- 根目录:
- drivers
- net
- ethernet
- cavium
- liquidio
- lio_main.c
/**********************************************************************
* Author: Cavium, Inc.
*
* Contact: support@cavium.com
* Please include "LiquidIO" in the subject.
*
* Copyright (c) 2003-2015 Cavium, Inc.
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, Version 2, as
* published by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful, but
* AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
* NONINFRINGEMENT. See the GNU General Public License for more
* details.
*
* This file may also be available under a different license from Cavium.
* Contact Cavium, Inc. for more information
**********************************************************************/
#include <linux/version.h>
#include <linux/module.h>
#include <linux/crc32.h>
#include <linux/dma-mapping.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/ip.h>
#include <net/ip.h>
#include <linux/ipv6.h>
#include <linux/net_tstamp.h>
#include <linux/if_vlan.h>
#include <linux/firmware.h>
#include <linux/ethtool.h>
#include <linux/ptp_clock_kernel.h>
#include <linux/types.h>
#include <linux/list.h>
#include <linux/workqueue.h>
#include <linux/interrupt.h>
#include "octeon_config.h"
#include "liquidio_common.h"
#include "octeon_droq.h"
#include "octeon_iq.h"
#include "response_manager.h"
#include "octeon_device.h"
#include "octeon_nic.h"
#include "octeon_main.h"
#include "octeon_network.h"
#include "cn66xx_regs.h"
#include "cn66xx_device.h"
#include "cn68xx_regs.h"
#include "cn68xx_device.h"
#include "liquidio_image.h"
MODULE_AUTHOR("Cavium Networks, <support@cavium.com>");
MODULE_DESCRIPTION("Cavium LiquidIO Intelligent Server Adapter Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(LIQUIDIO_VERSION);
MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210SV_NAME LIO_FW_NAME_SUFFIX);
MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210NV_NAME LIO_FW_NAME_SUFFIX);
MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_410NV_NAME LIO_FW_NAME_SUFFIX);
static int ddr_timeout = 10000;
module_param(ddr_timeout, int, 0644);
MODULE_PARM_DESC(ddr_timeout,
"Number of milliseconds to wait for DDR initialization. 0 waits for ddr_timeout to be set to non-zero value before starting to check");
static u32 console_bitmask;
module_param(console_bitmask, int, 0644);
MODULE_PARM_DESC(console_bitmask,
"Bitmask indicating which consoles have debug output redirected to syslog.");
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
static int debug = -1;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "NETIF_MSG debug bits");
static char fw_type[LIO_MAX_FW_TYPE_LEN];
module_param_string(fw_type, fw_type, sizeof(fw_type), 0000);
MODULE_PARM_DESC(fw_type, "Type of firmware to be loaded. Default \"nic\"");
static int conf_type;
module_param(conf_type, int, 0);
MODULE_PARM_DESC(conf_type, "select octeon configuration 0 default 1 ovs");
/* Bit mask values for lio->ifstate */
#define LIO_IFSTATE_DROQ_OPS 0x01
#define LIO_IFSTATE_REGISTERED 0x02
#define LIO_IFSTATE_RUNNING 0x04
#define LIO_IFSTATE_RX_TIMESTAMP_ENABLED 0x08
/* Polling interval for determining when NIC application is alive */
#define LIQUIDIO_STARTER_POLL_INTERVAL_MS 100
/* runtime link query interval */
#define LIQUIDIO_LINK_QUERY_INTERVAL_MS 1000
struct liquidio_if_cfg_context {
int octeon_id;
wait_queue_head_t wc;
int cond;
};
struct liquidio_if_cfg_resp {
u64 rh;
struct liquidio_if_cfg_info cfg_info;
u64 status;
};
struct oct_link_status_resp {
u64 rh;
struct oct_link_info link_info;
u64 status;
};
struct oct_timestamp_resp {
u64 rh;
u64 timestamp;
u64 status;
};
#define OCT_TIMESTAMP_RESP_SIZE (sizeof(struct oct_timestamp_resp))
union tx_info {
u64 u64;
struct {
#ifdef __BIG_ENDIAN_BITFIELD
u16 gso_size;
u16 gso_segs;
u32 reserved;
#else
u32 reserved;
u16 gso_segs;
u16 gso_size;
#endif
} s;
};
/** Octeon device properties to be used by the NIC module.
* Each octeon device in the system will be represented
* by this structure in the NIC module.
*/
#define OCTNIC_MAX_SG (MAX_SKB_FRAGS)
#define OCTNIC_GSO_MAX_HEADER_SIZE 128
#define OCTNIC_GSO_MAX_SIZE (GSO_MAX_SIZE - OCTNIC_GSO_MAX_HEADER_SIZE)
/** Structure of a node in list of gather components maintained by
* NIC driver for each network device.
*/
struct octnic_gather {
/** List manipulation. Next and prev pointers. */
struct list_head list;
/** Size of the gather component at sg in bytes. */
int sg_size;
/** Number of bytes that sg was adjusted to make it 8B-aligned. */
int adjust;
/** Gather component that can accommodate max sized fragment list
* received from the IP layer.
*/
struct octeon_sg_entry *sg;
};
/** This structure is used by NIC driver to store information required
* to free the sk_buff when the packet has been fetched by Octeon.
* Bytes offset below assume worst-case of a 64-bit system.
*/
struct octnet_buf_free_info {
/** Bytes 1-8. Pointer to network device private structure. */
struct lio *lio;
/** Bytes 9-16. Pointer to sk_buff. */
struct sk_buff *skb;
/** Bytes 17-24. Pointer to gather list. */
struct octnic_gather *g;
/** Bytes 25-32. Physical address of skb->data or gather list. */
u64 dptr;
/** Bytes 33-47. Piggybacked soft command, if any */
struct octeon_soft_command *sc;
};
struct handshake {
struct completion init;
struct completion started;
struct pci_dev *pci_dev;
int init_ok;
int started_ok;
};
struct octeon_device_priv {
/** Tasklet structures for this device. */
struct tasklet_struct droq_tasklet;
unsigned long napi_mask;
};
static int octeon_device_init(struct octeon_device *);
static void liquidio_remove(struct pci_dev *pdev);
static int liquidio_probe(struct pci_dev *pdev,
const struct pci_device_id *ent);
static struct handshake handshake[MAX_OCTEON_DEVICES];
static struct completion first_stage;
static void octeon_droq_bh(unsigned long pdev)
{
int q_no;
int reschedule = 0;
struct octeon_device *oct = (struct octeon_device *)pdev;
struct octeon_device_priv *oct_priv =
(struct octeon_device_priv *)oct->priv;
/* for (q_no = 0; q_no < oct->num_oqs; q_no++) { */
for (q_no = 0; q_no < MAX_OCTEON_OUTPUT_QUEUES; q_no++) {
if (!(oct->io_qmask.oq & (1UL << q_no)))
continue;
reschedule |= octeon_droq_process_packets(oct, oct->droq[q_no],
MAX_PACKET_BUDGET);
}
if (reschedule)
tasklet_schedule(&oct_priv->droq_tasklet);
}
static int lio_wait_for_oq_pkts(struct octeon_device *oct)
{
struct octeon_device_priv *oct_priv =
(struct octeon_device_priv *)oct->priv;
int retry = 100, pkt_cnt = 0, pending_pkts = 0;
int i;
do {
pending_pkts = 0;
for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES; i++) {
if (!(oct->io_qmask.oq & (1UL << i)))
continue;
pkt_cnt += octeon_droq_check_hw_for_pkts(oct,
oct->droq[i]);
}
if (pkt_cnt > 0) {
pending_pkts += pkt_cnt;
tasklet_schedule(&oct_priv->droq_tasklet);
}
pkt_cnt = 0;
schedule_timeout_uninterruptible(1);
} while (retry-- && pending_pkts);
return pkt_cnt;
}
void octeon_report_tx_completion_to_bql(void *txq, unsigned int pkts_compl,
unsigned int bytes_compl)
{
struct netdev_queue *netdev_queue = txq;
netdev_tx_completed_queue(netdev_queue, pkts_compl, bytes_compl);
}
void octeon_update_tx_completion_counters(void *buf, int reqtype,
unsigned int *pkts_compl,
unsigned int *bytes_compl)
{
struct octnet_buf_free_info *finfo;
struct sk_buff *skb = NULL;
struct octeon_soft_command *sc;
switch (reqtype) {
case REQTYPE_NORESP_NET:
case REQTYPE_NORESP_NET_SG:
finfo = buf;
skb = finfo->skb;
break;
case REQTYPE_RESP_NET_SG:
case REQTYPE_RESP_NET:
sc = buf;
skb = sc->callback_arg;
break;
default:
return;
}
(*pkts_compl)++;
*bytes_compl += skb->len;
}
void octeon_report_sent_bytes_to_bql(void *buf, int reqtype)
{
struct octnet_buf_free_info *finfo;
struct sk_buff *skb;
struct octeon_soft_command *sc;
struct netdev_queue *txq;
switch (reqtype) {
case REQTYPE_NORESP_NET:
case REQTYPE_NORESP_NET_SG:
finfo = buf;
skb = finfo->skb;
break;
case REQTYPE_RESP_NET_SG:
case REQTYPE_RESP_NET:
sc = buf;
skb = sc->callback_arg;
break;
default:
return;
}
txq = netdev_get_tx_queue(skb->dev, skb_get_queue_mapping(skb));
netdev_tx_sent_queue(txq, skb->len);
}
int octeon_console_debug_enabled(u32 console)
{
return (console_bitmask >> (console)) & 0x1;
}
/**
* \brief Forces all IO queues off on a given device
* @param oct Pointer to Octeon device
*/
static void force_io_queues_off(struct octeon_device *oct)
{
if ((oct->chip_id == OCTEON_CN66XX) ||
(oct->chip_id == OCTEON_CN68XX)) {
/* Reset the Enable bits for Input Queues. */
octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, 0);
/* Reset the Enable bits for Output Queues. */
octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, 0);
}
}
/**
* \brief wait for all pending requests to complete
* @param oct Pointer to Octeon device
*
* Called during shutdown sequence
*/
static int wait_for_pending_requests(struct octeon_device *oct)
{
int i, pcount = 0;
for (i = 0; i < 100; i++) {
pcount =
atomic_read(&oct->response_list
[OCTEON_ORDERED_SC_LIST].pending_req_count);
if (pcount)
schedule_timeout_uninterruptible(HZ / 10);
else
break;
}
if (pcount)
return 1;
return 0;
}
/**
* \brief Cause device to go quiet so it can be safely removed/reset/etc
* @param oct Pointer to Octeon device
*/
static inline void pcierror_quiesce_device(struct octeon_device *oct)
{
int i;
/* Disable the input and output queues now. No more packets will
* arrive from Octeon, but we should wait for all packet processing
* to finish.
*/
force_io_queues_off(oct);
/* To allow for in-flight requests */
schedule_timeout_uninterruptible(100);
if (wait_for_pending_requests(oct))
dev_err(&oct->pci_dev->dev, "There were pending requests\n");
/* Force all requests waiting to be fetched by OCTEON to complete. */
for (i = 0; i < MAX_OCTEON_INSTR_QUEUES; i++) {
struct octeon_instr_queue *iq;
if (!(oct->io_qmask.iq & (1UL << i)))
continue;
iq = oct->instr_queue[i];
if (atomic_read(&iq->instr_pending)) {
spin_lock_bh(&iq->lock);
iq->fill_cnt = 0;
iq->octeon_read_index = iq->host_write_index;
iq->stats.instr_processed +=
atomic_read(&iq->instr_pending);
lio_process_iq_request_list(oct, iq);
spin_unlock_bh(&iq->lock);
}
}
/* Force all pending ordered list requests to time out. */
lio_process_ordered_list(oct, 1);
/* We do not need to wait for output queue packets to be processed. */
}
/**
* \brief Cleanup PCI AER uncorrectable error status
* @param dev Pointer to PCI device
*/
static void cleanup_aer_uncorrect_error_status(struct pci_dev *dev)
{
int pos = 0x100;
u32 status, mask;
pr_info("%s :\n", __func__);
pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, &status);
pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_SEVER, &mask);
if (dev->error_state == pci_channel_io_normal)
status &= ~mask; /* Clear corresponding nonfatal bits */
else
status &= mask; /* Clear corresponding fatal bits */
pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, status);
}
/**
* \brief Stop all PCI IO to a given device
* @param dev Pointer to Octeon device
*/
static void stop_pci_io(struct octeon_device *oct)
{
/* No more instructions will be forwarded. */
atomic_set(&oct->status, OCT_DEV_IN_RESET);
pci_disable_device(oct->pci_dev);
/* Disable interrupts */
oct->fn_list.disable_interrupt(oct->chip);
pcierror_quiesce_device(oct);
/* Release the interrupt line */
free_irq(oct->pci_dev->irq, oct);
if (oct->flags & LIO_FLAG_MSI_ENABLED)
pci_disable_msi(oct->pci_dev);
dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
lio_get_state_string(&oct->status));
/* cn63xx_cleanup_aer_uncorrect_error_status(oct->pci_dev); */
/* making it a common function for all OCTEON models */
cleanup_aer_uncorrect_error_status(oct->pci_dev);
}
/**
* \brief called when PCI error is detected
* @param pdev Pointer to PCI device
* @param state The current pci connection state
*
* This function is called after a PCI bus error affecting
* this device has been detected.
*/
static pci_ers_result_t liquidio_pcie_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct octeon_device *oct = pci_get_drvdata(pdev);
/* Non-correctable Non-fatal errors */
if (state == pci_channel_io_normal) {
dev_err(&oct->pci_dev->dev, "Non-correctable non-fatal error reported:\n");
cleanup_aer_uncorrect_error_status(oct->pci_dev);
return PCI_ERS_RESULT_CAN_RECOVER;
}
/* Non-correctable Fatal errors */
dev_err(&oct->pci_dev->dev, "Non-correctable FATAL reported by PCI AER driver\n");
stop_pci_io(oct);
/* Always return a DISCONNECT. There is no support for recovery but only
* for a clean shutdown.
*/
return PCI_ERS_RESULT_DISCONNECT;
}
/**
* \brief mmio handler
* @param pdev Pointer to PCI device
*/
static pci_ers_result_t liquidio_pcie_mmio_enabled(struct pci_dev *pdev)
{
/* We should never hit this since we never ask for a reset for a Fatal
* Error. We always return DISCONNECT in io_error above.
* But play safe and return RECOVERED for now.
*/
return PCI_ERS_RESULT_RECOVERED;
}
/**
* \brief called after the pci bus has been reset.
* @param pdev Pointer to PCI device
*
* Restart the card from scratch, as if from a cold-boot. Implementation
* resembles the first-half of the octeon_resume routine.
*/
static pci_ers_result_t liquidio_pcie_slot_reset(struct pci_dev *pdev)
{
/* We should never hit this since we never ask for a reset for a Fatal
* Error. We always return DISCONNECT in io_error above.
* But play safe and return RECOVERED for now.
*/
return PCI_ERS_RESULT_RECOVERED;
}
/**
* \brief called when traffic can start flowing again.
* @param pdev Pointer to PCI device
*
* This callback is called when the error recovery driver tells us that
* its OK to resume normal operation. Implementation resembles the
* second-half of the octeon_resume routine.
*/
static void liquidio_pcie_resume(struct pci_dev *pdev)
{
/* Nothing to be done here. */
}
#ifdef CONFIG_PM
/**
* \brief called when suspending
* @param pdev Pointer to PCI device
* @param state state to suspend to
*/
static int liquidio_suspend(struct pci_dev *pdev, pm_message_t state)
{
return 0;
}
/**
* \brief called when resuming
* @param pdev Pointer to PCI device
*/
static int liquidio_resume(struct pci_dev *pdev)
{
return 0;
}
#endif
/* For PCI-E Advanced Error Recovery (AER) Interface */
static const struct pci_error_handlers liquidio_err_handler = {
.error_detected = liquidio_pcie_error_detected,
.mmio_enabled = liquidio_pcie_mmio_enabled,
.slot_reset = liquidio_pcie_slot_reset,
.resume = liquidio_pcie_resume,
};
static const struct pci_device_id liquidio_pci_tbl[] = {
{ /* 68xx */
PCI_VENDOR_ID_CAVIUM, 0x91, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
},
{ /* 66xx */
PCI_VENDOR_ID_CAVIUM, 0x92, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
},
{
0, 0, 0, 0, 0, 0, 0
}
};
MODULE_DEVICE_TABLE(pci, liquidio_pci_tbl);
static struct pci_driver liquidio_pci_driver = {
.name = "LiquidIO",
.id_table = liquidio_pci_tbl,
.probe = liquidio_probe,
.remove = liquidio_remove,
.err_handler = &liquidio_err_handler, /* For AER */
#ifdef CONFIG_PM
.suspend = liquidio_suspend,
.resume = liquidio_resume,
#endif
};
/**
* \brief register PCI driver
*/
static int liquidio_init_pci(void)
{
return pci_register_driver(&liquidio_pci_driver);
}
/**
* \brief unregister PCI driver
*/
static void liquidio_deinit_pci(void)
{
pci_unregister_driver(&liquidio_pci_driver);
}
/**
* \brief check interface state
* @param lio per-network private data
* @param state_flag flag state to check
*/
static inline int ifstate_check(struct lio *lio, int state_flag)
{
return atomic_read(&lio->ifstate) & state_flag;
}
/**
* \brief set interface state
* @param lio per-network private data
* @param state_flag flag state to set
*/
static inline void ifstate_set(struct lio *lio, int state_flag)
{
atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) | state_flag));
}
/**
* \brief clear interface state
* @param lio per-network private data
* @param state_flag flag state to clear
*/
static inline void ifstate_reset(struct lio *lio, int state_flag)
{
atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) & ~(state_flag)));
}
/**
* \brief Stop Tx queues
* @param netdev network device
*/
static inline void txqs_stop(struct net_device *netdev)
{
if (netif_is_multiqueue(netdev)) {
int i;
for (i = 0; i < netdev->num_tx_queues; i++)
netif_stop_subqueue(netdev, i);
} else {
netif_stop_queue(netdev);
}
}
/**
* \brief Start Tx queues
* @param netdev network device
*/
static inline void txqs_start(struct net_device *netdev)
{
if (netif_is_multiqueue(netdev)) {
int i;
for (i = 0; i < netdev->num_tx_queues; i++)
netif_start_subqueue(netdev, i);
} else {
netif_start_queue(netdev);
}
}
/**
* \brief Wake Tx queues
* @param netdev network device
*/
static inline void txqs_wake(struct net_device *netdev)
{
if (netif_is_multiqueue(netdev)) {
int i;
for (i = 0; i < netdev->num_tx_queues; i++)
netif_wake_subqueue(netdev, i);
} else {
netif_wake_queue(netdev);
}
}
/**
* \brief Stop Tx queue
* @param netdev network device
*/
static void stop_txq(struct net_device *netdev)
{
txqs_stop(netdev);
}
/**
* \brief Start Tx queue
* @param netdev network device
*/
static void start_txq(struct net_device *netdev)
{
struct lio *lio = GET_LIO(netdev);
if (lio->linfo.link.s.status) {
txqs_start(netdev);
return;
}
}
/**
* \brief Wake a queue
* @param netdev network device
* @param q which queue to wake
*/
static inline void wake_q(struct net_device *netdev, int q)
{
if (netif_is_multiqueue(netdev))
netif_wake_subqueue(netdev, q);
else
netif_wake_queue(netdev);
}
/**
* \brief Stop a queue
* @param netdev network device
* @param q which queue to stop
*/
static inline void stop_q(struct net_device *netdev, int q)
{
if (netif_is_multiqueue(netdev))
netif_stop_subqueue(netdev, q);
else
netif_stop_queue(netdev);
}
/**
* \brief Check Tx queue status, and take appropriate action
* @param lio per-network private data
* @returns 0 if full, number of queues woken up otherwise
*/
static inline int check_txq_status(struct lio *lio)
{
int ret_val = 0;
if (netif_is_multiqueue(lio->netdev)) {
int numqs = lio->netdev->num_tx_queues;
int q, iq = 0;
/* check each sub-queue state */
for (q = 0; q < numqs; q++) {
iq = lio->linfo.txpciq[q & (lio->linfo.num_txpciq - 1)];
if (octnet_iq_is_full(lio->oct_dev, iq))
continue;
wake_q(lio->netdev, q);
ret_val++;
}
} else {
if (octnet_iq_is_full(lio->oct_dev, lio->txq))
return 0;
wake_q(lio->netdev, lio->txq);
ret_val = 1;
}
return ret_val;
}
/**
* Remove the node at the head of the list. The list would be empty at
* the end of this call if there are no more nodes in the list.
*/
static inline struct list_head *list_delete_head(struct list_head *root)
{
struct list_head *node;
if ((root->prev == root) && (root->next == root))
node = NULL;
else
node = root->next;
if (node)
list_del(node);
return node;
}
/**
* \brief Delete gather list
* @param lio per-network private data
*/
static void delete_glist(struct lio *lio)
{
struct octnic_gather *g;
do {
g = (struct octnic_gather *)
list_delete_head(&lio->glist);
if (g) {
if (g->sg)
kfree((void *)((unsigned long)g->sg -
g->adjust));
kfree(g);
}
} while (g);
}
/**
* \brief Setup gather list
* @param lio per-network private data
*/
static int setup_glist(struct lio *lio)
{
int i;
struct octnic_gather *g;
INIT_LIST_HEAD(&lio->glist);
for (i = 0; i < lio->tx_qsize; i++) {
g = kzalloc(sizeof(*g), GFP_KERNEL);
if (!g)
break;
g->sg_size =
((ROUNDUP4(OCTNIC_MAX_SG) >> 2) * OCT_SG_ENTRY_SIZE);
g->sg = kmalloc(g->sg_size + 8, GFP_KERNEL);
if (!g->sg) {
kfree(g);
break;
}
/* The gather component should be aligned on 64-bit boundary */
if (((unsigned long)g->sg) & 7) {
g->adjust = 8 - (((unsigned long)g->sg) & 7);
g->sg = (struct octeon_sg_entry *)
((unsigned long)g->sg + g->adjust);
}
list_add_tail(&g->list, &lio->glist);
}
if (i == lio->tx_qsize)
return 0;
delete_glist(lio);
return 1;
}
/**
* \brief Print link information
* @param netdev network device
*/
static void print_link_info(struct net_device *netdev)
{
struct lio *lio = GET_LIO(netdev);
if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED) {
struct oct_link_info *linfo = &lio->linfo;
if (linfo->link.s.status) {
netif_info(lio, link, lio->netdev, "%d Mbps %s Duplex UP\n",
linfo->link.s.speed,
(linfo->link.s.duplex) ? "Full" : "Half");
} else {
netif_info(lio, link, lio->netdev, "Link Down\n");
}
}
}
/**
* \brief Update link status
* @param netdev network device
* @param ls link status structure
*
* Called on receipt of a link status response from the core application to
* update each interface's link status.
*/
static inline void update_link_status(struct net_device *netdev,
union oct_link_status *ls)
{
struct lio *lio = GET_LIO(netdev);
if ((lio->intf_open) && (lio->linfo.link.u64 != ls->u64)) {
lio->linfo.link.u64 = ls->u64;
print_link_info(netdev);
if (lio->linfo.link.s.status) {
netif_carrier_on(netdev);
/* start_txq(netdev); */
txqs_wake(netdev);
} else {
netif_carrier_off(netdev);
stop_txq(netdev);
}
}
}
/**
* \brief Droq packet processor sceduler
* @param oct octeon device
*/
static
void liquidio_schedule_droq_pkt_handlers(struct octeon_device *oct)
{
struct octeon_device_priv *oct_priv =
(struct octeon_device_priv *)oct->priv;
u64 oq_no;
struct octeon_droq *droq;
if (oct->int_status & OCT_DEV_INTR_PKT_DATA) {
for (oq_no = 0; oq_no < MAX_OCTEON_OUTPUT_QUEUES; oq_no++) {
if (!(oct->droq_intr & (1 << oq_no)))
continue;
droq = oct->droq[oq_no];
if (droq->ops.poll_mode) {
droq->ops.napi_fn(droq);
oct_priv->napi_mask |= (1 << oq_no);
} else {
tasklet_schedule(&oct_priv->droq_tasklet);
}
}
}
}
/**
* \brief Interrupt handler for octeon
* @param irq unused
* @param dev octeon device
*/
static
irqreturn_t liquidio_intr_handler(int irq __attribute__((unused)), void *dev)
{
struct octeon_device *oct = (struct octeon_device *)dev;
irqreturn_t ret;
/* Disable our interrupts for the duration of ISR */
oct->fn_list.disable_interrupt(oct->chip);
ret = oct->fn_list.process_interrupt_regs(oct);
if (ret == IRQ_HANDLED)
liquidio_schedule_droq_pkt_handlers(oct);
/* Re-enable our interrupts */
if (!(atomic_read(&oct->status) == OCT_DEV_IN_RESET))
oct->fn_list.enable_interrupt(oct->chip);
return ret;
}
/**
* \brief Setup interrupt for octeon device
* @param oct octeon device
*
* Enable interrupt in Octeon device as given in the PCI interrupt mask.
*/
static int octeon_setup_interrupt(struct octeon_device *oct)
{
int irqret, err;
err = pci_enable_msi(oct->pci_dev);
if (err)
dev_warn(&oct->pci_dev->dev, "Reverting to legacy interrupts. Error: %d\n",
err);
else
oct->flags |= LIO_FLAG_MSI_ENABLED;
irqret = request_irq(oct->pci_dev->irq, liquidio_intr_handler,
IRQF_SHARED, "octeon", oct);
if (irqret) {
if (oct->flags & LIO_FLAG_MSI_ENABLED)
pci_disable_msi(oct->pci_dev);
dev_err(&oct->pci_dev->dev, "Request IRQ failed with code: %d\n",
irqret);
return 1;
}
return 0;
}
/**
* \brief PCI probe handler
* @param pdev PCI device structure
* @param ent unused
*/
static int liquidio_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct octeon_device *oct_dev = NULL;
struct handshake *hs;
oct_dev = octeon_allocate_device(pdev->device,
sizeof(struct octeon_device_priv));
if (!oct_dev) {
dev_err(&pdev->dev, "Unable to allocate device\n");
return -ENOMEM;
}
dev_info(&pdev->dev, "Initializing device %x:%x.\n",
(u32)pdev->vendor, (u32)pdev->device);
/* Assign octeon_device for this device to the private data area. */
pci_set_drvdata(pdev, oct_dev);
/* set linux specific device pointer */
oct_dev->pci_dev = (void *)pdev;
hs = &handshake[oct_dev->octeon_id];
init_completion(&hs->init);
init_completion(&hs->started);
hs->pci_dev = pdev;
if (oct_dev->octeon_id == 0)
/* first LiquidIO NIC is detected */
complete(&first_stage);
if (octeon_device_init(oct_dev)) {
liquidio_remove(pdev);
return -ENOMEM;
}
dev_dbg(&oct_dev->pci_dev->dev, "Device is ready\n");
return 0;
}
/**
*\brief Destroy resources associated with octeon device
* @param pdev PCI device structure
* @param ent unused
*/
static void octeon_destroy_resources(struct octeon_device *oct)
{
int i;
struct octeon_device_priv *oct_priv =
(struct octeon_device_priv *)oct->priv;
struct handshake *hs;
switch (atomic_read(&oct->status)) {
case OCT_DEV_RUNNING:
case OCT_DEV_CORE_OK:
/* No more instructions will be forwarded. */
atomic_set(&oct->status, OCT_DEV_IN_RESET);
oct->app_mode = CVM_DRV_INVALID_APP;
dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
lio_get_state_string(&oct->status));
schedule_timeout_uninterruptible(HZ / 10);
/* fallthrough */
case OCT_DEV_HOST_OK:
/* fallthrough */
case OCT_DEV_CONSOLE_INIT_DONE:
/* Remove any consoles */
octeon_remove_consoles(oct);
/* fallthrough */
case OCT_DEV_IO_QUEUES_DONE:
if (wait_for_pending_requests(oct))
dev_err(&oct->pci_dev->dev, "There were pending requests\n");
if (lio_wait_for_instr_fetch(oct))
dev_err(&oct->pci_dev->dev, "IQ had pending instructions\n");
/* Disable the input and output queues now. No more packets will
* arrive from Octeon, but we should wait for all packet
* processing to finish.
*/
oct->fn_list.disable_io_queues(oct);
if (lio_wait_for_oq_pkts(oct))
dev_err(&oct->pci_dev->dev, "OQ had pending packets\n");
/* Disable interrupts */
oct->fn_list.disable_interrupt(oct->chip);
/* Release the interrupt line */
free_irq(oct->pci_dev->irq, oct);
if (oct->flags & LIO_FLAG_MSI_ENABLED)
pci_disable_msi(oct->pci_dev);
/* Soft reset the octeon device before exiting */
oct->fn_list.soft_reset(oct);
/* Disable the device, releasing the PCI INT */
pci_disable_device(oct->pci_dev);
/* fallthrough */
case OCT_DEV_IN_RESET:
case OCT_DEV_DROQ_INIT_DONE:
/*atomic_set(&oct->status, OCT_DEV_DROQ_INIT_DONE);*/
mdelay(100);
for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES; i++) {
if (!(oct->io_qmask.oq & (1UL << i)))
continue;
octeon_delete_droq(oct, i);
}
/* Force any pending handshakes to complete */
for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
hs = &handshake[i];
if (hs->pci_dev) {
handshake[oct->octeon_id].init_ok = 0;
complete(&handshake[oct->octeon_id].init);
handshake[oct->octeon_id].started_ok = 0;
complete(&handshake[oct->octeon_id].started);
}
}
/* fallthrough */
case OCT_DEV_RESP_LIST_INIT_DONE:
octeon_delete_response_list(oct);
/* fallthrough */
case OCT_DEV_SC_BUFF_POOL_INIT_DONE:
octeon_free_sc_buffer_pool(oct);
/* fallthrough */
case OCT_DEV_INSTR_QUEUE_INIT_DONE:
for (i = 0; i < MAX_OCTEON_INSTR_QUEUES; i++) {
if (!(oct->io_qmask.iq & (1UL << i)))
continue;
octeon_delete_instr_queue(oct, i);
}
/* fallthrough */
case OCT_DEV_DISPATCH_INIT_DONE:
octeon_delete_dispatch_list(oct);
cancel_delayed_work_sync(&oct->nic_poll_work.work);
/* fallthrough */
case OCT_DEV_PCI_MAP_DONE:
octeon_unmap_pci_barx(oct, 0);
octeon_unmap_pci_barx(oct, 1);
/* fallthrough */
case OCT_DEV_BEGIN_STATE:
/* Nothing to be done here either */
break;
} /* end switch(oct->status) */
tasklet_kill(&oct_priv->droq_tasklet);
}
/**
* \brief Send Rx control command
* @param lio per-network private data
* @param start_stop whether to start or stop
*/
static void send_rx_ctrl_cmd(struct lio *lio, int start_stop)
{
struct octnic_ctrl_pkt nctrl;
struct octnic_ctrl_params nparams;
memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
nctrl.ncmd.s.cmd = OCTNET_CMD_RX_CTL;
nctrl.ncmd.s.param1 = lio->linfo.ifidx;
nctrl.ncmd.s.param2 = start_stop;
nctrl.netpndev = (u64)lio->netdev;
nparams.resp_order = OCTEON_RESP_NORESPONSE;
if (octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl, nparams) < 0)
netif_info(lio, rx_err, lio->netdev, "Failed to send RX Control message\n");
}
/**
* \brief Destroy NIC device interface
* @param oct octeon device
* @param ifidx which interface to destroy
*
* Cleanup associated with each interface for an Octeon device when NIC
* module is being unloaded or if initialization fails during load.
*/
static void liquidio_destroy_nic_device(struct octeon_device *oct, int ifidx)
{
struct net_device *netdev = oct->props[ifidx].netdev;
struct lio *lio;
if (!netdev) {
dev_err(&oct->pci_dev->dev, "%s No netdevice ptr for index %d\n",
__func__, ifidx);
return;
}
lio = GET_LIO(netdev);
dev_dbg(&oct->pci_dev->dev, "NIC device cleanup\n");
send_rx_ctrl_cmd(lio, 0);
if (atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING)
txqs_stop(netdev);
if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED)
unregister_netdev(netdev);
delete_glist(lio);
free_netdev(netdev);
oct->props[ifidx].netdev = NULL;
}
/**
* \brief Stop complete NIC functionality
* @param oct octeon device
*/
static int liquidio_stop_nic_module(struct octeon_device *oct)
{
int i, j;
struct lio *lio;
dev_dbg(&oct->pci_dev->dev, "Stopping network interfaces\n");
if (!oct->ifcount) {
dev_err(&oct->pci_dev->dev, "Init for Octeon was not completed\n");
return 1;
}
for (i = 0; i < oct->ifcount; i++) {
lio = GET_LIO(oct->props[i].netdev);
for (j = 0; j < lio->linfo.num_rxpciq; j++)
octeon_unregister_droq_ops(oct, lio->linfo.rxpciq[j]);
}
for (i = 0; i < oct->ifcount; i++)
liquidio_destroy_nic_device(oct, i);
dev_dbg(&oct->pci_dev->dev, "Network interfaces stopped\n");
return 0;
}
/**
* \brief Cleans up resources at unload time
* @param pdev PCI device structure
*/
static void liquidio_remove(struct pci_dev *pdev)
{
struct octeon_device *oct_dev = pci_get_drvdata(pdev);
dev_dbg(&oct_dev->pci_dev->dev, "Stopping device\n");
if (oct_dev->app_mode && (oct_dev->app_mode == CVM_DRV_NIC_APP))
liquidio_stop_nic_module(oct_dev);
/* Reset the octeon device and cleanup all memory allocated for
* the octeon device by driver.
*/
octeon_destroy_resources(oct_dev);
dev_info(&oct_dev->pci_dev->dev, "Device removed\n");
/* This octeon device has been removed. Update the global
* data structure to reflect this. Free the device structure.
*/
octeon_free_device_mem(oct_dev);
}
/**
* \brief Identify the Octeon device and to map the BAR address space
* @param oct octeon device
*/
static int octeon_chip_specific_setup(struct octeon_device *oct)
{
u32 dev_id, rev_id;
int ret = 1;
pci_read_config_dword(oct->pci_dev, 0, &dev_id);
pci_read_config_dword(oct->pci_dev, 8, &rev_id);
oct->rev_id = rev_id & 0xff;
switch (dev_id) {
case OCTEON_CN68XX_PCIID:
oct->chip_id = OCTEON_CN68XX;
ret = lio_setup_cn68xx_octeon_device(oct);
break;
case OCTEON_CN66XX_PCIID:
oct->chip_id = OCTEON_CN66XX;
ret = lio_setup_cn66xx_octeon_device(oct);
break;
default:
dev_err(&oct->pci_dev->dev, "Unknown device found (dev_id: %x)\n",
dev_id);
}
if (!ret)
dev_info(&oct->pci_dev->dev, "CN68XX PASS%d.%d %s\n",
OCTEON_MAJOR_REV(oct),
OCTEON_MINOR_REV(oct),
octeon_get_conf(oct)->card_name);
return ret;
}
/**
* \brief PCI initialization for each Octeon device.
* @param oct octeon device
*/
static int octeon_pci_os_setup(struct octeon_device *oct)
{
/* setup PCI stuff first */
if (pci_enable_device(oct->pci_dev)) {
dev_err(&oct->pci_dev->dev, "pci_enable_device failed\n");
return 1;
}
if (dma_set_mask_and_coherent(&oct->pci_dev->dev, DMA_BIT_MASK(64))) {
dev_err(&oct->pci_dev->dev, "Unexpected DMA device capability\n");
return 1;
}
/* Enable PCI DMA Master. */
pci_set_master(oct->pci_dev);
return 0;
}
/**
* \brief Check Tx queue state for a given network buffer
* @param lio per-network private data
* @param skb network buffer
*/
static inline int check_txq_state(struct lio *lio, struct sk_buff *skb)
{
int q = 0, iq = 0;
if (netif_is_multiqueue(lio->netdev)) {
q = skb->queue_mapping;
iq = lio->linfo.txpciq[(q & (lio->linfo.num_txpciq - 1))];
} else {
iq = lio->txq;
}
if (octnet_iq_is_full(lio->oct_dev, iq))
return 0;
wake_q(lio->netdev, q);
return 1;
}
/**
* \brief Unmap and free network buffer
* @param buf buffer
*/
static void free_netbuf(void *buf)
{
struct sk_buff *skb;
struct octnet_buf_free_info *finfo;
struct lio *lio;
finfo = (struct octnet_buf_free_info *)buf;
skb = finfo->skb;
lio = finfo->lio;
dma_unmap_single(&lio->oct_dev->pci_dev->dev, finfo->dptr, skb->len,
DMA_TO_DEVICE);
check_txq_state(lio, skb);
recv_buffer_free((struct sk_buff *)skb);
}
/**
* \brief Unmap and free gather buffer
* @param buf buffer
*/
static void free_netsgbuf(void *buf)
{
struct octnet_buf_free_info *finfo;
struct sk_buff *skb;
struct lio *lio;
struct octnic_gather *g;
int i, frags;
finfo = (struct octnet_buf_free_info *)buf;
skb = finfo->skb;
lio = finfo->lio;
g = finfo->g;
frags = skb_shinfo(skb)->nr_frags;
dma_unmap_single(&lio->oct_dev->pci_dev->dev,
g->sg[0].ptr[0], (skb->len - skb->data_len),
DMA_TO_DEVICE);
i = 1;
while (frags--) {
struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
pci_unmap_page((lio->oct_dev)->pci_dev,
g->sg[(i >> 2)].ptr[(i & 3)],
frag->size, DMA_TO_DEVICE);
i++;
}
dma_unmap_single(&lio->oct_dev->pci_dev->dev,
finfo->dptr, g->sg_size,
DMA_TO_DEVICE);
spin_lock(&lio->lock);
list_add_tail(&g->list, &lio->glist);
spin_unlock(&lio->lock);
check_txq_state(lio, skb); /* mq support: sub-queue state check */
recv_buffer_free((struct sk_buff *)skb);
}
/**
* \brief Unmap and free gather buffer with response
* @param buf buffer
*/
static void free_netsgbuf_with_resp(void *buf)
{
struct octeon_soft_command *sc;
struct octnet_buf_free_info *finfo;
struct sk_buff *skb;
struct lio *lio;
struct octnic_gather *g;
int i, frags;
sc = (struct octeon_soft_command *)buf;
skb = (struct sk_buff *)sc->callback_arg;
finfo = (struct octnet_buf_free_info *)&skb->cb;
lio = finfo->lio;
g = finfo->g;
frags = skb_shinfo(skb)->nr_frags;
dma_unmap_single(&lio->oct_dev->pci_dev->dev,
g->sg[0].ptr[0], (skb->len - skb->data_len),
DMA_TO_DEVICE);
i = 1;
while (frags--) {
struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
pci_unmap_page((lio->oct_dev)->pci_dev,
g->sg[(i >> 2)].ptr[(i & 3)],
frag->size, DMA_TO_DEVICE);
i++;
}
dma_unmap_single(&lio->oct_dev->pci_dev->dev,
finfo->dptr, g->sg_size,
DMA_TO_DEVICE);
spin_lock(&lio->lock);
list_add_tail(&g->list, &lio->glist);
spin_unlock(&lio->lock);
/* Don't free the skb yet */
check_txq_state(lio, skb);
}
/**
* \brief Adjust ptp frequency
* @param ptp PTP clock info
* @param ppb how much to adjust by, in parts-per-billion
*/
static int liquidio_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
{
struct lio *lio = container_of(ptp, struct lio, ptp_info);
struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
u64 comp, delta;
unsigned long flags;
bool neg_adj = false;
if (ppb < 0) {
neg_adj = true;
ppb = -ppb;
}
/* The hardware adds the clock compensation value to the
* PTP clock on every coprocessor clock cycle, so we
* compute the delta in terms of coprocessor clocks.
*/
delta = (u64)ppb << 32;
do_div(delta, oct->coproc_clock_rate);
spin_lock_irqsave(&lio->ptp_lock, flags);
comp = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_COMP);
if (neg_adj)
comp -= delta;
else
comp += delta;
lio_pci_writeq(oct, comp, CN6XXX_MIO_PTP_CLOCK_COMP);
spin_unlock_irqrestore(&lio->ptp_lock, flags);
return 0;
}
/**
* \brief Adjust ptp time
* @param ptp PTP clock info
* @param delta how much to adjust by, in nanosecs
*/
static int liquidio_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
unsigned long flags;
struct lio *lio = container_of(ptp, struct lio, ptp_info);
spin_lock_irqsave(&lio->ptp_lock, flags);
lio->ptp_adjust += delta;
spin_unlock_irqrestore(&lio->ptp_lock, flags);
return 0;
}
/**
* \brief Get hardware clock time, including any adjustment
* @param ptp PTP clock info
* @param ts timespec
*/
static int liquidio_ptp_gettime(struct ptp_clock_info *ptp,
struct timespec64 *ts)
{
u64 ns;
u32 remainder;
unsigned long flags;
struct lio *lio = container_of(ptp, struct lio, ptp_info);
struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
spin_lock_irqsave(&lio->ptp_lock, flags);
ns = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_HI);
ns += lio->ptp_adjust;
spin_unlock_irqrestore(&lio->ptp_lock, flags);
ts->tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder);
ts->tv_nsec = remainder;
return 0;
}
/**
* \brief Set hardware clock time. Reset adjustment
* @param ptp PTP clock info
* @param ts timespec
*/
static int liquidio_ptp_settime(struct ptp_clock_info *ptp,
const struct timespec64 *ts)
{
u64 ns;
unsigned long flags;
struct lio *lio = container_of(ptp, struct lio, ptp_info);
struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
ns = timespec_to_ns(ts);
spin_lock_irqsave(&lio->ptp_lock, flags);
lio_pci_writeq(oct, ns, CN6XXX_MIO_PTP_CLOCK_HI);
lio->ptp_adjust = 0;
spin_unlock_irqrestore(&lio->ptp_lock, flags);
return 0;
}
/**
* \brief Check if PTP is enabled
* @param ptp PTP clock info
* @param rq request
* @param on is it on
*/
static int liquidio_ptp_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq, int on)
{
return -EOPNOTSUPP;
}
/**
* \brief Open PTP clock source
* @param netdev network device
*/
static void oct_ptp_open(struct net_device *netdev)
{
struct lio *lio = GET_LIO(netdev);
struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
spin_lock_init(&lio->ptp_lock);
snprintf(lio->ptp_info.name, 16, "%s", netdev->name);
lio->ptp_info.owner = THIS_MODULE;
lio->ptp_info.max_adj = 250000000;
lio->ptp_info.n_alarm = 0;
lio->ptp_info.n_ext_ts = 0;
lio->ptp_info.n_per_out = 0;
lio->ptp_info.pps = 0;
lio->ptp_info.adjfreq = liquidio_ptp_adjfreq;
lio->ptp_info.adjtime = liquidio_ptp_adjtime;
lio->ptp_info.gettime64 = liquidio_ptp_gettime;
lio->ptp_info.settime64 = liquidio_ptp_settime;
lio->ptp_info.enable = liquidio_ptp_enable;
lio->ptp_adjust = 0;
lio->ptp_clock = ptp_clock_register(&lio->ptp_info,
&oct->pci_dev->dev);
if (IS_ERR(lio->ptp_clock))
lio->ptp_clock = NULL;
}
/**
* \brief Init PTP clock
* @param oct octeon device
*/
static void liquidio_ptp_init(struct octeon_device *oct)
{
u64 clock_comp, cfg;
clock_comp = (u64)NSEC_PER_SEC << 32;
do_div(clock_comp, oct->coproc_clock_rate);
lio_pci_writeq(oct, clock_comp, CN6XXX_MIO_PTP_CLOCK_COMP);
/* Enable */
cfg = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_CFG);
lio_pci_writeq(oct, cfg | 0x01, CN6XXX_MIO_PTP_CLOCK_CFG);
}
/**
* \brief Load firmware to device
* @param oct octeon device
*
* Maps device to firmware filename, requests firmware, and downloads it
*/
static int load_firmware(struct octeon_device *oct)
{
int ret = 0;
const struct firmware *fw;
char fw_name[LIO_MAX_FW_FILENAME_LEN];
char *tmp_fw_type;
if (strncmp(fw_type, LIO_FW_NAME_TYPE_NONE,
sizeof(LIO_FW_NAME_TYPE_NONE)) == 0) {
dev_info(&oct->pci_dev->dev, "Skipping firmware load\n");
return ret;
}
if (fw_type[0] == '\0')
tmp_fw_type = LIO_FW_NAME_TYPE_NIC;
else
tmp_fw_type = fw_type;
sprintf(fw_name, "%s%s%s_%s%s", LIO_FW_DIR, LIO_FW_BASE_NAME,
octeon_get_conf(oct)->card_name, tmp_fw_type,
LIO_FW_NAME_SUFFIX);
ret = request_firmware(&fw, fw_name, &oct->pci_dev->dev);
if (ret) {
dev_err(&oct->pci_dev->dev, "Request firmware failed. Could not find file %s.\n.",
fw_name);
return ret;
}
ret = octeon_download_firmware(oct, fw->data, fw->size);
release_firmware(fw);
return ret;
}
/**
* \brief Setup output queue
* @param oct octeon device
* @param q_no which queue
* @param num_descs how many descriptors
* @param desc_size size of each descriptor
* @param app_ctx application context
*/
static int octeon_setup_droq(struct octeon_device *oct, int q_no, int num_descs,
int desc_size, void *app_ctx)
{
int ret_val = 0;
dev_dbg(&oct->pci_dev->dev, "Creating Droq: %d\n", q_no);
/* droq creation and local register settings. */
ret_val = octeon_create_droq(oct, q_no, num_descs, desc_size, app_ctx);
if (ret_val == -1)
return ret_val;
if (ret_val == 1) {
dev_dbg(&oct->pci_dev->dev, "Using default droq %d\n", q_no);
return 0;
}
/* tasklet creation for the droq */
/* Enable the droq queues */
octeon_set_droq_pkt_op(oct, q_no, 1);
/* Send Credit for Octeon Output queues. Credits are always
* sent after the output queue is enabled.
*/
writel(oct->droq[q_no]->max_count,
oct->droq[q_no]->pkts_credit_reg);
return ret_val;
}
/**
* \brief Callback for getting interface configuration
* @param status status of request
* @param buf pointer to resp structure
*/
static void if_cfg_callback(struct octeon_device *oct,
u32 status,
void *buf)
{
struct octeon_soft_command *sc = (struct octeon_soft_command *)buf;
struct liquidio_if_cfg_resp *resp;
struct liquidio_if_cfg_context *ctx;
resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
ctx = (struct liquidio_if_cfg_context *)sc->ctxptr;
oct = lio_get_device(ctx->octeon_id);
if (resp->status)
dev_err(&oct->pci_dev->dev, "nic if cfg instruction failed. Status: %llx\n",
CVM_CAST64(resp->status));
ACCESS_ONCE(ctx->cond) = 1;
/* This barrier is required to be sure that the response has been
* written fully before waking up the handler
*/
wmb();
wake_up_interruptible(&ctx->wc);
}
/**
* \brief Select queue based on hash
* @param dev Net device
* @param skb sk_buff structure
* @returns selected queue number
*/
static u16 select_q(struct net_device *dev, struct sk_buff *skb,
void *accel_priv, select_queue_fallback_t fallback)
{
int qindex;
struct lio *lio;
lio = GET_LIO(dev);
/* select queue on chosen queue_mapping or core */
qindex = skb_rx_queue_recorded(skb) ?
skb_get_rx_queue(skb) : smp_processor_id();
return (u16)(qindex & (lio->linfo.num_txpciq - 1));
}
/** Routine to push packets arriving on Octeon interface upto network layer.
* @param oct_id - octeon device id.
* @param skbuff - skbuff struct to be passed to network layer.
* @param len - size of total data received.
* @param rh - Control header associated with the packet
* @param param - additional control data with the packet
*/
static void
liquidio_push_packet(u32 octeon_id,
void *skbuff,
u32 len,
union octeon_rh *rh,
void *param)
{
struct napi_struct *napi = param;
struct octeon_device *oct = lio_get_device(octeon_id);
struct sk_buff *skb = (struct sk_buff *)skbuff;
struct skb_shared_hwtstamps *shhwtstamps;
u64 ns;
struct net_device *netdev =
(struct net_device *)oct->props[rh->r_dh.link].netdev;
struct octeon_droq *droq = container_of(param, struct octeon_droq,
napi);
if (netdev) {
int packet_was_received;
struct lio *lio = GET_LIO(netdev);
/* Do not proceed if the interface is not in RUNNING state. */
if (!ifstate_check(lio, LIO_IFSTATE_RUNNING)) {
recv_buffer_free(skb);
droq->stats.rx_dropped++;
return;
}
skb->dev = netdev;
if (rh->r_dh.has_hwtstamp) {
/* timestamp is included from the hardware at the
* beginning of the packet.
*/
if (ifstate_check(lio,
LIO_IFSTATE_RX_TIMESTAMP_ENABLED)) {
/* Nanoseconds are in the first 64-bits
* of the packet.
*/
memcpy(&ns, (skb->data), sizeof(ns));
shhwtstamps = skb_hwtstamps(skb);
shhwtstamps->hwtstamp =
ns_to_ktime(ns + lio->ptp_adjust);
}
skb_pull(skb, sizeof(ns));
}
skb->protocol = eth_type_trans(skb, skb->dev);
if ((netdev->features & NETIF_F_RXCSUM) &&
(rh->r_dh.csum_verified == CNNIC_CSUM_VERIFIED))
/* checksum has already been verified */
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb->ip_summed = CHECKSUM_NONE;
packet_was_received = napi_gro_receive(napi, skb) != GRO_DROP;
if (packet_was_received) {
droq->stats.rx_bytes_received += len;
droq->stats.rx_pkts_received++;
netdev->last_rx = jiffies;
} else {
droq->stats.rx_dropped++;
netif_info(lio, rx_err, lio->netdev,
"droq:%d error rx_dropped:%llu\n",
droq->q_no, droq->stats.rx_dropped);
}
} else {
recv_buffer_free(skb);
}
}
/**
* \brief wrapper for calling napi_schedule
* @param param parameters to pass to napi_schedule
*
* Used when scheduling on different CPUs
*/
static void napi_schedule_wrapper(void *param)
{
struct napi_struct *napi = param;
napi_schedule(napi);
}
/**
* \brief callback when receive interrupt occurs and we are in NAPI mode
* @param arg pointer to octeon output queue
*/
static void liquidio_napi_drv_callback(void *arg)
{
struct octeon_droq *droq = arg;
int this_cpu = smp_processor_id();
if (droq->cpu_id == this_cpu) {
napi_schedule(&droq->napi);
} else {
struct call_single_data *csd = &droq->csd;
csd->func = napi_schedule_wrapper;
csd->info = &droq->napi;
csd->flags = 0;
smp_call_function_single_async(droq->cpu_id, csd);
}
}
/**
* \brief Main NAPI poll function
* @param droq octeon output queue
* @param budget maximum number of items to process
*/
static int liquidio_napi_do_rx(struct octeon_droq *droq, int budget)
{
int work_done;
struct lio *lio = GET_LIO(droq->napi.dev);
struct octeon_device *oct = lio->oct_dev;
work_done = octeon_process_droq_poll_cmd(oct, droq->q_no,
POLL_EVENT_PROCESS_PKTS,
budget);
if (work_done < 0) {
netif_info(lio, rx_err, lio->netdev,
"Receive work_done < 0, rxq:%d\n", droq->q_no);
goto octnet_napi_finish;
}
if (work_done > budget)
dev_err(&oct->pci_dev->dev, ">>>> %s work_done: %d budget: %d\n",
__func__, work_done, budget);
return work_done;
octnet_napi_finish:
napi_complete(&droq->napi);
octeon_process_droq_poll_cmd(oct, droq->q_no, POLL_EVENT_ENABLE_INTR,
0);
return 0;
}
/**
* \brief Entry point for NAPI polling
* @param napi NAPI structure
* @param budget maximum number of items to process
*/
static int liquidio_napi_poll(struct napi_struct *napi, int budget)
{
struct octeon_droq *droq;
int work_done;
droq = container_of(napi, struct octeon_droq, napi);
work_done = liquidio_napi_do_rx(droq, budget);
if (work_done < budget) {
napi_complete(napi);
octeon_process_droq_poll_cmd(droq->oct_dev, droq->q_no,
POLL_EVENT_ENABLE_INTR, 0);
return 0;
}
return work_done;
}
/**
* \brief Setup input and output queues
* @param octeon_dev octeon device
* @param net_device Net device
*
* Note: Queues are with respect to the octeon device. Thus
* an input queue is for egress packets, and output queues
* are for ingress packets.
*/
static inline int setup_io_queues(struct octeon_device *octeon_dev,
struct net_device *net_device)
{
static int first_time = 1;
static struct octeon_droq_ops droq_ops;
static int cpu_id;
static int cpu_id_modulus;
struct octeon_droq *droq;
struct napi_struct *napi;
int q, q_no, retval = 0;
struct lio *lio;
int num_tx_descs;
lio = GET_LIO(net_device);
if (first_time) {
first_time = 0;
memset(&droq_ops, 0, sizeof(struct octeon_droq_ops));
droq_ops.fptr = liquidio_push_packet;
droq_ops.poll_mode = 1;
droq_ops.napi_fn = liquidio_napi_drv_callback;
cpu_id = 0;
cpu_id_modulus = num_present_cpus();
}
/* set up DROQs. */
for (q = 0; q < lio->linfo.num_rxpciq; q++) {
q_no = lio->linfo.rxpciq[q];
retval = octeon_setup_droq(octeon_dev, q_no,
CFG_GET_NUM_RX_DESCS_NIC_IF
(octeon_get_conf(octeon_dev),
lio->ifidx),
CFG_GET_NUM_RX_BUF_SIZE_NIC_IF
(octeon_get_conf(octeon_dev),
lio->ifidx), NULL);
if (retval) {
dev_err(&octeon_dev->pci_dev->dev,
" %s : Runtime DROQ(RxQ) creation failed.\n",
__func__);
return 1;
}
droq = octeon_dev->droq[q_no];
napi = &droq->napi;
netif_napi_add(net_device, napi, liquidio_napi_poll, 64);
/* designate a CPU for this droq */
droq->cpu_id = cpu_id;
cpu_id++;
if (cpu_id >= cpu_id_modulus)
cpu_id = 0;
octeon_register_droq_ops(octeon_dev, q_no, &droq_ops);
}
/* set up IQs. */
for (q = 0; q < lio->linfo.num_txpciq; q++) {
num_tx_descs = CFG_GET_NUM_TX_DESCS_NIC_IF(octeon_get_conf
(octeon_dev),
lio->ifidx);
retval = octeon_setup_iq(octeon_dev, lio->linfo.txpciq[q],
num_tx_descs,
netdev_get_tx_queue(net_device, q));
if (retval) {
dev_err(&octeon_dev->pci_dev->dev,
" %s : Runtime IQ(TxQ) creation failed.\n",
__func__);
return 1;
}
}
return 0;
}
/**
* \brief Poll routine for checking transmit queue status
* @param work work_struct data structure
*/
static void octnet_poll_check_txq_status(struct work_struct *work)
{
struct cavium_wk *wk = (struct cavium_wk *)work;
struct lio *lio = (struct lio *)wk->ctxptr;
if (!ifstate_check(lio, LIO_IFSTATE_RUNNING))
return;
check_txq_status(lio);
queue_delayed_work(lio->txq_status_wq.wq,
&lio->txq_status_wq.wk.work, msecs_to_jiffies(1));
}
/**
* \brief Sets up the txq poll check
* @param netdev network device
*/
static inline void setup_tx_poll_fn(struct net_device *netdev)
{
struct lio *lio = GET_LIO(netdev);
struct octeon_device *oct = lio->oct_dev;
lio->txq_status_wq.wq = create_workqueue("txq-status");
if (!lio->txq_status_wq.wq) {
dev_err(&oct->pci_dev->dev, "unable to create cavium txq status wq\n");
return;
}
INIT_DELAYED_WORK(&lio->txq_status_wq.wk.work,
octnet_poll_check_txq_status);
lio->txq_status_wq.wk.ctxptr = lio;
queue_delayed_work(lio->txq_status_wq.wq,
&lio->txq_status_wq.wk.work, msecs_to_jiffies(1));
}
/**
* \brief Net device open for LiquidIO
* @param netdev network device
*/
static int liquidio_open(struct net_device *netdev)
{
struct lio *lio = GET_LIO(netdev);
struct octeon_device *oct = lio->oct_dev;
struct napi_struct *napi, *n;
list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
napi_enable(napi);
oct_ptp_open(netdev);
ifstate_set(lio, LIO_IFSTATE_RUNNING);
setup_tx_poll_fn(netdev);
start_txq(netdev);
netif_info(lio, ifup, lio->netdev, "Interface Open, ready for traffic\n");
try_module_get(THIS_MODULE);
/* tell Octeon to start forwarding packets to host */
send_rx_ctrl_cmd(lio, 1);
/* Ready for link status updates */
lio->intf_open = 1;
dev_info(&oct->pci_dev->dev, "%s interface is opened\n",
netdev->name);
return 0;
}
/**
* \brief Net device stop for LiquidIO
* @param netdev network device
*/
static int liquidio_stop(struct net_device *netdev)
{
struct napi_struct *napi, *n;
struct lio *lio = GET_LIO(netdev);
struct octeon_device *oct = lio->oct_dev;
netif_info(lio, ifdown, lio->netdev, "Stopping interface!\n");
/* Inform that netif carrier is down */
lio->intf_open = 0;
lio->linfo.link.s.status = 0;
netif_carrier_off(netdev);
/* tell Octeon to stop forwarding packets to host */
send_rx_ctrl_cmd(lio, 0);
cancel_delayed_work_sync(&lio->txq_status_wq.wk.work);
flush_workqueue(lio->txq_status_wq.wq);
destroy_workqueue(lio->txq_status_wq.wq);
if (lio->ptp_clock) {
ptp_clock_unregister(lio->ptp_clock);
lio->ptp_clock = NULL;
}
ifstate_reset(lio, LIO_IFSTATE_RUNNING);
/* This is a hack that allows DHCP to continue working. */
set_bit(__LINK_STATE_START, &lio->netdev->state);
list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
napi_disable(napi);
txqs_stop(netdev);
dev_info(&oct->pci_dev->dev, "%s interface is stopped\n", netdev->name);
module_put(THIS_MODULE);
return 0;
}
void liquidio_link_ctrl_cmd_completion(void *nctrl_ptr)
{
struct octnic_ctrl_pkt *nctrl = (struct octnic_ctrl_pkt *)nctrl_ptr;
struct net_device *netdev = (struct net_device *)nctrl->netpndev;
struct lio *lio = GET_LIO(netdev);
struct octeon_device *oct = lio->oct_dev;
switch (nctrl->ncmd.s.cmd) {
case OCTNET_CMD_CHANGE_DEVFLAGS:
case OCTNET_CMD_SET_MULTI_LIST:
break;
case OCTNET_CMD_CHANGE_MACADDR:
/* If command is successful, change the MACADDR. */
netif_info(lio, probe, lio->netdev, " MACAddr changed to 0x%llx\n",
CVM_CAST64(nctrl->udd[0]));
dev_info(&oct->pci_dev->dev, "%s MACAddr changed to 0x%llx\n",
netdev->name, CVM_CAST64(nctrl->udd[0]));
memcpy(netdev->dev_addr, ((u8 *)&nctrl->udd[0]) + 2, ETH_ALEN);
break;
case OCTNET_CMD_CHANGE_MTU:
/* If command is successful, change the MTU. */
netif_info(lio, probe, lio->netdev, " MTU Changed from %d to %d\n",
netdev->mtu, nctrl->ncmd.s.param2);
dev_info(&oct->pci_dev->dev, "%s MTU Changed from %d to %d\n",
netdev->name, netdev->mtu,
nctrl->ncmd.s.param2);
netdev->mtu = nctrl->ncmd.s.param2;
break;
case OCTNET_CMD_GPIO_ACCESS:
netif_info(lio, probe, lio->netdev, "LED Flashing visual identification\n");
break;
case OCTNET_CMD_LRO_ENABLE:
dev_info(&oct->pci_dev->dev, "%s LRO Enabled\n", netdev->name);
break;
case OCTNET_CMD_LRO_DISABLE:
dev_info(&oct->pci_dev->dev, "%s LRO Disabled\n",
netdev->name);
break;
case OCTNET_CMD_VERBOSE_ENABLE:
dev_info(&oct->pci_dev->dev, "%s LRO Enabled\n", netdev->name);
break;
case OCTNET_CMD_VERBOSE_DISABLE:
dev_info(&oct->pci_dev->dev, "%s LRO Disabled\n",
netdev->name);
break;
case OCTNET_CMD_SET_SETTINGS:
dev_info(&oct->pci_dev->dev, "%s settings changed\n",
netdev->name);
break;
default:
dev_err(&oct->pci_dev->dev, "%s Unknown cmd %d\n", __func__,
nctrl->ncmd.s.cmd);
}
}
/**
* \brief Converts a mask based on net device flags
* @param netdev network device
*
* This routine generates a octnet_ifflags mask from the net device flags
* received from the OS.
*/
static inline enum octnet_ifflags get_new_flags(struct net_device *netdev)
{
enum octnet_ifflags f = OCTNET_IFFLAG_UNICAST;
if (netdev->flags & IFF_PROMISC)
f |= OCTNET_IFFLAG_PROMISC;
if (netdev->flags & IFF_ALLMULTI)
f |= OCTNET_IFFLAG_ALLMULTI;
if (netdev->flags & IFF_MULTICAST) {
f |= OCTNET_IFFLAG_MULTICAST;
/* Accept all multicast addresses if there are more than we
* can handle
*/
if (netdev_mc_count(netdev) > MAX_OCTEON_MULTICAST_ADDR)
f |= OCTNET_IFFLAG_ALLMULTI;
}
if (netdev->flags & IFF_BROADCAST)
f |= OCTNET_IFFLAG_BROADCAST;
return f;
}
/**
* \brief Net device set_multicast_list
* @param netdev network device
*/
static void liquidio_set_mcast_list(struct net_device *netdev)
{
struct lio *lio = GET_LIO(netdev);
struct octeon_device *oct = lio->oct_dev;
struct octnic_ctrl_pkt nctrl;
struct octnic_ctrl_params nparams;
struct netdev_hw_addr *ha;
u64 *mc;
int ret, i;
int mc_count = min(netdev_mc_count(netdev), MAX_OCTEON_MULTICAST_ADDR);
memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
/* Create a ctrl pkt command to be sent to core app. */
nctrl.ncmd.u64 = 0;
nctrl.ncmd.s.cmd = OCTNET_CMD_SET_MULTI_LIST;
nctrl.ncmd.s.param1 = lio->linfo.ifidx;
nctrl.ncmd.s.param2 = get_new_flags(netdev);
nctrl.ncmd.s.param3 = mc_count;
nctrl.ncmd.s.more = mc_count;
nctrl.netpndev = (u64)netdev;
nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
/* copy all the addresses into the udd */
i = 0;
mc = &nctrl.udd[0];
netdev_for_each_mc_addr(ha, netdev) {
*mc = 0;
memcpy(((u8 *)mc) + 2, ha->addr, ETH_ALEN);
/* no need to swap bytes */
if (++mc > &nctrl.udd[mc_count])
break;
}
/* Apparently, any activity in this call from the kernel has to
* be atomic. So we won't wait for response.
*/
nctrl.wait_time = 0;
nparams.resp_order = OCTEON_RESP_NORESPONSE;
ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl, nparams);
if (ret < 0) {
dev_err(&oct->pci_dev->dev, "DEVFLAGS change failed in core (ret: 0x%x)\n",
ret);
}
}
/**
* \brief Net device set_mac_address
* @param netdev network device
*/
static int liquidio_set_mac(struct net_device *netdev, void *p)
{
int ret = 0;
struct lio *lio = GET_LIO(netdev);
struct octeon_device *oct = lio->oct_dev;
struct sockaddr *addr = (struct sockaddr *)p;
struct octnic_ctrl_pkt nctrl;
struct octnic_ctrl_params nparams;
if ((!is_valid_ether_addr(addr->sa_data)) ||
(ifstate_check(lio, LIO_IFSTATE_RUNNING)))
return -EADDRNOTAVAIL;
memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
nctrl.ncmd.u64 = 0;
nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MACADDR;
nctrl.ncmd.s.param1 = lio->linfo.ifidx;
nctrl.ncmd.s.param2 = 0;
nctrl.ncmd.s.more = 1;
nctrl.netpndev = (u64)netdev;
nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
nctrl.wait_time = 100;
nctrl.udd[0] = 0;
/* The MAC Address is presented in network byte order. */
memcpy((u8 *)&nctrl.udd[0] + 2, addr->sa_data, ETH_ALEN);
nparams.resp_order = OCTEON_RESP_ORDERED;
ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl, nparams);
if (ret < 0) {
dev_err(&oct->pci_dev->dev, "MAC Address change failed\n");
return -ENOMEM;
}
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
memcpy(((u8 *)&lio->linfo.hw_addr) + 2, addr->sa_data, ETH_ALEN);
return 0;
}
/**
* \brief Net device get_stats
* @param netdev network device
*/
static struct net_device_stats *liquidio_get_stats(struct net_device *netdev)
{
struct lio *lio = GET_LIO(netdev);
struct net_device_stats *stats = &netdev->stats;
struct octeon_device *oct;
u64 pkts = 0, drop = 0, bytes = 0;
struct oct_droq_stats *oq_stats;
struct oct_iq_stats *iq_stats;
int i, iq_no, oq_no;
oct = lio->oct_dev;
for (i = 0; i < lio->linfo.num_txpciq; i++) {
iq_no = lio->linfo.txpciq[i];
iq_stats = &oct->instr_queue[iq_no]->stats;
pkts += iq_stats->tx_done;
drop += iq_stats->tx_dropped;
bytes += iq_stats->tx_tot_bytes;
}
stats->tx_packets = pkts;
stats->tx_bytes = bytes;
stats->tx_dropped = drop;
pkts = 0;
drop = 0;
bytes = 0;
for (i = 0; i < lio->linfo.num_rxpciq; i++) {
oq_no = lio->linfo.rxpciq[i];
oq_stats = &oct->droq[oq_no]->stats;
pkts += oq_stats->rx_pkts_received;
drop += (oq_stats->rx_dropped +
oq_stats->dropped_nodispatch +
oq_stats->dropped_toomany +
oq_stats->dropped_nomem);
bytes += oq_stats->rx_bytes_received;
}
stats->rx_bytes = bytes;
stats->rx_packets = pkts;
stats->rx_dropped = drop;
return stats;
}
/**
* \brief Net device change_mtu
* @param netdev network device
*/
static int liquidio_change_mtu(struct net_device *netdev, int new_mtu)
{
struct lio *lio = GET_LIO(netdev);
struct octeon_device *oct = lio->oct_dev;
struct octnic_ctrl_pkt nctrl;
struct octnic_ctrl_params nparams;
int max_frm_size = new_mtu + OCTNET_FRM_HEADER_SIZE;
int ret = 0;
/* Limit the MTU to make sure the ethernet packets are between 64 bytes
* and 65535 bytes
*/
if ((max_frm_size < OCTNET_MIN_FRM_SIZE) ||
(max_frm_size > OCTNET_MAX_FRM_SIZE)) {
dev_err(&oct->pci_dev->dev, "Invalid MTU: %d\n", new_mtu);
dev_err(&oct->pci_dev->dev, "Valid range %d and %d\n",
(OCTNET_MIN_FRM_SIZE - OCTNET_FRM_HEADER_SIZE),
(OCTNET_MAX_FRM_SIZE - OCTNET_FRM_HEADER_SIZE));
return -EINVAL;
}
memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
nctrl.ncmd.u64 = 0;
nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MTU;
nctrl.ncmd.s.param1 = lio->linfo.ifidx;
nctrl.ncmd.s.param2 = new_mtu;
nctrl.wait_time = 100;
nctrl.netpndev = (u64)netdev;
nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
nparams.resp_order = OCTEON_RESP_ORDERED;
ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl, nparams);
if (ret < 0) {
dev_err(&oct->pci_dev->dev, "Failed to set MTU\n");
return -1;
}
lio->mtu = new_mtu;
return 0;
}
/**
* \brief Handler for SIOCSHWTSTAMP ioctl
* @param netdev network device
* @param ifr interface request
* @param cmd command
*/
static int hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
struct hwtstamp_config conf;
struct lio *lio = GET_LIO(netdev);
if (copy_from_user(&conf, ifr->ifr_data, sizeof(conf)))
return -EFAULT;
if (conf.flags)
return -EINVAL;
switch (conf.tx_type) {
case HWTSTAMP_TX_ON:
case HWTSTAMP_TX_OFF:
break;
default:
return -ERANGE;
}
switch (conf.rx_filter) {
case HWTSTAMP_FILTER_NONE:
break;
case HWTSTAMP_FILTER_ALL:
case HWTSTAMP_FILTER_SOME:
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
conf.rx_filter = HWTSTAMP_FILTER_ALL;
break;
default:
return -ERANGE;
}
if (conf.rx_filter == HWTSTAMP_FILTER_ALL)
ifstate_set(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
else
ifstate_reset(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
return copy_to_user(ifr->ifr_data, &conf, sizeof(conf)) ? -EFAULT : 0;
}
/**
* \brief ioctl handler
* @param netdev network device
* @param ifr interface request
* @param cmd command
*/
static int liquidio_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
switch (cmd) {
case SIOCSHWTSTAMP:
return hwtstamp_ioctl(netdev, ifr, cmd);
default:
return -EOPNOTSUPP;
}
}
/**
* \brief handle a Tx timestamp response
* @param status response status
* @param buf pointer to skb
*/
static void handle_timestamp(struct octeon_device *oct,
u32 status,
void *buf)
{
struct octnet_buf_free_info *finfo;
struct octeon_soft_command *sc;
struct oct_timestamp_resp *resp;
struct lio *lio;
struct sk_buff *skb = (struct sk_buff *)buf;
finfo = (struct octnet_buf_free_info *)skb->cb;
lio = finfo->lio;
sc = finfo->sc;
oct = lio->oct_dev;
resp = (struct oct_timestamp_resp *)sc->virtrptr;
if (status != OCTEON_REQUEST_DONE) {
dev_err(&oct->pci_dev->dev, "Tx timestamp instruction failed. Status: %llx\n",
CVM_CAST64(status));
resp->timestamp = 0;
}
octeon_swap_8B_data(&resp->timestamp, 1);
if (unlikely((skb_shinfo(skb)->tx_flags | SKBTX_IN_PROGRESS) != 0)) {
struct skb_shared_hwtstamps ts;
u64 ns = resp->timestamp;
netif_info(lio, tx_done, lio->netdev,
"Got resulting SKBTX_HW_TSTAMP skb=%p ns=%016llu\n",
skb, (unsigned long long)ns);
ts.hwtstamp = ns_to_ktime(ns + lio->ptp_adjust);
skb_tstamp_tx(skb, &ts);
}
octeon_free_soft_command(oct, sc);
recv_buffer_free(skb);
}
/* \brief Send a data packet that will be timestamped
* @param oct octeon device
* @param ndata pointer to network data
* @param finfo pointer to private network data
*/
static inline int send_nic_timestamp_pkt(struct octeon_device *oct,
struct octnic_data_pkt *ndata,
struct octnet_buf_free_info *finfo,
int xmit_more)
{
int retval;
struct octeon_soft_command *sc;
struct octeon_instr_ih *ih;
struct octeon_instr_rdp *rdp;
struct lio *lio;
int ring_doorbell;
lio = finfo->lio;
sc = octeon_alloc_soft_command_resp(oct, &ndata->cmd,
sizeof(struct oct_timestamp_resp));
finfo->sc = sc;
if (!sc) {
dev_err(&oct->pci_dev->dev, "No memory for timestamped data packet\n");
return IQ_SEND_FAILED;
}
if (ndata->reqtype == REQTYPE_NORESP_NET)
ndata->reqtype = REQTYPE_RESP_NET;
else if (ndata->reqtype == REQTYPE_NORESP_NET_SG)
ndata->reqtype = REQTYPE_RESP_NET_SG;
sc->callback = handle_timestamp;
sc->callback_arg = finfo->skb;
sc->iq_no = ndata->q_no;
ih = (struct octeon_instr_ih *)&sc->cmd.ih;
rdp = (struct octeon_instr_rdp *)&sc->cmd.rdp;
ring_doorbell = !xmit_more;
retval = octeon_send_command(oct, sc->iq_no, ring_doorbell, &sc->cmd,
sc, ih->dlengsz, ndata->reqtype);
if (retval) {
dev_err(&oct->pci_dev->dev, "timestamp data packet failed status: %x\n",
retval);
octeon_free_soft_command(oct, sc);
} else {
netif_info(lio, tx_queued, lio->netdev, "Queued timestamp packet\n");
}
return retval;
}
static inline int is_ipv4(struct sk_buff *skb)
{
return (skb->protocol == htons(ETH_P_IP)) &&
(ip_hdr(skb)->version == 4);
}
static inline int is_vlan(struct sk_buff *skb)
{
return skb->protocol == htons(ETH_P_8021Q);
}
static inline int is_ip_fragmented(struct sk_buff *skb)
{
/* The Don't fragment and Reserved flag fields are ignored.
* IP is fragmented if
* - the More fragments bit is set (indicating this IP is a fragment
* with more to follow; the current offset could be 0 ).
* - ths offset field is non-zero.
*/
return (ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET)) ? 1 : 0;
}
static inline int is_ipv6(struct sk_buff *skb)
{
return (skb->protocol == htons(ETH_P_IPV6)) &&
(ipv6_hdr(skb)->version == 6);
}
static inline int is_with_extn_hdr(struct sk_buff *skb)
{
return (ipv6_hdr(skb)->nexthdr != IPPROTO_TCP) &&
(ipv6_hdr(skb)->nexthdr != IPPROTO_UDP);
}
static inline int is_tcpudp(struct sk_buff *skb)
{
return (ip_hdr(skb)->protocol == IPPROTO_TCP) ||
(ip_hdr(skb)->protocol == IPPROTO_UDP);
}
static inline u32 get_ipv4_5tuple_tag(struct sk_buff *skb)
{
u32 tag;
struct iphdr *iphdr = ip_hdr(skb);
tag = crc32(0, &iphdr->protocol, 1);
tag = crc32(tag, (u8 *)&iphdr->saddr, 8);
tag = crc32(tag, skb_transport_header(skb), 4);
return tag;
}
static inline u32 get_ipv6_5tuple_tag(struct sk_buff *skb)
{
u32 tag;
struct ipv6hdr *ipv6hdr = ipv6_hdr(skb);
tag = crc32(0, &ipv6hdr->nexthdr, 1);
tag = crc32(tag, (u8 *)&ipv6hdr->saddr, 32);
tag = crc32(tag, skb_transport_header(skb), 4);
return tag;
}
/** \brief Transmit networks packets to the Octeon interface
* @param skbuff skbuff struct to be passed to network layer.
* @param netdev pointer to network device
* @returns whether the packet was transmitted to the device okay or not
* (NETDEV_TX_OK or NETDEV_TX_BUSY)
*/
static int liquidio_xmit(struct sk_buff *skb, struct net_device *netdev)
{
struct lio *lio;
struct octnet_buf_free_info *finfo;
union octnic_cmd_setup cmdsetup;
struct octnic_data_pkt ndata;
struct octeon_device *oct;
struct oct_iq_stats *stats;
int cpu = 0, status = 0;
int q_idx = 0, iq_no = 0;
int xmit_more;
u32 tag = 0;
lio = GET_LIO(netdev);
oct = lio->oct_dev;
if (netif_is_multiqueue(netdev)) {
cpu = skb->queue_mapping;
q_idx = (cpu & (lio->linfo.num_txpciq - 1));
iq_no = lio->linfo.txpciq[q_idx];
} else {
iq_no = lio->txq;
}
stats = &oct->instr_queue[iq_no]->stats;
/* Check for all conditions in which the current packet cannot be
* transmitted.
*/
if (!(atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING) ||
(!lio->linfo.link.s.status) ||
(skb->len <= 0)) {
netif_info(lio, tx_err, lio->netdev,
"Transmit failed link_status : %d\n",
lio->linfo.link.s.status);
goto lio_xmit_failed;
}
/* Use space in skb->cb to store info used to unmap and
* free the buffers.
*/
finfo = (struct octnet_buf_free_info *)skb->cb;
finfo->lio = lio;
finfo->skb = skb;
finfo->sc = NULL;
/* Prepare the attributes for the data to be passed to OSI. */
memset(&ndata, 0, sizeof(struct octnic_data_pkt));
ndata.buf = (void *)finfo;
ndata.q_no = iq_no;
if (netif_is_multiqueue(netdev)) {
if (octnet_iq_is_full(oct, ndata.q_no)) {
/* defer sending if queue is full */
netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
ndata.q_no);
stats->tx_iq_busy++;
return NETDEV_TX_BUSY;
}
} else {
if (octnet_iq_is_full(oct, lio->txq)) {
/* defer sending if queue is full */
stats->tx_iq_busy++;
netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
ndata.q_no);
return NETDEV_TX_BUSY;
}
}
/* pr_info(" XMIT - valid Qs: %d, 1st Q no: %d, cpu: %d, q_no:%d\n",
* lio->linfo.num_txpciq, lio->txq, cpu, ndata.q_no );
*/
ndata.datasize = skb->len;
cmdsetup.u64 = 0;
cmdsetup.s.ifidx = lio->linfo.ifidx;
if (skb->ip_summed == CHECKSUM_PARTIAL) {
if (is_ipv4(skb) && !is_ip_fragmented(skb) && is_tcpudp(skb)) {
tag = get_ipv4_5tuple_tag(skb);
cmdsetup.s.cksum_offset = sizeof(struct ethhdr) + 1;
if (ip_hdr(skb)->ihl > 5)
cmdsetup.s.ipv4opts_ipv6exthdr =
OCT_PKT_PARAM_IPV4OPTS;
} else if (is_ipv6(skb)) {
tag = get_ipv6_5tuple_tag(skb);
cmdsetup.s.cksum_offset = sizeof(struct ethhdr) + 1;
if (is_with_extn_hdr(skb))
cmdsetup.s.ipv4opts_ipv6exthdr =
OCT_PKT_PARAM_IPV6EXTHDR;
} else if (is_vlan(skb)) {
if (vlan_eth_hdr(skb)->h_vlan_encapsulated_proto
== htons(ETH_P_IP) &&
!is_ip_fragmented(skb) && is_tcpudp(skb)) {
tag = get_ipv4_5tuple_tag(skb);
cmdsetup.s.cksum_offset =
sizeof(struct vlan_ethhdr) + 1;
if (ip_hdr(skb)->ihl > 5)
cmdsetup.s.ipv4opts_ipv6exthdr =
OCT_PKT_PARAM_IPV4OPTS;
} else if (vlan_eth_hdr(skb)->h_vlan_encapsulated_proto
== htons(ETH_P_IPV6)) {
tag = get_ipv6_5tuple_tag(skb);
cmdsetup.s.cksum_offset =
sizeof(struct vlan_ethhdr) + 1;
if (is_with_extn_hdr(skb))
cmdsetup.s.ipv4opts_ipv6exthdr =
OCT_PKT_PARAM_IPV6EXTHDR;
}
}
}
if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
cmdsetup.s.timestamp = 1;
}
if (skb_shinfo(skb)->nr_frags == 0) {
cmdsetup.s.u.datasize = skb->len;
octnet_prepare_pci_cmd(&ndata.cmd, &cmdsetup, tag);
/* Offload checksum calculation for TCP/UDP packets */
ndata.cmd.dptr = dma_map_single(&oct->pci_dev->dev,
skb->data,
skb->len,
DMA_TO_DEVICE);
if (dma_mapping_error(&oct->pci_dev->dev, ndata.cmd.dptr)) {
dev_err(&oct->pci_dev->dev, "%s DMA mapping error 1\n",
__func__);
return NETDEV_TX_BUSY;
}
finfo->dptr = ndata.cmd.dptr;
ndata.reqtype = REQTYPE_NORESP_NET;
} else {
int i, frags;
struct skb_frag_struct *frag;
struct octnic_gather *g;
spin_lock(&lio->lock);
g = (struct octnic_gather *)list_delete_head(&lio->glist);
spin_unlock(&lio->lock);
if (!g) {
netif_info(lio, tx_err, lio->netdev,
"Transmit scatter gather: glist null!\n");
goto lio_xmit_failed;
}
cmdsetup.s.gather = 1;
cmdsetup.s.u.gatherptrs = (skb_shinfo(skb)->nr_frags + 1);
octnet_prepare_pci_cmd(&ndata.cmd, &cmdsetup, tag);
memset(g->sg, 0, g->sg_size);
g->sg[0].ptr[0] = dma_map_single(&oct->pci_dev->dev,
skb->data,
(skb->len - skb->data_len),
DMA_TO_DEVICE);
if (dma_mapping_error(&oct->pci_dev->dev, g->sg[0].ptr[0])) {
dev_err(&oct->pci_dev->dev, "%s DMA mapping error 2\n",
__func__);
return NETDEV_TX_BUSY;
}
add_sg_size(&g->sg[0], (skb->len - skb->data_len), 0);
frags = skb_shinfo(skb)->nr_frags;
i = 1;
while (frags--) {
frag = &skb_shinfo(skb)->frags[i - 1];
g->sg[(i >> 2)].ptr[(i & 3)] =
dma_map_page(&oct->pci_dev->dev,
frag->page.p,
frag->page_offset,
frag->size,
DMA_TO_DEVICE);
add_sg_size(&g->sg[(i >> 2)], frag->size, (i & 3));
i++;
}
ndata.cmd.dptr = dma_map_single(&oct->pci_dev->dev,
g->sg, g->sg_size,
DMA_TO_DEVICE);
if (dma_mapping_error(&oct->pci_dev->dev, ndata.cmd.dptr)) {
dev_err(&oct->pci_dev->dev, "%s DMA mapping error 3\n",
__func__);
dma_unmap_single(&oct->pci_dev->dev, g->sg[0].ptr[0],
skb->len - skb->data_len,
DMA_TO_DEVICE);
return NETDEV_TX_BUSY;
}
finfo->dptr = ndata.cmd.dptr;
finfo->g = g;
ndata.reqtype = REQTYPE_NORESP_NET_SG;
}
if (skb_shinfo(skb)->gso_size) {
struct octeon_instr_irh *irh =
(struct octeon_instr_irh *)&ndata.cmd.irh;
union tx_info *tx_info = (union tx_info *)&ndata.cmd.ossp[0];
irh->len = 1; /* to indicate that ossp[0] contains tx_info */
tx_info->s.gso_size = skb_shinfo(skb)->gso_size;
tx_info->s.gso_segs = skb_shinfo(skb)->gso_segs;
}
xmit_more = skb->xmit_more;
if (unlikely(cmdsetup.s.timestamp))
status = send_nic_timestamp_pkt(oct, &ndata, finfo, xmit_more);
else
status = octnet_send_nic_data_pkt(oct, &ndata, xmit_more);
if (status == IQ_SEND_FAILED)
goto lio_xmit_failed;
netif_info(lio, tx_queued, lio->netdev, "Transmit queued successfully\n");
if (status == IQ_SEND_STOP)
stop_q(lio->netdev, q_idx);
netdev->trans_start = jiffies;
stats->tx_done++;
stats->tx_tot_bytes += skb->len;
return NETDEV_TX_OK;
lio_xmit_failed:
stats->tx_dropped++;
netif_info(lio, tx_err, lio->netdev, "IQ%d Transmit dropped:%llu\n",
iq_no, stats->tx_dropped);
dma_unmap_single(&oct->pci_dev->dev, ndata.cmd.dptr,
ndata.datasize, DMA_TO_DEVICE);
recv_buffer_free(skb);
return NETDEV_TX_OK;
}
/** \brief Network device Tx timeout
* @param netdev pointer to network device
*/
static void liquidio_tx_timeout(struct net_device *netdev)
{
struct lio *lio;
lio = GET_LIO(netdev);
netif_info(lio, tx_err, lio->netdev,
"Transmit timeout tx_dropped:%ld, waking up queues now!!\n",
netdev->stats.tx_dropped);
netdev->trans_start = jiffies;
txqs_wake(netdev);
}
int liquidio_set_feature(struct net_device *netdev, int cmd)
{
struct lio *lio = GET_LIO(netdev);
struct octeon_device *oct = lio->oct_dev;
struct octnic_ctrl_pkt nctrl;
struct octnic_ctrl_params nparams;
int ret = 0;
memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
nctrl.ncmd.u64 = 0;
nctrl.ncmd.s.cmd = cmd;
nctrl.ncmd.s.param1 = lio->linfo.ifidx;
nctrl.ncmd.s.param2 = OCTNIC_LROIPV4 | OCTNIC_LROIPV6;
nctrl.wait_time = 100;
nctrl.netpndev = (u64)netdev;
nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
nparams.resp_order = OCTEON_RESP_NORESPONSE;
ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl, nparams);
if (ret < 0) {
dev_err(&oct->pci_dev->dev, "Feature change failed in core (ret: 0x%x)\n",
ret);
}
return ret;
}
/** \brief Net device fix features
* @param netdev pointer to network device
* @param request features requested
* @returns updated features list
*/
static netdev_features_t liquidio_fix_features(struct net_device *netdev,
netdev_features_t request)
{
struct lio *lio = netdev_priv(netdev);
if ((request & NETIF_F_RXCSUM) &&
!(lio->dev_capability & NETIF_F_RXCSUM))
request &= ~NETIF_F_RXCSUM;
if ((request & NETIF_F_HW_CSUM) &&
!(lio->dev_capability & NETIF_F_HW_CSUM))
request &= ~NETIF_F_HW_CSUM;
if ((request & NETIF_F_TSO) && !(lio->dev_capability & NETIF_F_TSO))
request &= ~NETIF_F_TSO;
if ((request & NETIF_F_TSO6) && !(lio->dev_capability & NETIF_F_TSO6))
request &= ~NETIF_F_TSO6;
if ((request & NETIF_F_LRO) && !(lio->dev_capability & NETIF_F_LRO))
request &= ~NETIF_F_LRO;
/*Disable LRO if RXCSUM is off */
if (!(request & NETIF_F_RXCSUM) && (netdev->features & NETIF_F_LRO) &&
(lio->dev_capability & NETIF_F_LRO))
request &= ~NETIF_F_LRO;
return request;
}
/** \brief Net device set features
* @param netdev pointer to network device
* @param features features to enable/disable
*/
static int liquidio_set_features(struct net_device *netdev,
netdev_features_t features)
{
struct lio *lio = netdev_priv(netdev);
if (!((netdev->features ^ features) & NETIF_F_LRO))
return 0;
if ((features & NETIF_F_LRO) && (lio->dev_capability & NETIF_F_LRO))
liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE);
else if (!(features & NETIF_F_LRO) &&
(lio->dev_capability & NETIF_F_LRO))
liquidio_set_feature(netdev, OCTNET_CMD_LRO_DISABLE);
return 0;
}
static struct net_device_ops lionetdevops = {
.ndo_open = liquidio_open,
.ndo_stop = liquidio_stop,
.ndo_start_xmit = liquidio_xmit,
.ndo_get_stats = liquidio_get_stats,
.ndo_set_mac_address = liquidio_set_mac,
.ndo_set_rx_mode = liquidio_set_mcast_list,
.ndo_tx_timeout = liquidio_tx_timeout,
.ndo_change_mtu = liquidio_change_mtu,
.ndo_do_ioctl = liquidio_ioctl,
.ndo_fix_features = liquidio_fix_features,
.ndo_set_features = liquidio_set_features,
};
/** \brief Entry point for the liquidio module
*/
static int __init liquidio_init(void)
{
int i;
struct handshake *hs;
init_completion(&first_stage);
octeon_init_device_list(conf_type);
if (liquidio_init_pci())
return -EINVAL;
wait_for_completion_timeout(&first_stage, msecs_to_jiffies(1000));
for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
hs = &handshake[i];
if (hs->pci_dev) {
wait_for_completion(&hs->init);
if (!hs->init_ok) {
/* init handshake failed */
dev_err(&hs->pci_dev->dev,
"Failed to init device\n");
liquidio_deinit_pci();
return -EIO;
}
}
}
for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
hs = &handshake[i];
if (hs->pci_dev) {
wait_for_completion_timeout(&hs->started,
msecs_to_jiffies(30000));
if (!hs->started_ok) {
/* starter handshake failed */
dev_err(&hs->pci_dev->dev,
"Firmware failed to start\n");
liquidio_deinit_pci();
return -EIO;
}
}
}
return 0;
}
static int lio_nic_info(struct octeon_recv_info *recv_info, void *buf)
{
struct octeon_device *oct = (struct octeon_device *)buf;
struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt;
int ifidx = 0;
union oct_link_status *ls;
int i;
if ((recv_pkt->buffer_size[0] != sizeof(*ls)) ||
(recv_pkt->rh.r_nic_info.ifidx > oct->ifcount)) {
dev_err(&oct->pci_dev->dev, "Malformed NIC_INFO, len=%d, ifidx=%d\n",
recv_pkt->buffer_size[0],
recv_pkt->rh.r_nic_info.ifidx);
goto nic_info_err;
}
ifidx = recv_pkt->rh.r_nic_info.ifidx;
ls = (union oct_link_status *)get_rbd(recv_pkt->buffer_ptr[0]);
octeon_swap_8B_data((u64 *)ls, (sizeof(union oct_link_status)) >> 3);
update_link_status(oct->props[ifidx].netdev, ls);
nic_info_err:
for (i = 0; i < recv_pkt->buffer_count; i++)
recv_buffer_free(recv_pkt->buffer_ptr[i]);
octeon_free_recv_info(recv_info);
return 0;
}
/**
* \brief Setup network interfaces
* @param octeon_dev octeon device
*
* Called during init time for each device. It assumes the NIC
* is already up and running. The link information for each
* interface is passed in link_info.
*/
static int setup_nic_devices(struct octeon_device *octeon_dev)
{
struct lio *lio = NULL;
struct net_device *netdev;
u8 mac[6], i, j;
struct octeon_soft_command *sc;
struct liquidio_if_cfg_context *ctx;
struct liquidio_if_cfg_resp *resp;
struct octdev_props *props;
int retval, num_iqueues, num_oqueues, q_no;
u64 q_mask;
int num_cpus = num_online_cpus();
union oct_nic_if_cfg if_cfg;
unsigned int base_queue;
unsigned int gmx_port_id;
u32 resp_size, ctx_size;
/* This is to handle link status changes */
octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
OPCODE_NIC_INFO,
lio_nic_info, octeon_dev);
/* REQTYPE_RESP_NET and REQTYPE_SOFT_COMMAND do not have free functions.
* They are handled directly.
*/
octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET,
free_netbuf);
octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET_SG,
free_netsgbuf);
octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_RESP_NET_SG,
free_netsgbuf_with_resp);
for (i = 0; i < octeon_dev->ifcount; i++) {
resp_size = sizeof(struct liquidio_if_cfg_resp);
ctx_size = sizeof(struct liquidio_if_cfg_context);
sc = (struct octeon_soft_command *)
octeon_alloc_soft_command(octeon_dev, 0,
resp_size, ctx_size);
resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
ctx = (struct liquidio_if_cfg_context *)sc->ctxptr;
num_iqueues =
CFG_GET_NUM_TXQS_NIC_IF(octeon_get_conf(octeon_dev), i);
num_oqueues =
CFG_GET_NUM_RXQS_NIC_IF(octeon_get_conf(octeon_dev), i);
base_queue =
CFG_GET_BASE_QUE_NIC_IF(octeon_get_conf(octeon_dev), i);
gmx_port_id =
CFG_GET_GMXID_NIC_IF(octeon_get_conf(octeon_dev), i);
if (num_iqueues > num_cpus)
num_iqueues = num_cpus;
if (num_oqueues > num_cpus)
num_oqueues = num_cpus;
dev_dbg(&octeon_dev->pci_dev->dev,
"requesting config for interface %d, iqs %d, oqs %d\n",
i, num_iqueues, num_oqueues);
ACCESS_ONCE(ctx->cond) = 0;
ctx->octeon_id = lio_get_device_id(octeon_dev);
init_waitqueue_head(&ctx->wc);
if_cfg.u64 = 0;
if_cfg.s.num_iqueues = num_iqueues;
if_cfg.s.num_oqueues = num_oqueues;
if_cfg.s.base_queue = base_queue;
if_cfg.s.gmx_port_id = gmx_port_id;
octeon_prepare_soft_command(octeon_dev, sc, OPCODE_NIC,
OPCODE_NIC_IF_CFG, i,
if_cfg.u64, 0);
sc->callback = if_cfg_callback;
sc->callback_arg = sc;
sc->wait_time = 1000;
retval = octeon_send_soft_command(octeon_dev, sc);
if (retval) {
dev_err(&octeon_dev->pci_dev->dev,
"iq/oq config failed status: %x\n",
retval);
/* Soft instr is freed by driver in case of failure. */
goto setup_nic_dev_fail;
}
/* Sleep on a wait queue till the cond flag indicates that the
* response arrived or timed-out.
*/
sleep_cond(&ctx->wc, &ctx->cond);
retval = resp->status;
if (retval) {
dev_err(&octeon_dev->pci_dev->dev, "iq/oq config failed\n");
goto setup_nic_dev_fail;
}
octeon_swap_8B_data((u64 *)(&resp->cfg_info),
(sizeof(struct liquidio_if_cfg_info)) >> 3);
num_iqueues = hweight64(resp->cfg_info.iqmask);
num_oqueues = hweight64(resp->cfg_info.oqmask);
if (!(num_iqueues) || !(num_oqueues)) {
dev_err(&octeon_dev->pci_dev->dev,
"Got bad iqueues (%016llx) or oqueues (%016llx) from firmware.\n",
resp->cfg_info.iqmask,
resp->cfg_info.oqmask);
goto setup_nic_dev_fail;
}
dev_dbg(&octeon_dev->pci_dev->dev,
"interface %d, iqmask %016llx, oqmask %016llx, numiqueues %d, numoqueues %d\n",
i, resp->cfg_info.iqmask, resp->cfg_info.oqmask,
num_iqueues, num_oqueues);
netdev = alloc_etherdev_mq(LIO_SIZE, num_iqueues);
if (!netdev) {
dev_err(&octeon_dev->pci_dev->dev, "Device allocation failed\n");
goto setup_nic_dev_fail;
}
props = &octeon_dev->props[i];
props->netdev = netdev;
if (num_iqueues > 1)
lionetdevops.ndo_select_queue = select_q;
/* Associate the routines that will handle different
* netdev tasks.
*/
netdev->netdev_ops = &lionetdevops;
lio = GET_LIO(netdev);
memset(lio, 0, sizeof(struct lio));
lio->linfo.ifidx = resp->cfg_info.ifidx;
lio->ifidx = resp->cfg_info.ifidx;
lio->linfo.num_rxpciq = num_oqueues;
lio->linfo.num_txpciq = num_iqueues;
q_mask = resp->cfg_info.oqmask;
/* q_mask is 0-based and already verified mask is nonzero */
for (j = 0; j < num_oqueues; j++) {
q_no = __ffs64(q_mask);
q_mask &= (~(1UL << q_no));
lio->linfo.rxpciq[j] = q_no;
}
q_mask = resp->cfg_info.iqmask;
for (j = 0; j < num_iqueues; j++) {
q_no = __ffs64(q_mask);
q_mask &= (~(1UL << q_no));
lio->linfo.txpciq[j] = q_no;
}
lio->linfo.hw_addr = resp->cfg_info.linfo.hw_addr;
lio->linfo.gmxport = resp->cfg_info.linfo.gmxport;
lio->linfo.link.u64 = resp->cfg_info.linfo.link.u64;
lio->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
lio->dev_capability = NETIF_F_HIGHDMA
| NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
| NETIF_F_SG | NETIF_F_RXCSUM
| NETIF_F_TSO | NETIF_F_TSO6
| NETIF_F_LRO;
netif_set_gso_max_size(netdev, OCTNIC_GSO_MAX_SIZE);
netdev->features = lio->dev_capability;
netdev->vlan_features = lio->dev_capability;
netdev->hw_features = lio->dev_capability;
/* Point to the properties for octeon device to which this
* interface belongs.
*/
lio->oct_dev = octeon_dev;
lio->octprops = props;
lio->netdev = netdev;
spin_lock_init(&lio->lock);
dev_dbg(&octeon_dev->pci_dev->dev,
"if%d gmx: %d hw_addr: 0x%llx\n", i,
lio->linfo.gmxport, CVM_CAST64(lio->linfo.hw_addr));
/* 64-bit swap required on LE machines */
octeon_swap_8B_data(&lio->linfo.hw_addr, 1);
for (j = 0; j < 6; j++)
mac[j] = *((u8 *)(((u8 *)&lio->linfo.hw_addr) + 2 + j));
/* Copy MAC Address to OS network device structure */
ether_addr_copy(netdev->dev_addr, mac);
if (setup_io_queues(octeon_dev, netdev)) {
dev_err(&octeon_dev->pci_dev->dev, "I/O queues creation failed\n");
goto setup_nic_dev_fail;
}
ifstate_set(lio, LIO_IFSTATE_DROQ_OPS);
/* By default all interfaces on a single Octeon uses the same
* tx and rx queues
*/
lio->txq = lio->linfo.txpciq[0];
lio->rxq = lio->linfo.rxpciq[0];
lio->tx_qsize = octeon_get_tx_qsize(octeon_dev, lio->txq);
lio->rx_qsize = octeon_get_rx_qsize(octeon_dev, lio->rxq);
if (setup_glist(lio)) {
dev_err(&octeon_dev->pci_dev->dev,
"Gather list allocation failed\n");
goto setup_nic_dev_fail;
}
/* Register ethtool support */
liquidio_set_ethtool_ops(netdev);
liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE);
if ((debug != -1) && (debug & NETIF_MSG_HW))
liquidio_set_feature(netdev, OCTNET_CMD_VERBOSE_ENABLE);
/* Register the network device with the OS */
if (register_netdev(netdev)) {
dev_err(&octeon_dev->pci_dev->dev, "Device registration failed\n");
goto setup_nic_dev_fail;
}
dev_dbg(&octeon_dev->pci_dev->dev,
"Setup NIC ifidx:%d mac:%02x%02x%02x%02x%02x%02x\n",
i, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
netif_carrier_off(netdev);
if (lio->linfo.link.s.status) {
netif_carrier_on(netdev);
start_txq(netdev);
} else {
netif_carrier_off(netdev);
}
ifstate_set(lio, LIO_IFSTATE_REGISTERED);
dev_dbg(&octeon_dev->pci_dev->dev,
"NIC ifidx:%d Setup successful\n", i);
octeon_free_soft_command(octeon_dev, sc);
}
return 0;
setup_nic_dev_fail:
octeon_free_soft_command(octeon_dev, sc);
while (i--) {
dev_err(&octeon_dev->pci_dev->dev,
"NIC ifidx:%d Setup failed\n", i);
liquidio_destroy_nic_device(octeon_dev, i);
}
return -ENODEV;
}
/**
* \brief initialize the NIC
* @param oct octeon device
*
* This initialization routine is called once the Octeon device application is
* up and running
*/
static int liquidio_init_nic_module(struct octeon_device *oct)
{
struct oct_intrmod_cfg *intrmod_cfg;
int retval = 0;
int num_nic_ports = CFG_GET_NUM_NIC_PORTS(octeon_get_conf(oct));
dev_dbg(&oct->pci_dev->dev, "Initializing network interfaces\n");
/* only default iq and oq were initialized
* initialize the rest as well
*/
/* run port_config command for each port */
oct->ifcount = num_nic_ports;
memset(oct->props, 0,
sizeof(struct octdev_props) * num_nic_ports);
retval = setup_nic_devices(oct);
if (retval) {
dev_err(&oct->pci_dev->dev, "Setup NIC devices failed\n");
goto octnet_init_failure;
}
liquidio_ptp_init(oct);
/* Initialize interrupt moderation params */
intrmod_cfg = &((struct octeon_device *)oct)->intrmod;
intrmod_cfg->intrmod_enable = 1;
intrmod_cfg->intrmod_check_intrvl = LIO_INTRMOD_CHECK_INTERVAL;
intrmod_cfg->intrmod_maxpkt_ratethr = LIO_INTRMOD_MAXPKT_RATETHR;
intrmod_cfg->intrmod_minpkt_ratethr = LIO_INTRMOD_MINPKT_RATETHR;
intrmod_cfg->intrmod_maxcnt_trigger = LIO_INTRMOD_MAXCNT_TRIGGER;
intrmod_cfg->intrmod_maxtmr_trigger = LIO_INTRMOD_MAXTMR_TRIGGER;
intrmod_cfg->intrmod_mintmr_trigger = LIO_INTRMOD_MINTMR_TRIGGER;
intrmod_cfg->intrmod_mincnt_trigger = LIO_INTRMOD_MINCNT_TRIGGER;
dev_dbg(&oct->pci_dev->dev, "Network interfaces ready\n");
return retval;
octnet_init_failure:
oct->ifcount = 0;
return retval;
}
/**
* \brief starter callback that invokes the remaining initialization work after
* the NIC is up and running.
* @param octptr work struct work_struct
*/
static void nic_starter(struct work_struct *work)
{
struct octeon_device *oct;
struct cavium_wk *wk = (struct cavium_wk *)work;
oct = (struct octeon_device *)wk->ctxptr;
if (atomic_read(&oct->status) == OCT_DEV_RUNNING)
return;
/* If the status of the device is CORE_OK, the core
* application has reported its application type. Call
* any registered handlers now and move to the RUNNING
* state.
*/
if (atomic_read(&oct->status) != OCT_DEV_CORE_OK) {
schedule_delayed_work(&oct->nic_poll_work.work,
LIQUIDIO_STARTER_POLL_INTERVAL_MS);
return;
}
atomic_set(&oct->status, OCT_DEV_RUNNING);
if (oct->app_mode && oct->app_mode == CVM_DRV_NIC_APP) {
dev_dbg(&oct->pci_dev->dev, "Starting NIC module\n");
if (liquidio_init_nic_module(oct))
dev_err(&oct->pci_dev->dev, "NIC initialization failed\n");
else
handshake[oct->octeon_id].started_ok = 1;
} else {
dev_err(&oct->pci_dev->dev,
"Unexpected application running on NIC (%d). Check firmware.\n",
oct->app_mode);
}
complete(&handshake[oct->octeon_id].started);
}
/**
* \brief Device initialization for each Octeon device that is probed
* @param octeon_dev octeon device
*/
static int octeon_device_init(struct octeon_device *octeon_dev)
{
int j, ret;
struct octeon_device_priv *oct_priv =
(struct octeon_device_priv *)octeon_dev->priv;
atomic_set(&octeon_dev->status, OCT_DEV_BEGIN_STATE);
/* Enable access to the octeon device and make its DMA capability
* known to the OS.
*/
if (octeon_pci_os_setup(octeon_dev))
return 1;
/* Identify the Octeon type and map the BAR address space. */
if (octeon_chip_specific_setup(octeon_dev)) {
dev_err(&octeon_dev->pci_dev->dev, "Chip specific setup failed\n");
return 1;
}
atomic_set(&octeon_dev->status, OCT_DEV_PCI_MAP_DONE);
octeon_dev->app_mode = CVM_DRV_INVALID_APP;
/* Do a soft reset of the Octeon device. */
if (octeon_dev->fn_list.soft_reset(octeon_dev))
return 1;
/* Initialize the dispatch mechanism used to push packets arriving on
* Octeon Output queues.
*/
if (octeon_init_dispatch_list(octeon_dev))
return 1;
octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
OPCODE_NIC_CORE_DRV_ACTIVE,
octeon_core_drv_init,
octeon_dev);
INIT_DELAYED_WORK(&octeon_dev->nic_poll_work.work, nic_starter);
octeon_dev->nic_poll_work.ctxptr = (void *)octeon_dev;
schedule_delayed_work(&octeon_dev->nic_poll_work.work,
LIQUIDIO_STARTER_POLL_INTERVAL_MS);
atomic_set(&octeon_dev->status, OCT_DEV_DISPATCH_INIT_DONE);
octeon_set_io_queues_off(octeon_dev);
/* Setup the data structures that manage this Octeon's Input queues. */
if (octeon_setup_instr_queues(octeon_dev)) {
dev_err(&octeon_dev->pci_dev->dev,
"instruction queue initialization failed\n");
/* On error, release any previously allocated queues */
for (j = 0; j < octeon_dev->num_iqs; j++)
octeon_delete_instr_queue(octeon_dev, j);
return 1;
}
atomic_set(&octeon_dev->status, OCT_DEV_INSTR_QUEUE_INIT_DONE);
/* Initialize soft command buffer pool
*/
if (octeon_setup_sc_buffer_pool(octeon_dev)) {
dev_err(&octeon_dev->pci_dev->dev, "sc buffer pool allocation failed\n");
return 1;
}
atomic_set(&octeon_dev->status, OCT_DEV_SC_BUFF_POOL_INIT_DONE);
/* Initialize lists to manage the requests of different types that
* arrive from user & kernel applications for this octeon device.
*/
if (octeon_setup_response_list(octeon_dev)) {
dev_err(&octeon_dev->pci_dev->dev, "Response list allocation failed\n");
return 1;
}
atomic_set(&octeon_dev->status, OCT_DEV_RESP_LIST_INIT_DONE);
if (octeon_setup_output_queues(octeon_dev)) {
dev_err(&octeon_dev->pci_dev->dev, "Output queue initialization failed\n");
/* Release any previously allocated queues */
for (j = 0; j < octeon_dev->num_oqs; j++)
octeon_delete_droq(octeon_dev, j);
}
atomic_set(&octeon_dev->status, OCT_DEV_DROQ_INIT_DONE);
/* The input and output queue registers were setup earlier (the queues
* were not enabled). Any additional registers that need to be
* programmed should be done now.
*/
ret = octeon_dev->fn_list.setup_device_regs(octeon_dev);
if (ret) {
dev_err(&octeon_dev->pci_dev->dev,
"Failed to configure device registers\n");
return ret;
}
/* Initialize the tasklet that handles output queue packet processing.*/
dev_dbg(&octeon_dev->pci_dev->dev, "Initializing droq tasklet\n");
tasklet_init(&oct_priv->droq_tasklet, octeon_droq_bh,
(unsigned long)octeon_dev);
/* Setup the interrupt handler and record the INT SUM register address
*/
octeon_setup_interrupt(octeon_dev);
/* Enable Octeon device interrupts */
octeon_dev->fn_list.enable_interrupt(octeon_dev->chip);
/* Enable the input and output queues for this Octeon device */
octeon_dev->fn_list.enable_io_queues(octeon_dev);
atomic_set(&octeon_dev->status, OCT_DEV_IO_QUEUES_DONE);
dev_dbg(&octeon_dev->pci_dev->dev, "Waiting for DDR initialization...\n");
if (ddr_timeout == 0) {
dev_info(&octeon_dev->pci_dev->dev,
"WAITING. Set ddr_timeout to non-zero value to proceed with initialization.\n");
}
schedule_timeout_uninterruptible(HZ * LIO_RESET_SECS);
/* Wait for the octeon to initialize DDR after the soft-reset. */
ret = octeon_wait_for_ddr_init(octeon_dev, &ddr_timeout);
if (ret) {
dev_err(&octeon_dev->pci_dev->dev,
"DDR not initialized. Please confirm that board is configured to boot from Flash, ret: %d\n",
ret);
return 1;
}
if (octeon_wait_for_bootloader(octeon_dev, 1000) != 0) {
dev_err(&octeon_dev->pci_dev->dev, "Board not responding\n");
return 1;
}
dev_dbg(&octeon_dev->pci_dev->dev, "Initializing consoles\n");
ret = octeon_init_consoles(octeon_dev);
if (ret) {
dev_err(&octeon_dev->pci_dev->dev, "Could not access board consoles\n");
return 1;
}
ret = octeon_add_console(octeon_dev, 0);
if (ret) {
dev_err(&octeon_dev->pci_dev->dev, "Could not access board console\n");
return 1;
}
atomic_set(&octeon_dev->status, OCT_DEV_CONSOLE_INIT_DONE);
dev_dbg(&octeon_dev->pci_dev->dev, "Loading firmware\n");
ret = load_firmware(octeon_dev);
if (ret) {
dev_err(&octeon_dev->pci_dev->dev, "Could not load firmware to board\n");
return 1;
}
handshake[octeon_dev->octeon_id].init_ok = 1;
complete(&handshake[octeon_dev->octeon_id].init);
atomic_set(&octeon_dev->status, OCT_DEV_HOST_OK);
/* Send Credit for Octeon Output queues. Credits are always sent after
* the output queue is enabled.
*/
for (j = 0; j < octeon_dev->num_oqs; j++)
writel(octeon_dev->droq[j]->max_count,
octeon_dev->droq[j]->pkts_credit_reg);
/* Packets can start arriving on the output queues from this point. */
return 0;
}
/**
* \brief Exits the module
*/
static void __exit liquidio_exit(void)
{
liquidio_deinit_pci();
pr_info("LiquidIO network module is now unloaded\n");
}
module_init(liquidio_init);
module_exit(liquidio_exit);