Kernel  |  4.4

下载     查看原文件
C++程序  |  1589行  |  51.62 KB
/*P:010
 * A hypervisor allows multiple Operating Systems to run on a single machine.
 * To quote David Wheeler: "Any problem in computer science can be solved with
 * another layer of indirection."
 *
 * We keep things simple in two ways.  First, we start with a normal Linux
 * kernel and insert a module (lg.ko) which allows us to run other Linux
 * kernels the same way we'd run processes.  We call the first kernel the Host,
 * and the others the Guests.  The program which sets up and configures Guests
 * (such as the example in tools/lguest/lguest.c) is called the Launcher.
 *
 * Secondly, we only run specially modified Guests, not normal kernels: setting
 * CONFIG_LGUEST_GUEST to "y" compiles this file into the kernel so it knows
 * how to be a Guest at boot time.  This means that you can use the same kernel
 * you boot normally (ie. as a Host) as a Guest.
 *
 * These Guests know that they cannot do privileged operations, such as disable
 * interrupts, and that they have to ask the Host to do such things explicitly.
 * This file consists of all the replacements for such low-level native
 * hardware operations: these special Guest versions call the Host.
 *
 * So how does the kernel know it's a Guest?  We'll see that later, but let's
 * just say that we end up here where we replace the native functions various
 * "paravirt" structures with our Guest versions, then boot like normal.
:*/

/*
 * Copyright (C) 2006, Rusty Russell <rusty@rustcorp.com.au> IBM Corporation.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 * NON INFRINGEMENT.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */
#include <linux/kernel.h>
#include <linux/start_kernel.h>
#include <linux/string.h>
#include <linux/console.h>
#include <linux/screen_info.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/lguest.h>
#include <linux/lguest_launcher.h>
#include <linux/virtio_console.h>
#include <linux/pm.h>
#include <linux/export.h>
#include <linux/pci.h>
#include <linux/virtio_pci.h>
#include <asm/acpi.h>
#include <asm/apic.h>
#include <asm/lguest.h>
#include <asm/paravirt.h>
#include <asm/param.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/desc.h>
#include <asm/setup.h>
#include <asm/e820.h>
#include <asm/mce.h>
#include <asm/io.h>
#include <asm/fpu/api.h>
#include <asm/stackprotector.h>
#include <asm/reboot.h>		/* for struct machine_ops */
#include <asm/kvm_para.h>
#include <asm/pci_x86.h>
#include <asm/pci-direct.h>

/*G:010
 * Welcome to the Guest!
 *
 * The Guest in our tale is a simple creature: identical to the Host but
 * behaving in simplified but equivalent ways.  In particular, the Guest is the
 * same kernel as the Host (or at least, built from the same source code).
:*/

struct lguest_data lguest_data = {
	.hcall_status = { [0 ... LHCALL_RING_SIZE-1] = 0xFF },
	.noirq_iret = (u32)lguest_noirq_iret,
	.kernel_address = PAGE_OFFSET,
	.blocked_interrupts = { 1 }, /* Block timer interrupts */
	.syscall_vec = IA32_SYSCALL_VECTOR,
};

/*G:037
 * async_hcall() is pretty simple: I'm quite proud of it really.  We have a
 * ring buffer of stored hypercalls which the Host will run though next time we
 * do a normal hypercall.  Each entry in the ring has 5 slots for the hypercall
 * arguments, and a "hcall_status" word which is 0 if the call is ready to go,
 * and 255 once the Host has finished with it.
 *
 * If we come around to a slot which hasn't been finished, then the table is
 * full and we just make the hypercall directly.  This has the nice side
 * effect of causing the Host to run all the stored calls in the ring buffer
 * which empties it for next time!
 */
static void async_hcall(unsigned long call, unsigned long arg1,
			unsigned long arg2, unsigned long arg3,
			unsigned long arg4)
{
	/* Note: This code assumes we're uniprocessor. */
	static unsigned int next_call;
	unsigned long flags;

	/*
	 * Disable interrupts if not already disabled: we don't want an
	 * interrupt handler making a hypercall while we're already doing
	 * one!
	 */
	local_irq_save(flags);
	if (lguest_data.hcall_status[next_call] != 0xFF) {
		/* Table full, so do normal hcall which will flush table. */
		hcall(call, arg1, arg2, arg3, arg4);
	} else {
		lguest_data.hcalls[next_call].arg0 = call;
		lguest_data.hcalls[next_call].arg1 = arg1;
		lguest_data.hcalls[next_call].arg2 = arg2;
		lguest_data.hcalls[next_call].arg3 = arg3;
		lguest_data.hcalls[next_call].arg4 = arg4;
		/* Arguments must all be written before we mark it to go */
		wmb();
		lguest_data.hcall_status[next_call] = 0;
		if (++next_call == LHCALL_RING_SIZE)
			next_call = 0;
	}
	local_irq_restore(flags);
}

/*G:035
 * Notice the lazy_hcall() above, rather than hcall().  This is our first real
 * optimization trick!
 *
 * When lazy_mode is set, it means we're allowed to defer all hypercalls and do
 * them as a batch when lazy_mode is eventually turned off.  Because hypercalls
 * are reasonably expensive, batching them up makes sense.  For example, a
 * large munmap might update dozens of page table entries: that code calls
 * paravirt_enter_lazy_mmu(), does the dozen updates, then calls
 * lguest_leave_lazy_mode().
 *
 * So, when we're in lazy mode, we call async_hcall() to store the call for
 * future processing:
 */
static void lazy_hcall1(unsigned long call, unsigned long arg1)
{
	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
		hcall(call, arg1, 0, 0, 0);
	else
		async_hcall(call, arg1, 0, 0, 0);
}

/* You can imagine what lazy_hcall2, 3 and 4 look like. :*/
static void lazy_hcall2(unsigned long call,
			unsigned long arg1,
			unsigned long arg2)
{
	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
		hcall(call, arg1, arg2, 0, 0);
	else
		async_hcall(call, arg1, arg2, 0, 0);
}

static void lazy_hcall3(unsigned long call,
			unsigned long arg1,
			unsigned long arg2,
			unsigned long arg3)
{
	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
		hcall(call, arg1, arg2, arg3, 0);
	else
		async_hcall(call, arg1, arg2, arg3, 0);
}

#ifdef CONFIG_X86_PAE
static void lazy_hcall4(unsigned long call,
			unsigned long arg1,
			unsigned long arg2,
			unsigned long arg3,
			unsigned long arg4)
{
	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
		hcall(call, arg1, arg2, arg3, arg4);
	else
		async_hcall(call, arg1, arg2, arg3, arg4);
}
#endif

/*G:036
 * When lazy mode is turned off, we issue the do-nothing hypercall to
 * flush any stored calls, and call the generic helper to reset the
 * per-cpu lazy mode variable.
 */
static void lguest_leave_lazy_mmu_mode(void)
{
	hcall(LHCALL_FLUSH_ASYNC, 0, 0, 0, 0);
	paravirt_leave_lazy_mmu();
}

/*
 * We also catch the end of context switch; we enter lazy mode for much of
 * that too, so again we need to flush here.
 *
 * (Technically, this is lazy CPU mode, and normally we're in lazy MMU
 * mode, but unlike Xen, lguest doesn't care about the difference).
 */
static void lguest_end_context_switch(struct task_struct *next)
{
	hcall(LHCALL_FLUSH_ASYNC, 0, 0, 0, 0);
	paravirt_end_context_switch(next);
}

/*G:032
 * After that diversion we return to our first native-instruction
 * replacements: four functions for interrupt control.
 *
 * The simplest way of implementing these would be to have "turn interrupts
 * off" and "turn interrupts on" hypercalls.  Unfortunately, this is too slow:
 * these are by far the most commonly called functions of those we override.
 *
 * So instead we keep an "irq_enabled" field inside our "struct lguest_data",
 * which the Guest can update with a single instruction.  The Host knows to
 * check there before it tries to deliver an interrupt.
 */

/*
 * save_flags() is expected to return the processor state (ie. "flags").  The
 * flags word contains all kind of stuff, but in practice Linux only cares
 * about the interrupt flag.  Our "save_flags()" just returns that.
 */
asmlinkage __visible unsigned long lguest_save_fl(void)
{
	return lguest_data.irq_enabled;
}

/* Interrupts go off... */
asmlinkage __visible void lguest_irq_disable(void)
{
	lguest_data.irq_enabled = 0;
}

/*
 * Let's pause a moment.  Remember how I said these are called so often?
 * Jeremy Fitzhardinge optimized them so hard early in 2009 that he had to
 * break some rules.  In particular, these functions are assumed to save their
 * own registers if they need to: normal C functions assume they can trash the
 * eax register.  To use normal C functions, we use
 * PV_CALLEE_SAVE_REGS_THUNK(), which pushes %eax onto the stack, calls the
 * C function, then restores it.
 */
PV_CALLEE_SAVE_REGS_THUNK(lguest_save_fl);
PV_CALLEE_SAVE_REGS_THUNK(lguest_irq_disable);
/*:*/

/* These are in head_32.S */
extern void lg_irq_enable(void);
extern void lg_restore_fl(unsigned long flags);

/*M:003
 * We could be more efficient in our checking of outstanding interrupts, rather
 * than using a branch.  One way would be to put the "irq_enabled" field in a
 * page by itself, and have the Host write-protect it when an interrupt comes
 * in when irqs are disabled.  There will then be a page fault as soon as
 * interrupts are re-enabled.
 *
 * A better method is to implement soft interrupt disable generally for x86:
 * instead of disabling interrupts, we set a flag.  If an interrupt does come
 * in, we then disable them for real.  This is uncommon, so we could simply use
 * a hypercall for interrupt control and not worry about efficiency.
:*/

/*G:034
 * The Interrupt Descriptor Table (IDT).
 *
 * The IDT tells the processor what to do when an interrupt comes in.  Each
 * entry in the table is a 64-bit descriptor: this holds the privilege level,
 * address of the handler, and... well, who cares?  The Guest just asks the
 * Host to make the change anyway, because the Host controls the real IDT.
 */
static void lguest_write_idt_entry(gate_desc *dt,
				   int entrynum, const gate_desc *g)
{
	/*
	 * The gate_desc structure is 8 bytes long: we hand it to the Host in
	 * two 32-bit chunks.  The whole 32-bit kernel used to hand descriptors
	 * around like this; typesafety wasn't a big concern in Linux's early
	 * years.
	 */
	u32 *desc = (u32 *)g;
	/* Keep the local copy up to date. */
	native_write_idt_entry(dt, entrynum, g);
	/* Tell Host about this new entry. */
	hcall(LHCALL_LOAD_IDT_ENTRY, entrynum, desc[0], desc[1], 0);
}

/*
 * Changing to a different IDT is very rare: we keep the IDT up-to-date every
 * time it is written, so we can simply loop through all entries and tell the
 * Host about them.
 */
static void lguest_load_idt(const struct desc_ptr *desc)
{
	unsigned int i;
	struct desc_struct *idt = (void *)desc->address;

	for (i = 0; i < (desc->size+1)/8; i++)
		hcall(LHCALL_LOAD_IDT_ENTRY, i, idt[i].a, idt[i].b, 0);
}

/*
 * The Global Descriptor Table.
 *
 * The Intel architecture defines another table, called the Global Descriptor
 * Table (GDT).  You tell the CPU where it is (and its size) using the "lgdt"
 * instruction, and then several other instructions refer to entries in the
 * table.  There are three entries which the Switcher needs, so the Host simply
 * controls the entire thing and the Guest asks it to make changes using the
 * LOAD_GDT hypercall.
 *
 * This is the exactly like the IDT code.
 */
static void lguest_load_gdt(const struct desc_ptr *desc)
{
	unsigned int i;
	struct desc_struct *gdt = (void *)desc->address;

	for (i = 0; i < (desc->size+1)/8; i++)
		hcall(LHCALL_LOAD_GDT_ENTRY, i, gdt[i].a, gdt[i].b, 0);
}

/*
 * For a single GDT entry which changes, we simply change our copy and
 * then tell the host about it.
 */
static void lguest_write_gdt_entry(struct desc_struct *dt, int entrynum,
				   const void *desc, int type)
{
	native_write_gdt_entry(dt, entrynum, desc, type);
	/* Tell Host about this new entry. */
	hcall(LHCALL_LOAD_GDT_ENTRY, entrynum,
	      dt[entrynum].a, dt[entrynum].b, 0);
}

/*
 * There are three "thread local storage" GDT entries which change
 * on every context switch (these three entries are how glibc implements
 * __thread variables).  As an optimization, we have a hypercall
 * specifically for this case.
 *
 * Wouldn't it be nicer to have a general LOAD_GDT_ENTRIES hypercall
 * which took a range of entries?
 */
static void lguest_load_tls(struct thread_struct *t, unsigned int cpu)
{
	/*
	 * There's one problem which normal hardware doesn't have: the Host
	 * can't handle us removing entries we're currently using.  So we clear
	 * the GS register here: if it's needed it'll be reloaded anyway.
	 */
	lazy_load_gs(0);
	lazy_hcall2(LHCALL_LOAD_TLS, __pa(&t->tls_array), cpu);
}

/*G:038
 * That's enough excitement for now, back to ploughing through each of the
 * different pv_ops structures (we're about 1/3 of the way through).
 *
 * This is the Local Descriptor Table, another weird Intel thingy.  Linux only
 * uses this for some strange applications like Wine.  We don't do anything
 * here, so they'll get an informative and friendly Segmentation Fault.
 */
static void lguest_set_ldt(const void *addr, unsigned entries)
{
}

/*
 * This loads a GDT entry into the "Task Register": that entry points to a
 * structure called the Task State Segment.  Some comments scattered though the
 * kernel code indicate that this used for task switching in ages past, along
 * with blood sacrifice and astrology.
 *
 * Now there's nothing interesting in here that we don't get told elsewhere.
 * But the native version uses the "ltr" instruction, which makes the Host
 * complain to the Guest about a Segmentation Fault and it'll oops.  So we
 * override the native version with a do-nothing version.
 */
static void lguest_load_tr_desc(void)
{
}

/*
 * The "cpuid" instruction is a way of querying both the CPU identity
 * (manufacturer, model, etc) and its features.  It was introduced before the
 * Pentium in 1993 and keeps getting extended by both Intel, AMD and others.
 * As you might imagine, after a decade and a half this treatment, it is now a
 * giant ball of hair.  Its entry in the current Intel manual runs to 28 pages.
 *
 * This instruction even it has its own Wikipedia entry.  The Wikipedia entry
 * has been translated into 6 languages.  I am not making this up!
 *
 * We could get funky here and identify ourselves as "GenuineLguest", but
 * instead we just use the real "cpuid" instruction.  Then I pretty much turned
 * off feature bits until the Guest booted.  (Don't say that: you'll damage
 * lguest sales!)  Shut up, inner voice!  (Hey, just pointing out that this is
 * hardly future proof.)  No one's listening!  They don't like you anyway,
 * parenthetic weirdo!
 *
 * Replacing the cpuid so we can turn features off is great for the kernel, but
 * anyone (including userspace) can just use the raw "cpuid" instruction and
 * the Host won't even notice since it isn't privileged.  So we try not to get
 * too worked up about it.
 */
static void lguest_cpuid(unsigned int *ax, unsigned int *bx,
			 unsigned int *cx, unsigned int *dx)
{
	int function = *ax;

	native_cpuid(ax, bx, cx, dx);
	switch (function) {
	/*
	 * CPUID 0 gives the highest legal CPUID number (and the ID string).
	 * We futureproof our code a little by sticking to known CPUID values.
	 */
	case 0:
		if (*ax > 5)
			*ax = 5;
		break;

	/*
	 * CPUID 1 is a basic feature request.
	 *
	 * CX: we only allow kernel to see SSE3, CMPXCHG16B and SSSE3
	 * DX: SSE, SSE2, FXSR, MMX, CMOV, CMPXCHG8B, TSC, FPU and PAE.
	 */
	case 1:
		*cx &= 0x00002201;
		*dx &= 0x07808151;
		/*
		 * The Host can do a nice optimization if it knows that the
		 * kernel mappings (addresses above 0xC0000000 or whatever
		 * PAGE_OFFSET is set to) haven't changed.  But Linux calls
		 * flush_tlb_user() for both user and kernel mappings unless
		 * the Page Global Enable (PGE) feature bit is set.
		 */
		*dx |= 0x00002000;
		/*
		 * We also lie, and say we're family id 5.  6 or greater
		 * leads to a rdmsr in early_init_intel which we can't handle.
		 * Family ID is returned as bits 8-12 in ax.
		 */
		*ax &= 0xFFFFF0FF;
		*ax |= 0x00000500;
		break;

	/*
	 * This is used to detect if we're running under KVM.  We might be,
	 * but that's a Host matter, not us.  So say we're not.
	 */
	case KVM_CPUID_SIGNATURE:
		*bx = *cx = *dx = 0;
		break;

	/*
	 * 0x80000000 returns the highest Extended Function, so we futureproof
	 * like we do above by limiting it to known fields.
	 */
	case 0x80000000:
		if (*ax > 0x80000008)
			*ax = 0x80000008;
		break;

	/*
	 * PAE systems can mark pages as non-executable.  Linux calls this the
	 * NX bit.  Intel calls it XD (eXecute Disable), AMD EVP (Enhanced
	 * Virus Protection).  We just switch it off here, since we don't
	 * support it.
	 */
	case 0x80000001:
		*dx &= ~(1 << 20);
		break;
	}
}

/*
 * Intel has four control registers, imaginatively named cr0, cr2, cr3 and cr4.
 * I assume there's a cr1, but it hasn't bothered us yet, so we'll not bother
 * it.  The Host needs to know when the Guest wants to change them, so we have
 * a whole series of functions like read_cr0() and write_cr0().
 *
 * We start with cr0.  cr0 allows you to turn on and off all kinds of basic
 * features, but Linux only really cares about one: the horrifically-named Task
 * Switched (TS) bit at bit 3 (ie. 8)
 *
 * What does the TS bit do?  Well, it causes the CPU to trap (interrupt 7) if
 * the floating point unit is used.  Which allows us to restore FPU state
 * lazily after a task switch, and Linux uses that gratefully, but wouldn't a
 * name like "FPUTRAP bit" be a little less cryptic?
 *
 * We store cr0 locally because the Host never changes it.  The Guest sometimes
 * wants to read it and we'd prefer not to bother the Host unnecessarily.
 */
static unsigned long current_cr0;
static void lguest_write_cr0(unsigned long val)
{
	lazy_hcall1(LHCALL_TS, val & X86_CR0_TS);
	current_cr0 = val;
}

static unsigned long lguest_read_cr0(void)
{
	return current_cr0;
}

/*
 * Intel provided a special instruction to clear the TS bit for people too cool
 * to use write_cr0() to do it.  This "clts" instruction is faster, because all
 * the vowels have been optimized out.
 */
static void lguest_clts(void)
{
	lazy_hcall1(LHCALL_TS, 0);
	current_cr0 &= ~X86_CR0_TS;
}

/*
 * cr2 is the virtual address of the last page fault, which the Guest only ever
 * reads.  The Host kindly writes this into our "struct lguest_data", so we
 * just read it out of there.
 */
static unsigned long lguest_read_cr2(void)
{
	return lguest_data.cr2;
}

/* See lguest_set_pte() below. */
static bool cr3_changed = false;
static unsigned long current_cr3;

/*
 * cr3 is the current toplevel pagetable page: the principle is the same as
 * cr0.  Keep a local copy, and tell the Host when it changes.
 */
static void lguest_write_cr3(unsigned long cr3)
{
	lazy_hcall1(LHCALL_NEW_PGTABLE, cr3);
	current_cr3 = cr3;

	/* These two page tables are simple, linear, and used during boot */
	if (cr3 != __pa_symbol(swapper_pg_dir) &&
	    cr3 != __pa_symbol(initial_page_table))
		cr3_changed = true;
}

static unsigned long lguest_read_cr3(void)
{
	return current_cr3;
}

/* cr4 is used to enable and disable PGE, but we don't care. */
static unsigned long lguest_read_cr4(void)
{
	return 0;
}

static void lguest_write_cr4(unsigned long val)
{
}

/*
 * Page Table Handling.
 *
 * Now would be a good time to take a rest and grab a coffee or similarly
 * relaxing stimulant.  The easy parts are behind us, and the trek gradually
 * winds uphill from here.
 *
 * Quick refresher: memory is divided into "pages" of 4096 bytes each.  The CPU
 * maps virtual addresses to physical addresses using "page tables".  We could
 * use one huge index of 1 million entries: each address is 4 bytes, so that's
 * 1024 pages just to hold the page tables.   But since most virtual addresses
 * are unused, we use a two level index which saves space.  The cr3 register
 * contains the physical address of the top level "page directory" page, which
 * contains physical addresses of up to 1024 second-level pages.  Each of these
 * second level pages contains up to 1024 physical addresses of actual pages,
 * or Page Table Entries (PTEs).
 *
 * Here's a diagram, where arrows indicate physical addresses:
 *
 * cr3 ---> +---------+
 *	    |  	   --------->+---------+
 *	    |	      |	     | PADDR1  |
 *	  Mid-level   |	     | PADDR2  |
 *	  (PMD) page  |	     | 	       |
 *	    |	      |	   Lower-level |
 *	    |	      |	   (PTE) page  |
 *	    |	      |	     |	       |
 *	      ....    	     	 ....
 *
 * So to convert a virtual address to a physical address, we look up the top
 * level, which points us to the second level, which gives us the physical
 * address of that page.  If the top level entry was not present, or the second
 * level entry was not present, then the virtual address is invalid (we
 * say "the page was not mapped").
 *
 * Put another way, a 32-bit virtual address is divided up like so:
 *
 *  1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 * |<---- 10 bits ---->|<---- 10 bits ---->|<------ 12 bits ------>|
 *    Index into top     Index into second      Offset within page
 *  page directory page    pagetable page
 *
 * Now, unfortunately, this isn't the whole story: Intel added Physical Address
 * Extension (PAE) to allow 32 bit systems to use 64GB of memory (ie. 36 bits).
 * These are held in 64-bit page table entries, so we can now only fit 512
 * entries in a page, and the neat three-level tree breaks down.
 *
 * The result is a four level page table:
 *
 * cr3 --> [ 4 Upper  ]
 *	   [   Level  ]
 *	   [  Entries ]
 *	   [(PUD Page)]---> +---------+
 *	 		    |  	   --------->+---------+
 *	 		    |	      |	     | PADDR1  |
 *	 		  Mid-level   |	     | PADDR2  |
 *	 		  (PMD) page  |	     | 	       |
 *	 		    |	      |	   Lower-level |
 *	 		    |	      |	   (PTE) page  |
 *	 		    |	      |	     |	       |
 *	 		      ....    	     	 ....
 *
 *
 * And the virtual address is decoded as:
 *
 *         1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 *      |<-2->|<--- 9 bits ---->|<---- 9 bits --->|<------ 12 bits ------>|
 * Index into    Index into mid    Index into lower    Offset within page
 * top entries   directory page     pagetable page
 *
 * It's too hard to switch between these two formats at runtime, so Linux only
 * supports one or the other depending on whether CONFIG_X86_PAE is set.  Many
 * distributions turn it on, and not just for people with silly amounts of
 * memory: the larger PTE entries allow room for the NX bit, which lets the
 * kernel disable execution of pages and increase security.
 *
 * This was a problem for lguest, which couldn't run on these distributions;
 * then Matias Zabaljauregui figured it all out and implemented it, and only a
 * handful of puppies were crushed in the process!
 *
 * Back to our point: the kernel spends a lot of time changing both the
 * top-level page directory and lower-level pagetable pages.  The Guest doesn't
 * know physical addresses, so while it maintains these page tables exactly
 * like normal, it also needs to keep the Host informed whenever it makes a
 * change: the Host will create the real page tables based on the Guests'.
 */

/*
 * The Guest calls this after it has set a second-level entry (pte), ie. to map
 * a page into a process' address space.  We tell the Host the toplevel and
 * address this corresponds to.  The Guest uses one pagetable per process, so
 * we need to tell the Host which one we're changing (mm->pgd).
 */
static void lguest_pte_update(struct mm_struct *mm, unsigned long addr,
			       pte_t *ptep)
{
#ifdef CONFIG_X86_PAE
	/* PAE needs to hand a 64 bit page table entry, so it uses two args. */
	lazy_hcall4(LHCALL_SET_PTE, __pa(mm->pgd), addr,
		    ptep->pte_low, ptep->pte_high);
#else
	lazy_hcall3(LHCALL_SET_PTE, __pa(mm->pgd), addr, ptep->pte_low);
#endif
}

/* This is the "set and update" combo-meal-deal version. */
static void lguest_set_pte_at(struct mm_struct *mm, unsigned long addr,
			      pte_t *ptep, pte_t pteval)
{
	native_set_pte(ptep, pteval);
	lguest_pte_update(mm, addr, ptep);
}

/*
 * The Guest calls lguest_set_pud to set a top-level entry and lguest_set_pmd
 * to set a middle-level entry when PAE is activated.
 *
 * Again, we set the entry then tell the Host which page we changed,
 * and the index of the entry we changed.
 */
#ifdef CONFIG_X86_PAE
static void lguest_set_pud(pud_t *pudp, pud_t pudval)
{
	native_set_pud(pudp, pudval);

	/* 32 bytes aligned pdpt address and the index. */
	lazy_hcall2(LHCALL_SET_PGD, __pa(pudp) & 0xFFFFFFE0,
		   (__pa(pudp) & 0x1F) / sizeof(pud_t));
}

static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
{
	native_set_pmd(pmdp, pmdval);
	lazy_hcall2(LHCALL_SET_PMD, __pa(pmdp) & PAGE_MASK,
		   (__pa(pmdp) & (PAGE_SIZE - 1)) / sizeof(pmd_t));
}
#else

/* The Guest calls lguest_set_pmd to set a top-level entry when !PAE. */
static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
{
	native_set_pmd(pmdp, pmdval);
	lazy_hcall2(LHCALL_SET_PGD, __pa(pmdp) & PAGE_MASK,
		   (__pa(pmdp) & (PAGE_SIZE - 1)) / sizeof(pmd_t));
}
#endif

/*
 * There are a couple of legacy places where the kernel sets a PTE, but we
 * don't know the top level any more.  This is useless for us, since we don't
 * know which pagetable is changing or what address, so we just tell the Host
 * to forget all of them.  Fortunately, this is very rare.
 *
 * ... except in early boot when the kernel sets up the initial pagetables,
 * which makes booting astonishingly slow: 48 seconds!  So we don't even tell
 * the Host anything changed until we've done the first real page table switch,
 * which brings boot back to 4.3 seconds.
 */
static void lguest_set_pte(pte_t *ptep, pte_t pteval)
{
	native_set_pte(ptep, pteval);
	if (cr3_changed)
		lazy_hcall1(LHCALL_FLUSH_TLB, 1);
}

#ifdef CONFIG_X86_PAE
/*
 * With 64-bit PTE values, we need to be careful setting them: if we set 32
 * bits at a time, the hardware could see a weird half-set entry.  These
 * versions ensure we update all 64 bits at once.
 */
static void lguest_set_pte_atomic(pte_t *ptep, pte_t pte)
{
	native_set_pte_atomic(ptep, pte);
	if (cr3_changed)
		lazy_hcall1(LHCALL_FLUSH_TLB, 1);
}

static void lguest_pte_clear(struct mm_struct *mm, unsigned long addr,
			     pte_t *ptep)
{
	native_pte_clear(mm, addr, ptep);
	lguest_pte_update(mm, addr, ptep);
}

static void lguest_pmd_clear(pmd_t *pmdp)
{
	lguest_set_pmd(pmdp, __pmd(0));
}
#endif

/*
 * Unfortunately for Lguest, the pv_mmu_ops for page tables were based on
 * native page table operations.  On native hardware you can set a new page
 * table entry whenever you want, but if you want to remove one you have to do
 * a TLB flush (a TLB is a little cache of page table entries kept by the CPU).
 *
 * So the lguest_set_pte_at() and lguest_set_pmd() functions above are only
 * called when a valid entry is written, not when it's removed (ie. marked not
 * present).  Instead, this is where we come when the Guest wants to remove a
 * page table entry: we tell the Host to set that entry to 0 (ie. the present
 * bit is zero).
 */
static void lguest_flush_tlb_single(unsigned long addr)
{
	/* Simply set it to zero: if it was not, it will fault back in. */
	lazy_hcall3(LHCALL_SET_PTE, current_cr3, addr, 0);
}

/*
 * This is what happens after the Guest has removed a large number of entries.
 * This tells the Host that any of the page table entries for userspace might
 * have changed, ie. virtual addresses below PAGE_OFFSET.
 */
static void lguest_flush_tlb_user(void)
{
	lazy_hcall1(LHCALL_FLUSH_TLB, 0);
}

/*
 * This is called when the kernel page tables have changed.  That's not very
 * common (unless the Guest is using highmem, which makes the Guest extremely
 * slow), so it's worth separating this from the user flushing above.
 */
static void lguest_flush_tlb_kernel(void)
{
	lazy_hcall1(LHCALL_FLUSH_TLB, 1);
}

/*
 * The Unadvanced Programmable Interrupt Controller.
 *
 * This is an attempt to implement the simplest possible interrupt controller.
 * I spent some time looking though routines like set_irq_chip_and_handler,
 * set_irq_chip_and_handler_name, set_irq_chip_data and set_phasers_to_stun and
 * I *think* this is as simple as it gets.
 *
 * We can tell the Host what interrupts we want blocked ready for using the
 * lguest_data.interrupts bitmap, so disabling (aka "masking") them is as
 * simple as setting a bit.  We don't actually "ack" interrupts as such, we
 * just mask and unmask them.  I wonder if we should be cleverer?
 */
static void disable_lguest_irq(struct irq_data *data)
{
	set_bit(data->irq, lguest_data.blocked_interrupts);
}

static void enable_lguest_irq(struct irq_data *data)
{
	clear_bit(data->irq, lguest_data.blocked_interrupts);
}

/* This structure describes the lguest IRQ controller. */
static struct irq_chip lguest_irq_controller = {
	.name		= "lguest",
	.irq_mask	= disable_lguest_irq,
	.irq_mask_ack	= disable_lguest_irq,
	.irq_unmask	= enable_lguest_irq,
};

/*
 * Interrupt descriptors are allocated as-needed, but low-numbered ones are
 * reserved by the generic x86 code.  So we ignore irq_alloc_desc_at if it
 * tells us the irq is already used: other errors (ie. ENOMEM) we take
 * seriously.
 */
static int lguest_setup_irq(unsigned int irq)
{
	struct irq_desc *desc;
	int err;

	/* Returns -ve error or vector number. */
	err = irq_alloc_desc_at(irq, 0);
	if (err < 0 && err != -EEXIST)
		return err;

	/*
	 * Tell the Linux infrastructure that the interrupt is
	 * controlled by our level-based lguest interrupt controller.
	 */
	irq_set_chip_and_handler_name(irq, &lguest_irq_controller,
				      handle_level_irq, "level");

	/* Some systems map "vectors" to interrupts weirdly.  Not us! */
	desc = irq_to_desc(irq);
	__this_cpu_write(vector_irq[FIRST_EXTERNAL_VECTOR + irq], desc);
	return 0;
}

static int lguest_enable_irq(struct pci_dev *dev)
{
	int err;
	u8 line = 0;

	/* We literally use the PCI interrupt line as the irq number. */
	pci_read_config_byte(dev, PCI_INTERRUPT_LINE, &line);
	err = lguest_setup_irq(line);
	if (!err)
		dev->irq = line;
	return err;
}

/* We don't do hotplug PCI, so this shouldn't be called. */
static void lguest_disable_irq(struct pci_dev *dev)
{
	WARN_ON(1);
}

/*
 * This sets up the Interrupt Descriptor Table (IDT) entry for each hardware
 * interrupt (except 128, which is used for system calls).
 */
static void __init lguest_init_IRQ(void)
{
	unsigned int i;

	for (i = FIRST_EXTERNAL_VECTOR; i < FIRST_SYSTEM_VECTOR; i++) {
		if (i != IA32_SYSCALL_VECTOR)
			set_intr_gate(i, irq_entries_start +
					8 * (i - FIRST_EXTERNAL_VECTOR));
	}

	/*
	 * This call is required to set up for 4k stacks, where we have
	 * separate stacks for hard and soft interrupts.
	 */
	irq_ctx_init(smp_processor_id());
}

/*
 * Time.
 *
 * It would be far better for everyone if the Guest had its own clock, but
 * until then the Host gives us the time on every interrupt.
 */
static void lguest_get_wallclock(struct timespec *now)
{
	*now = lguest_data.time;
}

/*
 * The TSC is an Intel thing called the Time Stamp Counter.  The Host tells us
 * what speed it runs at, or 0 if it's unusable as a reliable clock source.
 * This matches what we want here: if we return 0 from this function, the x86
 * TSC clock will give up and not register itself.
 */
static unsigned long lguest_tsc_khz(void)
{
	return lguest_data.tsc_khz;
}

/*
 * If we can't use the TSC, the kernel falls back to our lower-priority
 * "lguest_clock", where we read the time value given to us by the Host.
 */
static cycle_t lguest_clock_read(struct clocksource *cs)
{
	unsigned long sec, nsec;

	/*
	 * Since the time is in two parts (seconds and nanoseconds), we risk
	 * reading it just as it's changing from 99 & 0.999999999 to 100 and 0,
	 * and getting 99 and 0.  As Linux tends to come apart under the stress
	 * of time travel, we must be careful:
	 */
	do {
		/* First we read the seconds part. */
		sec = lguest_data.time.tv_sec;
		/*
		 * This read memory barrier tells the compiler and the CPU that
		 * this can't be reordered: we have to complete the above
		 * before going on.
		 */
		rmb();
		/* Now we read the nanoseconds part. */
		nsec = lguest_data.time.tv_nsec;
		/* Make sure we've done that. */
		rmb();
		/* Now if the seconds part has changed, try again. */
	} while (unlikely(lguest_data.time.tv_sec != sec));

	/* Our lguest clock is in real nanoseconds. */
	return sec*1000000000ULL + nsec;
}

/* This is the fallback clocksource: lower priority than the TSC clocksource. */
static struct clocksource lguest_clock = {
	.name		= "lguest",
	.rating		= 200,
	.read		= lguest_clock_read,
	.mask		= CLOCKSOURCE_MASK(64),
	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
};

/*
 * We also need a "struct clock_event_device": Linux asks us to set it to go
 * off some time in the future.  Actually, James Morris figured all this out, I
 * just applied the patch.
 */
static int lguest_clockevent_set_next_event(unsigned long delta,
                                           struct clock_event_device *evt)
{
	/* FIXME: I don't think this can ever happen, but James tells me he had
	 * to put this code in.  Maybe we should remove it now.  Anyone? */
	if (delta < LG_CLOCK_MIN_DELTA) {
		if (printk_ratelimit())
			printk(KERN_DEBUG "%s: small delta %lu ns\n",
			       __func__, delta);
		return -ETIME;
	}

	/* Please wake us this far in the future. */
	hcall(LHCALL_SET_CLOCKEVENT, delta, 0, 0, 0);
	return 0;
}

static int lguest_clockevent_shutdown(struct clock_event_device *evt)
{
	/* A 0 argument shuts the clock down. */
	hcall(LHCALL_SET_CLOCKEVENT, 0, 0, 0, 0);
	return 0;
}

/* This describes our primitive timer chip. */
static struct clock_event_device lguest_clockevent = {
	.name                   = "lguest",
	.features               = CLOCK_EVT_FEAT_ONESHOT,
	.set_next_event         = lguest_clockevent_set_next_event,
	.set_state_shutdown	= lguest_clockevent_shutdown,
	.rating                 = INT_MAX,
	.mult                   = 1,
	.shift                  = 0,
	.min_delta_ns           = LG_CLOCK_MIN_DELTA,
	.max_delta_ns           = LG_CLOCK_MAX_DELTA,
};

/*
 * This is the Guest timer interrupt handler (hardware interrupt 0).  We just
 * call the clockevent infrastructure and it does whatever needs doing.
 */
static void lguest_time_irq(struct irq_desc *desc)
{
	unsigned long flags;

	/* Don't interrupt us while this is running. */
	local_irq_save(flags);
	lguest_clockevent.event_handler(&lguest_clockevent);
	local_irq_restore(flags);
}

/*
 * At some point in the boot process, we get asked to set up our timing
 * infrastructure.  The kernel doesn't expect timer interrupts before this, but
 * we cleverly initialized the "blocked_interrupts" field of "struct
 * lguest_data" so that timer interrupts were blocked until now.
 */
static void lguest_time_init(void)
{
	/* Set up the timer interrupt (0) to go to our simple timer routine */
	if (lguest_setup_irq(0) != 0)
		panic("Could not set up timer irq");
	irq_set_handler(0, lguest_time_irq);

	clocksource_register_hz(&lguest_clock, NSEC_PER_SEC);

	/* We can't set cpumask in the initializer: damn C limitations!  Set it
	 * here and register our timer device. */
	lguest_clockevent.cpumask = cpumask_of(0);
	clockevents_register_device(&lguest_clockevent);

	/* Finally, we unblock the timer interrupt. */
	clear_bit(0, lguest_data.blocked_interrupts);
}

/*
 * Miscellaneous bits and pieces.
 *
 * Here is an oddball collection of functions which the Guest needs for things
 * to work.  They're pretty simple.
 */

/*
 * The Guest needs to tell the Host what stack it expects traps to use.  For
 * native hardware, this is part of the Task State Segment mentioned above in
 * lguest_load_tr_desc(), but to help hypervisors there's this special call.
 *
 * We tell the Host the segment we want to use (__KERNEL_DS is the kernel data
 * segment), the privilege level (we're privilege level 1, the Host is 0 and
 * will not tolerate us trying to use that), the stack pointer, and the number
 * of pages in the stack.
 */
static void lguest_load_sp0(struct tss_struct *tss,
			    struct thread_struct *thread)
{
	lazy_hcall3(LHCALL_SET_STACK, __KERNEL_DS | 0x1, thread->sp0,
		   THREAD_SIZE / PAGE_SIZE);
	tss->x86_tss.sp0 = thread->sp0;
}

/* Let's just say, I wouldn't do debugging under a Guest. */
static unsigned long lguest_get_debugreg(int regno)
{
	/* FIXME: Implement */
	return 0;
}

static void lguest_set_debugreg(int regno, unsigned long value)
{
	/* FIXME: Implement */
}

/*
 * There are times when the kernel wants to make sure that no memory writes are
 * caught in the cache (that they've all reached real hardware devices).  This
 * doesn't matter for the Guest which has virtual hardware.
 *
 * On the Pentium 4 and above, cpuid() indicates that the Cache Line Flush
 * (clflush) instruction is available and the kernel uses that.  Otherwise, it
 * uses the older "Write Back and Invalidate Cache" (wbinvd) instruction.
 * Unlike clflush, wbinvd can only be run at privilege level 0.  So we can
 * ignore clflush, but replace wbinvd.
 */
static void lguest_wbinvd(void)
{
}

/*
 * If the Guest expects to have an Advanced Programmable Interrupt Controller,
 * we play dumb by ignoring writes and returning 0 for reads.  So it's no
 * longer Programmable nor Controlling anything, and I don't think 8 lines of
 * code qualifies for Advanced.  It will also never interrupt anything.  It
 * does, however, allow us to get through the Linux boot code.
 */
#ifdef CONFIG_X86_LOCAL_APIC
static void lguest_apic_write(u32 reg, u32 v)
{
}

static u32 lguest_apic_read(u32 reg)
{
	return 0;
}

static u64 lguest_apic_icr_read(void)
{
	return 0;
}

static void lguest_apic_icr_write(u32 low, u32 id)
{
	/* Warn to see if there's any stray references */
	WARN_ON(1);
}

static void lguest_apic_wait_icr_idle(void)
{
	return;
}

static u32 lguest_apic_safe_wait_icr_idle(void)
{
	return 0;
}

static void set_lguest_basic_apic_ops(void)
{
	apic->read = lguest_apic_read;
	apic->write = lguest_apic_write;
	apic->icr_read = lguest_apic_icr_read;
	apic->icr_write = lguest_apic_icr_write;
	apic->wait_icr_idle = lguest_apic_wait_icr_idle;
	apic->safe_wait_icr_idle = lguest_apic_safe_wait_icr_idle;
};
#endif

/* STOP!  Until an interrupt comes in. */
static void lguest_safe_halt(void)
{
	hcall(LHCALL_HALT, 0, 0, 0, 0);
}

/*
 * The SHUTDOWN hypercall takes a string to describe what's happening, and
 * an argument which says whether this to restart (reboot) the Guest or not.
 *
 * Note that the Host always prefers that the Guest speak in physical addresses
 * rather than virtual addresses, so we use __pa() here.
 */
static void lguest_power_off(void)
{
	hcall(LHCALL_SHUTDOWN, __pa("Power down"),
	      LGUEST_SHUTDOWN_POWEROFF, 0, 0);
}

/*
 * Panicing.
 *
 * Don't.  But if you did, this is what happens.
 */
static int lguest_panic(struct notifier_block *nb, unsigned long l, void *p)
{
	hcall(LHCALL_SHUTDOWN, __pa(p), LGUEST_SHUTDOWN_POWEROFF, 0, 0);
	/* The hcall won't return, but to keep gcc happy, we're "done". */
	return NOTIFY_DONE;
}

static struct notifier_block paniced = {
	.notifier_call = lguest_panic
};

/* Setting up memory is fairly easy. */
static __init char *lguest_memory_setup(void)
{
	/*
	 * The Linux bootloader header contains an "e820" memory map: the
	 * Launcher populated the first entry with our memory limit.
	 */
	e820_add_region(boot_params.e820_map[0].addr,
			  boot_params.e820_map[0].size,
			  boot_params.e820_map[0].type);

	/* This string is for the boot messages. */
	return "LGUEST";
}

/* Offset within PCI config space of BAR access capability. */
static int console_cfg_offset = 0;
static int console_access_cap;

/* Set up so that we access off in bar0 (on bus 0, device 1, function 0) */
static void set_cfg_window(u32 cfg_offset, u32 off)
{
	write_pci_config_byte(0, 1, 0,
			      cfg_offset + offsetof(struct virtio_pci_cap, bar),
			      0);
	write_pci_config(0, 1, 0,
			 cfg_offset + offsetof(struct virtio_pci_cap, length),
			 4);
	write_pci_config(0, 1, 0,
			 cfg_offset + offsetof(struct virtio_pci_cap, offset),
			 off);
}

static void write_bar_via_cfg(u32 cfg_offset, u32 off, u32 val)
{
	/*
	 * We could set this up once, then leave it; nothing else in the *
	 * kernel should touch these registers.  But if it went wrong, that
	 * would be a horrible bug to find.
	 */
	set_cfg_window(cfg_offset, off);
	write_pci_config(0, 1, 0,
			 cfg_offset + sizeof(struct virtio_pci_cap), val);
}

static void probe_pci_console(void)
{
	u8 cap, common_cap = 0, device_cap = 0;
	/* Offset within BAR0 */
	u32 device_offset;
	u32 device_len;

	/* Avoid recursive printk into here. */
	console_cfg_offset = -1;

	if (!early_pci_allowed()) {
		printk(KERN_ERR "lguest: early PCI access not allowed!\n");
		return;
	}

	/* We expect a console PCI device at BUS0, slot 1. */
	if (read_pci_config(0, 1, 0, 0) != 0x10431AF4) {
		printk(KERN_ERR "lguest: PCI device is %#x!\n",
		       read_pci_config(0, 1, 0, 0));
		return;
	}

	/* Find the capabilities we need (must be in bar0) */
	cap = read_pci_config_byte(0, 1, 0, PCI_CAPABILITY_LIST);
	while (cap) {
		u8 vndr = read_pci_config_byte(0, 1, 0, cap);
		if (vndr == PCI_CAP_ID_VNDR) {
			u8 type, bar;
			u32 offset, length;

			type = read_pci_config_byte(0, 1, 0,
			    cap + offsetof(struct virtio_pci_cap, cfg_type));
			bar = read_pci_config_byte(0, 1, 0,
			    cap + offsetof(struct virtio_pci_cap, bar));
			offset = read_pci_config(0, 1, 0,
			    cap + offsetof(struct virtio_pci_cap, offset));
			length = read_pci_config(0, 1, 0,
			    cap + offsetof(struct virtio_pci_cap, length));

			switch (type) {
			case VIRTIO_PCI_CAP_DEVICE_CFG:
				if (bar == 0) {
					device_cap = cap;
					device_offset = offset;
					device_len = length;
				}
				break;
			case VIRTIO_PCI_CAP_PCI_CFG:
				console_access_cap = cap;
				break;
			}
		}
		cap = read_pci_config_byte(0, 1, 0, cap + PCI_CAP_LIST_NEXT);
	}
	if (!device_cap || !console_access_cap) {
		printk(KERN_ERR "lguest: No caps (%u/%u/%u) in console!\n",
		       common_cap, device_cap, console_access_cap);
		return;
	}

	/*
	 * Note that we can't check features, until we've set the DRIVER
	 * status bit.  We don't want to do that until we have a real driver,
	 * so we just check that the device-specific config has room for
	 * emerg_wr.  If it doesn't support VIRTIO_CONSOLE_F_EMERG_WRITE
	 * it should ignore the access.
	 */
	if (device_len < (offsetof(struct virtio_console_config, emerg_wr)
			  + sizeof(u32))) {
		printk(KERN_ERR "lguest: console missing emerg_wr field\n");
		return;
	}

	console_cfg_offset = device_offset;
	printk(KERN_INFO "lguest: Console via virtio-pci emerg_wr\n");
}

/*
 * We will eventually use the virtio console device to produce console output,
 * but before that is set up we use the virtio PCI console's backdoor mmio
 * access and the "emergency" write facility (which is legal even before the
 * device is configured).
 */
static __init int early_put_chars(u32 vtermno, const char *buf, int count)
{
	/* If we couldn't find PCI console, forget it. */
	if (console_cfg_offset < 0)
		return count;

	if (unlikely(!console_cfg_offset)) {
		probe_pci_console();
		if (console_cfg_offset < 0)
			return count;
	}

	write_bar_via_cfg(console_access_cap,
			  console_cfg_offset
			  + offsetof(struct virtio_console_config, emerg_wr),
			  buf[0]);
	return 1;
}

/*
 * Rebooting also tells the Host we're finished, but the RESTART flag tells the
 * Launcher to reboot us.
 */
static void lguest_restart(char *reason)
{
	hcall(LHCALL_SHUTDOWN, __pa(reason), LGUEST_SHUTDOWN_RESTART, 0, 0);
}

/*G:050
 * Patching (Powerfully Placating Performance Pedants)
 *
 * We have already seen that pv_ops structures let us replace simple native
 * instructions with calls to the appropriate back end all throughout the
 * kernel.  This allows the same kernel to run as a Guest and as a native
 * kernel, but it's slow because of all the indirect branches.
 *
 * Remember that David Wheeler quote about "Any problem in computer science can
 * be solved with another layer of indirection"?  The rest of that quote is
 * "... But that usually will create another problem."  This is the first of
 * those problems.
 *
 * Our current solution is to allow the paravirt back end to optionally patch
 * over the indirect calls to replace them with something more efficient.  We
 * patch two of the simplest of the most commonly called functions: disable
 * interrupts and save interrupts.  We usually have 6 or 10 bytes to patch
 * into: the Guest versions of these operations are small enough that we can
 * fit comfortably.
 *
 * First we need assembly templates of each of the patchable Guest operations,
 * and these are in head_32.S.
 */

/*G:060 We construct a table from the assembler templates: */
static const struct lguest_insns
{
	const char *start, *end;
} lguest_insns[] = {
	[PARAVIRT_PATCH(pv_irq_ops.irq_disable)] = { lgstart_cli, lgend_cli },
	[PARAVIRT_PATCH(pv_irq_ops.save_fl)] = { lgstart_pushf, lgend_pushf },
};

/*
 * Now our patch routine is fairly simple (based on the native one in
 * paravirt.c).  If we have a replacement, we copy it in and return how much of
 * the available space we used.
 */
static unsigned lguest_patch(u8 type, u16 clobber, void *ibuf,
			     unsigned long addr, unsigned len)
{
	unsigned int insn_len;

	/* Don't do anything special if we don't have a replacement */
	if (type >= ARRAY_SIZE(lguest_insns) || !lguest_insns[type].start)
		return paravirt_patch_default(type, clobber, ibuf, addr, len);

	insn_len = lguest_insns[type].end - lguest_insns[type].start;

	/* Similarly if it can't fit (doesn't happen, but let's be thorough). */
	if (len < insn_len)
		return paravirt_patch_default(type, clobber, ibuf, addr, len);

	/* Copy in our instructions. */
	memcpy(ibuf, lguest_insns[type].start, insn_len);
	return insn_len;
}

/*G:029
 * Once we get to lguest_init(), we know we're a Guest.  The various
 * pv_ops structures in the kernel provide points for (almost) every routine we
 * have to override to avoid privileged instructions.
 */
__init void lguest_init(void)
{
	/* We're under lguest. */
	pv_info.name = "lguest";
	/* Paravirt is enabled. */
	pv_info.paravirt_enabled = 1;
	/* We're running at privilege level 1, not 0 as normal. */
	pv_info.kernel_rpl = 1;
	/* Everyone except Xen runs with this set. */
	pv_info.shared_kernel_pmd = 1;
	pv_info.features = 0;

	/*
	 * We set up all the lguest overrides for sensitive operations.  These
	 * are detailed with the operations themselves.
	 */

	/* Interrupt-related operations */
	pv_irq_ops.save_fl = PV_CALLEE_SAVE(lguest_save_fl);
	pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(lg_restore_fl);
	pv_irq_ops.irq_disable = PV_CALLEE_SAVE(lguest_irq_disable);
	pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(lg_irq_enable);
	pv_irq_ops.safe_halt = lguest_safe_halt;

	/* Setup operations */
	pv_init_ops.patch = lguest_patch;

	/* Intercepts of various CPU instructions */
	pv_cpu_ops.load_gdt = lguest_load_gdt;
	pv_cpu_ops.cpuid = lguest_cpuid;
	pv_cpu_ops.load_idt = lguest_load_idt;
	pv_cpu_ops.iret = lguest_iret;
	pv_cpu_ops.load_sp0 = lguest_load_sp0;
	pv_cpu_ops.load_tr_desc = lguest_load_tr_desc;
	pv_cpu_ops.set_ldt = lguest_set_ldt;
	pv_cpu_ops.load_tls = lguest_load_tls;
	pv_cpu_ops.get_debugreg = lguest_get_debugreg;
	pv_cpu_ops.set_debugreg = lguest_set_debugreg;
	pv_cpu_ops.clts = lguest_clts;
	pv_cpu_ops.read_cr0 = lguest_read_cr0;
	pv_cpu_ops.write_cr0 = lguest_write_cr0;
	pv_cpu_ops.read_cr4 = lguest_read_cr4;
	pv_cpu_ops.write_cr4 = lguest_write_cr4;
	pv_cpu_ops.write_gdt_entry = lguest_write_gdt_entry;
	pv_cpu_ops.write_idt_entry = lguest_write_idt_entry;
	pv_cpu_ops.wbinvd = lguest_wbinvd;
	pv_cpu_ops.start_context_switch = paravirt_start_context_switch;
	pv_cpu_ops.end_context_switch = lguest_end_context_switch;

	/* Pagetable management */
	pv_mmu_ops.write_cr3 = lguest_write_cr3;
	pv_mmu_ops.flush_tlb_user = lguest_flush_tlb_user;
	pv_mmu_ops.flush_tlb_single = lguest_flush_tlb_single;
	pv_mmu_ops.flush_tlb_kernel = lguest_flush_tlb_kernel;
	pv_mmu_ops.set_pte = lguest_set_pte;
	pv_mmu_ops.set_pte_at = lguest_set_pte_at;
	pv_mmu_ops.set_pmd = lguest_set_pmd;
#ifdef CONFIG_X86_PAE
	pv_mmu_ops.set_pte_atomic = lguest_set_pte_atomic;
	pv_mmu_ops.pte_clear = lguest_pte_clear;
	pv_mmu_ops.pmd_clear = lguest_pmd_clear;
	pv_mmu_ops.set_pud = lguest_set_pud;
#endif
	pv_mmu_ops.read_cr2 = lguest_read_cr2;
	pv_mmu_ops.read_cr3 = lguest_read_cr3;
	pv_mmu_ops.lazy_mode.enter = paravirt_enter_lazy_mmu;
	pv_mmu_ops.lazy_mode.leave = lguest_leave_lazy_mmu_mode;
	pv_mmu_ops.lazy_mode.flush = paravirt_flush_lazy_mmu;
	pv_mmu_ops.pte_update = lguest_pte_update;
	pv_mmu_ops.pte_update_defer = lguest_pte_update;

#ifdef CONFIG_X86_LOCAL_APIC
	/* APIC read/write intercepts */
	set_lguest_basic_apic_ops();
#endif

	x86_init.resources.memory_setup = lguest_memory_setup;
	x86_init.irqs.intr_init = lguest_init_IRQ;
	x86_init.timers.timer_init = lguest_time_init;
	x86_platform.calibrate_tsc = lguest_tsc_khz;
	x86_platform.get_wallclock =  lguest_get_wallclock;

	/*
	 * Now is a good time to look at the implementations of these functions
	 * before returning to the rest of lguest_init().
	 */

	/*G:070
	 * Now we've seen all the paravirt_ops, we return to
	 * lguest_init() where the rest of the fairly chaotic boot setup
	 * occurs.
	 */

	/*
	 * The stack protector is a weird thing where gcc places a canary
	 * value on the stack and then checks it on return.  This file is
	 * compiled with -fno-stack-protector it, so we got this far without
	 * problems.  The value of the canary is kept at offset 20 from the
	 * %gs register, so we need to set that up before calling C functions
	 * in other files.
	 */
	setup_stack_canary_segment(0);

	/*
	 * We could just call load_stack_canary_segment(), but we might as well
	 * call switch_to_new_gdt() which loads the whole table and sets up the
	 * per-cpu segment descriptor register %fs as well.
	 */
	switch_to_new_gdt(0);

	/*
	 * The Host<->Guest Switcher lives at the top of our address space, and
	 * the Host told us how big it is when we made LGUEST_INIT hypercall:
	 * it put the answer in lguest_data.reserve_mem
	 */
	reserve_top_address(lguest_data.reserve_mem);

	/*
	 * If we don't initialize the lock dependency checker now, it crashes
	 * atomic_notifier_chain_register, then paravirt_disable_iospace.
	 */
	lockdep_init();

	/* Hook in our special panic hypercall code. */
	atomic_notifier_chain_register(&panic_notifier_list, &paniced);

	/*
	 * This is messy CPU setup stuff which the native boot code does before
	 * start_kernel, so we have to do, too:
	 */
	cpu_detect(&new_cpu_data);
	/* head.S usually sets up the first capability word, so do it here. */
	new_cpu_data.x86_capability[0] = cpuid_edx(1);

	/* Math is always hard! */
	set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);

	/* We don't have features.  We have puppies!  Puppies! */
#ifdef CONFIG_X86_MCE
	mca_cfg.disabled = true;
#endif
#ifdef CONFIG_ACPI
	acpi_disabled = 1;
#endif

	/*
	 * We set the preferred console to "hvc".  This is the "hypervisor
	 * virtual console" driver written by the PowerPC people, which we also
	 * adapted for lguest's use.
	 */
	add_preferred_console("hvc", 0, NULL);

	/* Register our very early console. */
	virtio_cons_early_init(early_put_chars);

	/* Don't let ACPI try to control our PCI interrupts. */
	disable_acpi();

	/* We control them ourselves, by overriding these two hooks. */
	pcibios_enable_irq = lguest_enable_irq;
	pcibios_disable_irq = lguest_disable_irq;

	/*
	 * Last of all, we set the power management poweroff hook to point to
	 * the Guest routine to power off, and the reboot hook to our restart
	 * routine.
	 */
	pm_power_off = lguest_power_off;
	machine_ops.restart = lguest_restart;

	/*
	 * Now we're set up, call i386_start_kernel() in head32.c and we proceed
	 * to boot as normal.  It never returns.
	 */
	i386_start_kernel();
}
/*
 * This marks the end of stage II of our journey, The Guest.
 *
 * It is now time for us to explore the layer of virtual drivers and complete
 * our understanding of the Guest in "make Drivers".
 */