHZ 0x00000001
#define SUPPORT_BAND_5GHZ 0x00000002
unsigned int supported_rates;
#define SUPPORT_RATE_CCK 0x00000001
#define SUPPORT_RATE_OFDM 0x00000002
unsigned int num_channels;
const struct rf_channel *channels;
const struct channel_info *channels_info;
struct ieee80211_sta_ht_cap ht;
};
/*
* Configuration structure wrapper around the
* mac80211 configuration structure.
* When mac80211 configures the driver, rt2x00lib
* can precalculate values which are equal for all
* rt2x00 drivers. Those values can be stored in here.
*/
struct rt2x00lib_conf {
struct ieee80211_conf *conf;
struct rf_channel rf;
struct channel_info channel;
};
/*
* Configuration structure for erp settings.
*/
struct rt2x00lib_erp {
int short_preamble;
int cts_protection;
u32 basic_rates;
int slot_time;
short sifs;
short pifs;
short difs;
short eifs;
u16 beacon_int;
u16 ht_opmode;
};
/*
* Configuration structure for hardware encryption.
*/
struct rt2x00lib_crypto {
enum cipher cipher;
enum set_key_cmd cmd;
const u8 *address;
u32 bssidx;
u8 key[16];
u8 tx_mic[8];
u8 rx_mic[8];
int wcid;
};
/*
* Configuration structure wrapper around the
* rt2x00 interface configuration handler.
*/
struct rt2x00intf_conf {
/*
* Interface type
*/
enum nl80211_iftype type;
/*
* TSF sync value, this is dependent on the operation type.
*/
enum tsf_sync sync;
/*
* The MAC and BSSID addresses are simple array of bytes,
* these arrays are little endian, so when sending the addresses
* to the drivers, copy the it into a endian-signed variable.
*
* Note that all devices (except rt2500usb) have 32 bits
* register word sizes. This means that whatever variable we
* pass _must_ be a multiple of 32 bits. Otherwise the device
* might not accept what we are sending to it.
* This will also make it easier for the driver to write
* the data to the device.
*/
__le32 mac[2];
__le32 bssid[2];
};
/*
* Private structure for storing STA details
* wcid: Wireless Client ID
*/
struct rt2x00_sta {
int wcid;
};
static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta)
{
return (struct rt2x00_sta *)sta->drv_priv;
}
/*
* rt2x00lib callback functions.
*/
struct rt2x00lib_ops {
/*
* Interrupt handlers.
*/
irq_handler_t irq_handler;
/*
* TX status tasklet handler.
*/
void (*txstatus_tasklet) (unsigned long data);
void (*pretbtt_tasklet) (unsigned long data);
void (*tbtt_tasklet) (unsigned long data);
void (*rxdone_tasklet) (unsigned long data);
void (*autowake_tasklet) (unsigned long data);
/*
* Device init handlers.
*/
int (*probe_hw) (struct rt2x00_dev *rt2x00dev);
char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev);
int (*check_firmware) (struct rt2x00_dev *rt2x00dev,
const u8 *data, const size_t len);
int (*load_firmware) (struct rt2x00_dev *rt2x00dev,
const u8 *data, const size_t len);
/*
* Device initialization/deinitialization handlers.
*/
int (*initialize) (struct rt2x00_dev *rt2x00dev);
void (*uninitialize) (struct rt2x00_dev *rt2x00dev);
/*
* queue initialization handlers
*/
bool (*get_entry_state) (struct queue_entry *entry);
void (*clear_entry) (struct queue_entry *entry);
/*
* Radio control handlers.
*/
int (*set_device_state) (struct rt2x00_dev *rt2x00dev,
enum dev_state state);
int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev);
void (*link_stats) (struct rt2x00_dev *rt2x00dev,
struct link_qual *qual);
void (*reset_tuner) (struct rt2x00_dev *rt2x00dev,
struct link_qual *qual);
void (*link_tuner) (struct rt2x00_dev *rt2x00dev,
struct link_qual *qual, const u32 count);
void (*gain_calibration) (struct rt2x00_dev *rt2x00dev);
void (*vco_calibration) (struct rt2x00_dev *rt2x00dev);
/*
* Data queue handlers.
*/
void (*watchdog) (struct rt2x00_dev *rt2x00dev);
void (*start_queue) (struct data_queue *queue);
void (*kick_queue) (struct data_queue *queue);
void (*stop_queue) (struct data_queue *queue);
void (*flush_queue) (struct data_queue *queue, bool drop);
void (*tx_dma_done) (struct queue_entry *entry);
/*
* TX control handlers
*/
void (*write_tx_desc) (struct queue_entry *entry,
struct txentry_desc *txdesc);
void (*write_tx_data) (struct queue_entry *entry,
struct txentry_desc *txdesc);
void (*write_beacon) (struct queue_entry *entry,
struct txentry_desc *txdesc);
void (*clear_beacon) (struct queue_entry *entry);
int (*get_tx_data_len) (struct queue_entry *entry);
/*
* RX control handlers
*/
void (*fill_rxdone) (struct queue_entry *entry,
struct rxdone_entry_desc *rxdesc);
/*
* Configuration handlers.
*/
int (*config_shared_key) (struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_crypto *crypto,
struct ieee80211_key_conf *key);
int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_crypto *crypto,
struct ieee80211_key_conf *key);
void (*config_filter) (struct rt2x00_dev *rt2x00dev,
const unsigned int filter_flags);
void (*config_intf) (struct rt2x00_dev *rt2x00dev,
struct rt2x00_intf *intf,
struct rt2x00intf_conf *conf,
const unsigned int flags);
#define CONFIG_UPDATE_TYPE ( 1 << 1 )
#define CONFIG_UPDATE_MAC ( 1 << 2 )
#define CONFIG_UPDATE_BSSID ( 1 << 3 )
void (*config_erp) (struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_erp *erp,
u32 changed);
void (*config_ant) (struct rt2x00_dev *rt2x00dev,
struct antenna_setup *ant);
void (*config) (struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_conf *libconf,
const unsigned int changed_flags);
int (*sta_add) (struct rt2x00_dev *rt2x00dev,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta);
int (*sta_remove) (struct rt2x00_dev *rt2x00dev,
int wcid);
};
/*
* rt2x00 driver callback operation structure.
*/
struct rt2x00_ops {
const char *name;
const unsigned int drv_data_size;
const unsigned int max_ap_intf;
const unsigned int eeprom_size;
const unsigned int rf_size;
const unsigned int tx_queues;
void (*queue_init)(struct data_queue *queue);
const struct rt2x00lib_ops *lib;
const void *drv;
const struct ieee80211_ops *hw;
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
const struct rt2x00debug *debugfs;
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};
/*
* rt2x00 state flags
*/
enum rt2x00_state_flags {
/*
* Device flags
*/
DEVICE_STATE_PRESENT,
DEVICE_STATE_REGISTERED_HW,
DEVICE_STATE_INITIALIZED,
DEVICE_STATE_STARTED,
DEVICE_STATE_ENABLED_RADIO,
DEVICE_STATE_SCANNING,
/*
* Driver configuration
*/
CONFIG_CHANNEL_HT40,
CONFIG_POWERSAVING,
CONFIG_HT_DISABLED,
CONFIG_QOS_DISABLED,
/*
* Mark we currently are sequentially reading TX_STA_FIFO register
* FIXME: this is for only rt2800usb, should go to private data
*/
TX_STATUS_READING,
};
/*
* rt2x00 capability flags
*/
enum rt2x00_capability_flags {
/*
* Requirements
*/
REQUIRE_FIRMWARE,
REQUIRE_BEACON_GUARD,
REQUIRE_ATIM_QUEUE,
REQUIRE_DMA,
REQUIRE_COPY_IV,
REQUIRE_L2PAD,
REQUIRE_TXSTATUS_FIFO,
REQUIRE_TASKLET_CONTEXT,
REQUIRE_SW_SEQNO,
REQUIRE_HT_TX_DESC,
REQUIRE_PS_AUTOWAKE,
REQUIRE_DELAYED_RFKILL,
/*
* Capabilities
*/
CAPABILITY_HW_BUTTON,
CAPABILITY_HW_CRYPTO,
CAPABILITY_POWER_LIMIT,
CAPABILITY_CONTROL_FILTERS,
CAPABILITY_CONTROL_FILTER_PSPOLL,
CAPABILITY_PRE_TBTT_INTERRUPT,
CAPABILITY_LINK_TUNING,
CAPABILITY_FRAME_TYPE,
CAPABILITY_RF_SEQUENCE,
CAPABILITY_EXTERNAL_LNA_A,
CAPABILITY_EXTERNAL_LNA_BG,
CAPABILITY_DOUBLE_ANTENNA,
CAPABILITY_BT_COEXIST,
CAPABILITY_VCO_RECALIBRATION,
};
/*
* Interface combinations
*/
enum {
IF_COMB_AP = 0,
NUM_IF_COMB,
};
/*
* rt2x00 device structure.
*/
struct rt2x00_dev {
/*
* Device structure.
* The structure stored in here depends on the
* system bus (PCI or USB).
* When accessing this variable, the rt2x00dev_{pci,usb}
* macros should be used for correct typecasting.
*/
struct device *dev;
/*
* Callback functions.
*/
const struct rt2x00_ops *ops;
/*
* Driver data.
*/
void *drv_data;
/*
* IEEE80211 control structure.
*/
struct ieee80211_hw *hw;
struct ieee80211_supported_band bands[IEEE80211_NUM_BANDS];
enum ieee80211_band curr_band;
int curr_freq;
/*
* If enabled, the debugfs interface structures
* required for deregistration of debugfs.
*/
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
struct rt2x00debug_intf *debugfs_intf;
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
/*
* LED structure for changing the LED status
* by mac8011 or the kernel.
*/
#ifdef CONFIG_RT2X00_LIB_LEDS
struct rt2x00_led led_radio;
struct rt2x00_led led_assoc;
struct rt2x00_led led_qual;
u16 led_mcu_reg;
#endif /* CONFIG_RT2X00_LIB_LEDS */
/*
* Device state flags.
* In these flags the current status is stored.
* Access to these flags should occur atomically.
*/
unsigned long flags;
/*
* Device capabiltiy flags.
* In these flags the device/driver capabilities are stored.
* Access to these flags should occur non-atomically.
*/
unsigned long cap_flags;
/*
* Device information, Bus IRQ and name (PCI, SoC)
*/
int irq;
const char *name;
/*
* Chipset identification.
*/
struct rt2x00_chip chip;
/*
* hw capability specifications.
*/
struct hw_mode_spec spec;
/*
* This is the default TX/RX antenna setup as indicated
* by the device's EEPROM.
*/
struct antenna_setup default_ant;
/*
* Register pointers
* csr.base: CSR base register address. (PCI)
* csr.cache: CSR cache for usb_control_msg. (USB)
*/
union csr {
void __iomem *base;
void *cache;
} csr;
/*
* Mutex to protect register accesses.
* For PCI and USB devices it protects against concurrent indirect
* register access (BBP, RF, MCU) since accessing those
* registers require multiple calls to the CSR registers.
* For USB devices it also protects the csr_cache since that
* field is used for normal CSR access and it cannot support
* multiple callers simultaneously.
*/
struct mutex csr_mutex;
/*
* Current packet filter configuration for the device.
* This contains all currently active FIF_* flags send
* to us by mac80211 during configure_filter().
*/
unsigned int packet_filter;
/*
* Interface details:
* - Open ap interface count.
* - Open sta interface count.
* - Association count.
* - Beaconing enabled count.
*/
unsigned int intf_ap_count;
unsigned int intf_sta_count;
unsigned int intf_associated;
unsigned int intf_beaconing;
/*
* Interface combinations
*/
struct ieee80211_iface_limit if_limits_ap;
struct ieee80211_iface_combination if_combinations[NUM_IF_COMB];
/*
* Link quality
*/
struct link link;
/*
* EEPROM data.
*/
__le16 *eeprom;
/*
* Active RF register values.
* These are stored here so we don't need
* to read the rf registers and can directly
* use this value instead.
* This field should be accessed by using
* rt2x00_rf_read() and rt2x00_rf_write().
*/
u32 *rf;
/*
* LNA gain
*/
short lna_gain;
/*
* Current TX power value.
*/
u16 tx_power;
/*
* Current retry values.
*/
u8 short_retry;
u8 long_retry;
/*
* Rssi <-> Dbm offset
*/
u8 rssi_offset;
/*
* Frequency offset.
*/
u8 freq_offset;
/*
* Association id.
*/
u16 aid;
/*
* Beacon interval.
*/
u16 beacon_int;
/**
* Timestamp of last received beacon
*/
unsigned long last_beacon;
/*
* Low level statistics which will have
* to be kept up to date while device is running.
*/
struct ieee80211_low_level_stats low_level_stats;
/**
* Work queue for all work which should not be placed
* on the mac80211 workqueue (because of dependencies
* between various work structures).
*/
struct workqueue_struct *workqueue;
/*
* Scheduled work.
* NOTE: intf_work will use ieee80211_iterate_active_interfaces()
* which means it cannot be placed on the hw->workqueue
* due to RTNL locking requirements.
*/
struct work_struct intf_work;
/**
* Scheduled work for TX/RX done handling (USB devices)
*/
struct work_struct rxdone_work;
struct work_struct txdone_work;
/*
* Powersaving work
*/
struct delayed_work autowakeup_work;
struct work_struct sleep_work;
/*
* Data queue arrays for RX, TX, Beacon and ATIM.
*/
unsigned int data_queues;
struct data_queue *rx;
struct data_queue *tx;
struct data_queue *bcn;
struct data_queue *atim;
/*
* Firmware image.
*/
const struct firmware *fw;
/*
* FIFO for storing tx status reports between isr and tasklet.
*/
DECLARE_KFIFO_PTR(txstatus_fifo, u32);
/*
* Timer to ensure tx status reports are read (rt2800usb).
*/
struct hrtimer txstatus_timer;
/*
* Tasklet for processing tx status reports (rt2800pci).
*/
struct tasklet_struct txstatus_tasklet;
struct tasklet_struct pretbtt_tasklet;
struct tasklet_struct tbtt_tasklet;
struct tasklet_struct rxdone_tasklet;
struct tasklet_struct autowake_tasklet;
/*
* Used for VCO periodic calibration.
*/
int rf_channel;
/*
* Protect the interrupt mask register.
*/
spinlock_t irqmask_lock;
/*
* List of BlockAckReq TX entries that need driver BlockAck processing.
*/
struct list_head bar_list;
spinlock_t bar_list_lock;
/* Extra TX headroom required for alignment purposes. */
unsigned int extra_tx_headroom;
};
struct rt2x00_bar_list_entry {
struct list_head list;
struct rcu_head head;
struct queue_entry *entry;
int block_acked;
/* Relevant parts of the IEEE80211 BAR header */
__u8 ra[6];
__u8 ta[6];
__le16 control;
__le16 start_seq_num;
};
/*
* Register defines.
* Some registers require multiple attempts before success,
* in those cases REGISTER_BUSY_COUNT attempts should be
* taken with a REGISTER_BUSY_DELAY interval. Due to USB
* bus delays, we do not have to loop so many times to wait
* for valid register value on that bus.
*/
#define REGISTER_BUSY_COUNT 100
#define REGISTER_USB_BUSY_COUNT 20
#define REGISTER_BUSY_DELAY 100
/*
* Generic RF access.
* The RF is being accessed by word index.
*/
static inline void rt2x00_rf_read(struct rt2x00_dev *rt2x00dev,
const unsigned int word, u32 *data)
{
BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
*data = rt2x00dev->rf[word - 1];
}
static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev,
const unsigned int word, u32 data)
{
BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
rt2x00dev->rf[word - 1] = data;
}
/*
* Generic EEPROM access. The EEPROM is being accessed by word or byte index.
*/
static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev,
const unsigned int word)
{
return (void *)&rt2x00dev->eeprom[word];
}
static inline void rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev,
const unsigned int word, u16 *data)
{
*data = le16_to_cpu(rt2x00dev->eeprom[word]);
}
static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev,
const unsigned int word, u16 data)
{
rt2x00dev->eeprom[word] = cpu_to_le16(data);
}
static inline u8 rt2x00_eeprom_byte(struct rt2x00_dev *rt2x00dev,
const unsigned int byte)
{
return *(((u8 *)rt2x00dev->eeprom) + byte);
}
/*
* Chipset handlers
*/
static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev,
const u16 rt, const u16 rf, const u16 rev)
{
rt2x00dev->chip.rt = rt;
rt2x00dev->chip.rf = rf;
rt2x00dev->chip.rev = rev;
rt2x00_info(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %04x\n",
rt2x00dev->chip.rt, rt2x00dev->chip.rf,
rt2x00dev->chip.rev);
}
static inline void rt2x00_set_rt(struct rt2x00_dev *rt2x00dev,
const u16 rt, const u16 rev)
{
rt2x00dev->chip.rt = rt;
rt2x00dev->chip.rev = rev;
rt2x00_info(rt2x00dev, "RT chipset %04x, rev %04x detected\n",
rt2x00dev->chip.rt, rt2x00dev->chip.rev);
}
static inline void rt2x00_set_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
{
rt2x00dev->chip.rf = rf;
rt2x00_info(rt2x00dev, "RF chipset %04x detected\n",
rt2x00dev->chip.rf);
}
static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt)
{
return (rt2x00dev->chip.rt == rt);
}
static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
{
return (rt2x00dev->chip.rf == rf);
}
static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev)
{
return rt2x00dev->chip.rev;
}
static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev,
const u16 rt, const u16 rev)
{
return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev);
}
static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev,
const u16 rt, const u16 rev)
{
return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev);
}
static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev,
const u16 rt, const u16 rev)
{
return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev);
}
static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev,
enum rt2x00_chip_intf intf)
{
rt2x00dev->chip.intf = intf;
}
static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev,
enum rt2x00_chip_intf intf)
{
return (rt2x00dev->chip.intf == intf);
}
static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev)
{
return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) ||
rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
}
static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev)
{
return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
}
static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev)
{
return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB);
}
static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev)
{
return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC);
}
/* Helpers for capability flags */
static inline bool
rt2x00_has_cap_flag(struct rt2x00_dev *rt2x00dev,
enum rt2x00_capability_flags cap_flag)
{
return test_bit(cap_flag, &rt2x00dev->cap_flags);
}
static inline bool
rt2x00_has_cap_hw_crypto(struct rt2x00_dev *rt2x00dev)
{
return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_HW_CRYPTO);
}
static inline bool
rt2x00_has_cap_power_limit(struct rt2x00_dev *rt2x00dev)
{
return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_POWER_LIMIT);
}
static inline bool
rt2x00_has_cap_control_filters(struct rt2x00_dev *rt2x00dev)
{
return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTERS);
}
static inline bool
rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev *rt2x00dev)
{
return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTER_PSPOLL);
}
static inline bool
rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev *rt2x00dev)
{
return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_PRE_TBTT_INTERRUPT);
}
static inline bool
rt2x00_has_cap_link_tuning(struct rt2x00_dev *rt2x00dev)
{
return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_LINK_TUNING);
}
static inline bool
rt2x00_has_cap_frame_type(struct rt2x00_dev *rt2x00dev)
{
return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_FRAME_TYPE);
}
static inline bool
rt2x00_has_cap_rf_sequence(struct rt2x00_dev *rt2x00dev)
{
return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RF_SEQUENCE);
}
static inline bool
rt2x00_has_cap_external_lna_a(struct rt2x00_dev *rt2x00dev)
{
return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_A);
}
static inline bool
rt2x00_has_cap_external_lna_bg(struct rt2x00_dev *rt2x00dev)
{
return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_BG);
}
static inline bool
rt2x00_has_cap_double_antenna(struct rt2x00_dev *rt2x00dev)
{
return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_DOUBLE_ANTENNA);
}
static inline bool
rt2x00_has_cap_bt_coexist(struct rt2x00_dev *rt2x00dev)
{
return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_BT_COEXIST);
}
static inline bool
rt2x00_has_cap_vco_recalibration(struct rt2x00_dev *rt2x00dev)
{
return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_VCO_RECALIBRATION);
}
/**
* rt2x00queue_map_txskb - Map a skb into DMA for TX purposes.
* @entry: Pointer to &struct queue_entry
*
* Returns -ENOMEM if mapping fail, 0 otherwise.
*/
int rt2x00queue_map_txskb(struct queue_entry *entry);
/**
* rt2x00queue_unmap_skb - Unmap a skb from DMA.
* @entry: Pointer to &struct queue_entry
*/
void rt2x00queue_unmap_skb(struct queue_entry *entry);
/**
* rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer
* @rt2x00dev: Pointer to &struct rt2x00_dev.
* @queue: rt2x00 queue index (see &enum data_queue_qid).
*
* Returns NULL for non tx queues.
*/
static inline struct data_queue *
rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev,
const enum data_queue_qid queue)
{
if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
return &rt2x00dev->tx[queue];
if (queue == QID_ATIM)
return rt2x00dev->atim;
return NULL;
}
/**
* rt2x00queue_get_entry - Get queue entry where the given index points to.
* @queue: Pointer to &struct data_queue from where we obtain the entry.
* @index: Index identifier for obtaining the correct index.
*/
struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
enum queue_index index);
/**
* rt2x00queue_pause_queue - Pause a data queue
* @queue: Pointer to &struct data_queue.
*
* This function will pause the data queue locally, preventing
* new frames to be added to the queue (while the hardware is
* still allowed to run).
*/
void rt2x00queue_pause_queue(struct data_queue *queue);
/**
* rt2x00queue_unpause_queue - unpause a data queue
* @queue: Pointer to &struct data_queue.
*
* This function will unpause the data queue locally, allowing
* new frames to be added to the queue again.
*/
void rt2x00queue_unpause_queue(struct data_queue *queue);
/**
* rt2x00queue_start_queue - Start a data queue
* @queue: Pointer to &struct data_queue.
*
* This function will start handling all pending frames in the queue.
*/
void rt2x00queue_start_queue(struct data_queue *queue);
/**
* rt2x00queue_stop_queue - Halt a data queue
* @queue: Pointer to &struct data_queue.
*
* This function will stop all pending frames in the queue.
*/
void rt2x00queue_stop_queue(struct data_queue *queue);
/**
* rt2x00queue_flush_queue - Flush a data queue
* @queue: Pointer to &struct data_queue.
* @drop: True to drop all pending frames.
*
* This function will flush the queue. After this call
* the queue is guaranteed to be empty.
*/
void rt2x00queue_flush_queue(struct data_queue *queue, bool drop);
/**
* rt2x00queue_start_queues - Start all data queues
* @rt2x00dev: Pointer to &struct rt2x00_dev.
*
* This function will loop through all available queues to start them
*/
void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev);
/**
* rt2x00queue_stop_queues - Halt all data queues
* @rt2x00dev: Pointer to &struct rt2x00_dev.
*
* This function will loop through all available queues to stop
* any pending frames.
*/
void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev);
/**
* rt2x00queue_flush_queues - Flush all data queues
* @rt2x00dev: Pointer to &struct rt2x00_dev.
* @drop: True to drop all pending frames.
*
* This function will loop through all available queues to flush
* any pending frames.
*/
void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop);
/*
* Debugfs handlers.
*/
/**
* rt2x00debug_dump_frame - Dump a frame to userspace through debugfs.
* @rt2x00dev: Pointer to &struct rt2x00_dev.
* @type: The type of frame that is being dumped.
* @skb: The skb containing the frame to be dumped.
*/
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
enum rt2x00_dump_type type, struct sk_buff *skb);
#else
static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
enum rt2x00_dump_type type,
struct sk_buff *skb)
{
}
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
/*
* Utility functions.
*/
u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
struct ieee80211_vif *vif);
/*
* Interrupt context handlers.
*/
void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev);
void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev);
void rt2x00lib_dmastart(struct queue_entry *entry);
void rt2x00lib_dmadone(struct queue_entry *entry);
void rt2x00lib_txdone(struct queue_entry *entry,
struct txdone_entry_desc *txdesc);
void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status);
void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp);
/*
* mac80211 handlers.
*/
void rt2x00mac_tx(struct ieee80211_hw *hw,
struct ieee80211_tx_control *control,
struct sk_buff *skb);
int rt2x00mac_start(struct ieee80211_hw *hw);
void rt2x00mac_stop(struct ieee80211_hw *hw);
int rt2x00mac_add_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif);
void rt2x00mac_remove_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif);
int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed);
void rt2x00mac_configure_filter(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *total_flags,
u64 multicast);
int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
bool set);
#ifdef CONFIG_RT2X00_LIB_CRYPTO
int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
struct ieee80211_vif *vif, struct ieee80211_sta *sta,
struct ieee80211_key_conf *key);
#else
#define rt2x00mac_set_key NULL
#endif /* CONFIG_RT2X00_LIB_CRYPTO */
int rt2x00mac_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_sta *sta);
int rt2x00mac_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_sta *sta);
void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
const u8 *mac_addr);
void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw,
struct ieee80211_vif *vif);
int rt2x00mac_get_stats(struct ieee80211_hw *hw,
struct ieee80211_low_level_stats *stats);
void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *bss_conf,
u32 changes);
int rt2x00mac_conf_tx(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, u16 queue,
const struct ieee80211_tx_queue_params *params);
void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw);
void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
u32 queues, bool drop);
int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant);
int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant);
void rt2x00mac_get_ringparam(struct ieee80211_hw *hw,
u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max);
bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw);
/*
* Driver allocation handlers.
*/
int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev);
void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev);
#ifdef CONFIG_PM
int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state);
int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev);
#endif /* CONFIG_PM */
#endif /* RT2X00_H */