- 根目录:
- arch
- cris
- arch-v32
- drivers
- sync_serial.c
/*
* Simple synchronous serial port driver for ETRAX FS and ARTPEC-3.
*
* Copyright (c) 2005, 2008 Axis Communications AB
* Author: Mikael Starvik
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/major.h>
#include <linux/sched.h>
#include <linux/mutex.h>
#include <linux/interrupt.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/wait.h>
#include <asm/io.h>
#include <mach/dma.h>
#include <pinmux.h>
#include <hwregs/reg_rdwr.h>
#include <hwregs/sser_defs.h>
#include <hwregs/timer_defs.h>
#include <hwregs/dma_defs.h>
#include <hwregs/dma.h>
#include <hwregs/intr_vect_defs.h>
#include <hwregs/intr_vect.h>
#include <hwregs/reg_map.h>
#include <asm/sync_serial.h>
/* The receiver is a bit tricky because of the continuous stream of data.*/
/* */
/* Three DMA descriptors are linked together. Each DMA descriptor is */
/* responsible for port->bufchunk of a common buffer. */
/* */
/* +---------------------------------------------+ */
/* | +----------+ +----------+ +----------+ | */
/* +-> | Descr[0] |-->| Descr[1] |-->| Descr[2] |-+ */
/* +----------+ +----------+ +----------+ */
/* | | | */
/* v v v */
/* +-------------------------------------+ */
/* | BUFFER | */
/* +-------------------------------------+ */
/* |<- data_avail ->| */
/* readp writep */
/* */
/* If the application keeps up the pace readp will be right after writep.*/
/* If the application can't keep the pace we have to throw away data. */
/* The idea is that readp should be ready with the data pointed out by */
/* Descr[i] when the DMA has filled in Descr[i+1]. */
/* Otherwise we will discard */
/* the rest of the data pointed out by Descr1 and set readp to the start */
/* of Descr2 */
/* IN_BUFFER_SIZE should be a multiple of 6 to make sure that 24 bit */
/* words can be handled */
#define IN_DESCR_SIZE SSP_INPUT_CHUNK_SIZE
#define NBR_IN_DESCR (8*6)
#define IN_BUFFER_SIZE (IN_DESCR_SIZE * NBR_IN_DESCR)
#define NBR_OUT_DESCR 8
#define OUT_BUFFER_SIZE (1024 * NBR_OUT_DESCR)
#define DEFAULT_FRAME_RATE 0
#define DEFAULT_WORD_RATE 7
/* To be removed when we move to pure udev. */
#define SYNC_SERIAL_MAJOR 125
/* NOTE: Enabling some debug will likely cause overrun or underrun,
* especially if manual mode is used.
*/
#define DEBUG(x)
#define DEBUGREAD(x)
#define DEBUGWRITE(x)
#define DEBUGPOLL(x)
#define DEBUGRXINT(x)
#define DEBUGTXINT(x)
#define DEBUGTRDMA(x)
#define DEBUGOUTBUF(x)
enum syncser_irq_setup {
no_irq_setup = 0,
dma_irq_setup = 1,
manual_irq_setup = 2,
};
struct sync_port {
unsigned long regi_sser;
unsigned long regi_dmain;
unsigned long regi_dmaout;
/* Interrupt vectors. */
unsigned long dma_in_intr_vect; /* Used for DMA in. */
unsigned long dma_out_intr_vect; /* Used for DMA out. */
unsigned long syncser_intr_vect; /* Used when no DMA. */
/* DMA number for in and out. */
unsigned int dma_in_nbr;
unsigned int dma_out_nbr;
/* DMA owner. */
enum dma_owner req_dma;
char started; /* 1 if port has been started */
char port_nbr; /* Port 0 or 1 */
char busy; /* 1 if port is busy */
char enabled; /* 1 if port is enabled */
char use_dma; /* 1 if port uses dma */
char tr_running;
enum syncser_irq_setup init_irqs;
int output;
int input;
/* Next byte to be read by application */
unsigned char *readp;
/* Next byte to be written by etrax */
unsigned char *writep;
unsigned int in_buffer_size;
unsigned int in_buffer_len;
unsigned int inbufchunk;
/* Data buffers for in and output. */
unsigned char out_buffer[OUT_BUFFER_SIZE] __aligned(32);
unsigned char in_buffer[IN_BUFFER_SIZE] __aligned(32);
unsigned char flip[IN_BUFFER_SIZE] __aligned(32);
struct timespec timestamp[NBR_IN_DESCR];
struct dma_descr_data *next_rx_desc;
struct dma_descr_data *prev_rx_desc;
struct timeval last_timestamp;
int read_ts_idx;
int write_ts_idx;
/* Pointer to the first available descriptor in the ring,
* unless active_tr_descr == catch_tr_descr and a dma
* transfer is active */
struct dma_descr_data *active_tr_descr;
/* Pointer to the first allocated descriptor in the ring */
struct dma_descr_data *catch_tr_descr;
/* Pointer to the descriptor with the current end-of-list */
struct dma_descr_data *prev_tr_descr;
int full;
/* Pointer to the first byte being read by DMA
* or current position in out_buffer if not using DMA. */
unsigned char *out_rd_ptr;
/* Number of bytes currently locked for being read by DMA */
int out_buf_count;
dma_descr_context in_context __aligned(32);
dma_descr_context out_context __aligned(32);
dma_descr_data in_descr[NBR_IN_DESCR] __aligned(16);
dma_descr_data out_descr[NBR_OUT_DESCR] __aligned(16);
wait_queue_head_t out_wait_q;
wait_queue_head_t in_wait_q;
spinlock_t lock;
};
static DEFINE_MUTEX(sync_serial_mutex);
static int etrax_sync_serial_init(void);
static void initialize_port(int portnbr);
static inline int sync_data_avail(struct sync_port *port);
static int sync_serial_open(struct inode *, struct file *);
static int sync_serial_release(struct inode *, struct file *);
static unsigned int sync_serial_poll(struct file *filp, poll_table *wait);
static long sync_serial_ioctl(struct file *file,
unsigned int cmd, unsigned long arg);
static int sync_serial_ioctl_unlocked(struct file *file,
unsigned int cmd, unsigned long arg);
static ssize_t sync_serial_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos);
static ssize_t sync_serial_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos);
#if ((defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL_PORT0) && \
defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL0_DMA)) || \
(defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL_PORT1) && \
defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL1_DMA)))
#define SYNC_SER_DMA
#else
#define SYNC_SER_MANUAL
#endif
#ifdef SYNC_SER_DMA
static void start_dma_out(struct sync_port *port, const char *data, int count);
static void start_dma_in(struct sync_port *port);
static irqreturn_t tr_interrupt(int irq, void *dev_id);
static irqreturn_t rx_interrupt(int irq, void *dev_id);
#endif
#ifdef SYNC_SER_MANUAL
static void send_word(struct sync_port *port);
static irqreturn_t manual_interrupt(int irq, void *dev_id);
#endif
#define artpec_pinmux_alloc_fixed crisv32_pinmux_alloc_fixed
#define artpec_request_dma crisv32_request_dma
#define artpec_free_dma crisv32_free_dma
#ifdef CONFIG_ETRAXFS
/* ETRAX FS */
#define DMA_OUT_NBR0 SYNC_SER0_TX_DMA_NBR
#define DMA_IN_NBR0 SYNC_SER0_RX_DMA_NBR
#define DMA_OUT_NBR1 SYNC_SER1_TX_DMA_NBR
#define DMA_IN_NBR1 SYNC_SER1_RX_DMA_NBR
#define PINMUX_SSER0 pinmux_sser0
#define PINMUX_SSER1 pinmux_sser1
#define SYNCSER_INST0 regi_sser0
#define SYNCSER_INST1 regi_sser1
#define SYNCSER_INTR_VECT0 SSER0_INTR_VECT
#define SYNCSER_INTR_VECT1 SSER1_INTR_VECT
#define OUT_DMA_INST0 regi_dma4
#define IN_DMA_INST0 regi_dma5
#define DMA_OUT_INTR_VECT0 DMA4_INTR_VECT
#define DMA_OUT_INTR_VECT1 DMA7_INTR_VECT
#define DMA_IN_INTR_VECT0 DMA5_INTR_VECT
#define DMA_IN_INTR_VECT1 DMA6_INTR_VECT
#define REQ_DMA_SYNCSER0 dma_sser0
#define REQ_DMA_SYNCSER1 dma_sser1
#if defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL1_DMA)
#define PORT1_DMA 1
#else
#define PORT1_DMA 0
#endif
#elif defined(CONFIG_CRIS_MACH_ARTPEC3)
/* ARTPEC-3 */
#define DMA_OUT_NBR0 SYNC_SER_TX_DMA_NBR
#define DMA_IN_NBR0 SYNC_SER_RX_DMA_NBR
#define PINMUX_SSER0 pinmux_sser
#define SYNCSER_INST0 regi_sser
#define SYNCSER_INTR_VECT0 SSER_INTR_VECT
#define OUT_DMA_INST0 regi_dma6
#define IN_DMA_INST0 regi_dma7
#define DMA_OUT_INTR_VECT0 DMA6_INTR_VECT
#define DMA_IN_INTR_VECT0 DMA7_INTR_VECT
#define REQ_DMA_SYNCSER0 dma_sser
#define REQ_DMA_SYNCSER1 dma_sser
#endif
#if defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL0_DMA)
#define PORT0_DMA 1
#else
#define PORT0_DMA 0
#endif
/* The ports */
static struct sync_port ports[] = {
{
.regi_sser = SYNCSER_INST0,
.regi_dmaout = OUT_DMA_INST0,
.regi_dmain = IN_DMA_INST0,
.use_dma = PORT0_DMA,
.dma_in_intr_vect = DMA_IN_INTR_VECT0,
.dma_out_intr_vect = DMA_OUT_INTR_VECT0,
.dma_in_nbr = DMA_IN_NBR0,
.dma_out_nbr = DMA_OUT_NBR0,
.req_dma = REQ_DMA_SYNCSER0,
.syncser_intr_vect = SYNCSER_INTR_VECT0,
},
#ifdef CONFIG_ETRAXFS
{
.regi_sser = SYNCSER_INST1,
.regi_dmaout = regi_dma6,
.regi_dmain = regi_dma7,
.use_dma = PORT1_DMA,
.dma_in_intr_vect = DMA_IN_INTR_VECT1,
.dma_out_intr_vect = DMA_OUT_INTR_VECT1,
.dma_in_nbr = DMA_IN_NBR1,
.dma_out_nbr = DMA_OUT_NBR1,
.req_dma = REQ_DMA_SYNCSER1,
.syncser_intr_vect = SYNCSER_INTR_VECT1,
},
#endif
};
#define NBR_PORTS ARRAY_SIZE(ports)
static const struct file_operations syncser_fops = {
.owner = THIS_MODULE,
.write = sync_serial_write,
.read = sync_serial_read,
.poll = sync_serial_poll,
.unlocked_ioctl = sync_serial_ioctl,
.open = sync_serial_open,
.release = sync_serial_release,
.llseek = noop_llseek,
};
static dev_t syncser_first;
static int minor_count = NBR_PORTS;
#define SYNCSER_NAME "syncser"
static struct cdev *syncser_cdev;
static struct class *syncser_class;
static void sync_serial_start_port(struct sync_port *port)
{
reg_sser_rw_cfg cfg = REG_RD(sser, port->regi_sser, rw_cfg);
reg_sser_rw_tr_cfg tr_cfg =
REG_RD(sser, port->regi_sser, rw_tr_cfg);
reg_sser_rw_rec_cfg rec_cfg =
REG_RD(sser, port->regi_sser, rw_rec_cfg);
cfg.en = regk_sser_yes;
tr_cfg.tr_en = regk_sser_yes;
rec_cfg.rec_en = regk_sser_yes;
REG_WR(sser, port->regi_sser, rw_cfg, cfg);
REG_WR(sser, port->regi_sser, rw_tr_cfg, tr_cfg);
REG_WR(sser, port->regi_sser, rw_rec_cfg, rec_cfg);
port->started = 1;
}
static void __init initialize_port(int portnbr)
{
struct sync_port *port = &ports[portnbr];
reg_sser_rw_cfg cfg = { 0 };
reg_sser_rw_frm_cfg frm_cfg = { 0 };
reg_sser_rw_tr_cfg tr_cfg = { 0 };
reg_sser_rw_rec_cfg rec_cfg = { 0 };
DEBUG(pr_info("Init sync serial port %d\n", portnbr));
port->port_nbr = portnbr;
port->init_irqs = no_irq_setup;
port->out_rd_ptr = port->out_buffer;
port->out_buf_count = 0;
port->output = 1;
port->input = 0;
port->readp = port->flip;
port->writep = port->flip;
port->in_buffer_size = IN_BUFFER_SIZE;
port->in_buffer_len = 0;
port->inbufchunk = IN_DESCR_SIZE;
port->read_ts_idx = 0;
port->write_ts_idx = 0;
init_waitqueue_head(&port->out_wait_q);
init_waitqueue_head(&port->in_wait_q);
spin_lock_init(&port->lock);
cfg.out_clk_src = regk_sser_intern_clk;
cfg.out_clk_pol = regk_sser_pos;
cfg.clk_od_mode = regk_sser_no;
cfg.clk_dir = regk_sser_out;
cfg.gate_clk = regk_sser_no;
cfg.base_freq = regk_sser_f29_493;
cfg.clk_div = 256;
REG_WR(sser, port->regi_sser, rw_cfg, cfg);
frm_cfg.wordrate = DEFAULT_WORD_RATE;
frm_cfg.type = regk_sser_edge;
frm_cfg.frame_pin_dir = regk_sser_out;
frm_cfg.frame_pin_use = regk_sser_frm;
frm_cfg.status_pin_dir = regk_sser_in;
frm_cfg.status_pin_use = regk_sser_hold;
frm_cfg.out_on = regk_sser_tr;
frm_cfg.tr_delay = 1;
REG_WR(sser, port->regi_sser, rw_frm_cfg, frm_cfg);
tr_cfg.urun_stop = regk_sser_no;
tr_cfg.sample_size = 7;
tr_cfg.sh_dir = regk_sser_msbfirst;
tr_cfg.use_dma = port->use_dma ? regk_sser_yes : regk_sser_no;
#if 0
tr_cfg.rate_ctrl = regk_sser_bulk;
tr_cfg.data_pin_use = regk_sser_dout;
#else
tr_cfg.rate_ctrl = regk_sser_iso;
tr_cfg.data_pin_use = regk_sser_dout;
#endif
tr_cfg.bulk_wspace = 1;
REG_WR(sser, port->regi_sser, rw_tr_cfg, tr_cfg);
rec_cfg.sample_size = 7;
rec_cfg.sh_dir = regk_sser_msbfirst;
rec_cfg.use_dma = port->use_dma ? regk_sser_yes : regk_sser_no;
rec_cfg.fifo_thr = regk_sser_inf;
REG_WR(sser, port->regi_sser, rw_rec_cfg, rec_cfg);
#ifdef SYNC_SER_DMA
{
int i;
/* Setup the descriptor ring for dma out/transmit. */
for (i = 0; i < NBR_OUT_DESCR; i++) {
dma_descr_data *descr = &port->out_descr[i];
descr->wait = 0;
descr->intr = 1;
descr->eol = 0;
descr->out_eop = 0;
descr->next =
(dma_descr_data *)virt_to_phys(&descr[i+1]);
}
}
/* Create a ring from the list. */
port->out_descr[NBR_OUT_DESCR-1].next =
(dma_descr_data *)virt_to_phys(&port->out_descr[0]);
/* Setup context for traversing the ring. */
port->active_tr_descr = &port->out_descr[0];
port->prev_tr_descr = &port->out_descr[NBR_OUT_DESCR-1];
port->catch_tr_descr = &port->out_descr[0];
#endif
}
static inline int sync_data_avail(struct sync_port *port)
{
return port->in_buffer_len;
}
static int sync_serial_open(struct inode *inode, struct file *file)
{
int ret = 0;
int dev = iminor(inode);
struct sync_port *port;
#ifdef SYNC_SER_DMA
reg_dma_rw_cfg cfg = { .en = regk_dma_yes };
reg_dma_rw_intr_mask intr_mask = { .data = regk_dma_yes };
#endif
DEBUG(pr_debug("Open sync serial port %d\n", dev));
if (dev < 0 || dev >= NBR_PORTS || !ports[dev].enabled) {
DEBUG(pr_info("Invalid minor %d\n", dev));
return -ENODEV;
}
port = &ports[dev];
/* Allow open this device twice (assuming one reader and one writer) */
if (port->busy == 2) {
DEBUG(pr_info("syncser%d is busy\n", dev));
return -EBUSY;
}
mutex_lock(&sync_serial_mutex);
/* Clear any stale date left in the flip buffer */
port->readp = port->writep = port->flip;
port->in_buffer_len = 0;
port->read_ts_idx = 0;
port->write_ts_idx = 0;
if (port->init_irqs != no_irq_setup) {
/* Init only on first call. */
port->busy++;
mutex_unlock(&sync_serial_mutex);
return 0;
}
if (port->use_dma) {
#ifdef SYNC_SER_DMA
const char *tmp;
DEBUG(pr_info("Using DMA for syncser%d\n", dev));
tmp = dev == 0 ? "syncser0 tx" : "syncser1 tx";
if (request_irq(port->dma_out_intr_vect, tr_interrupt, 0,
tmp, port)) {
pr_err("Can't alloc syncser%d TX IRQ", dev);
ret = -EBUSY;
goto unlock_and_exit;
}
if (artpec_request_dma(port->dma_out_nbr, tmp,
DMA_VERBOSE_ON_ERROR, 0, port->req_dma)) {
free_irq(port->dma_out_intr_vect, port);
pr_err("Can't alloc syncser%d TX DMA", dev);
ret = -EBUSY;
goto unlock_and_exit;
}
tmp = dev == 0 ? "syncser0 rx" : "syncser1 rx";
if (request_irq(port->dma_in_intr_vect, rx_interrupt, 0,
tmp, port)) {
artpec_free_dma(port->dma_out_nbr);
free_irq(port->dma_out_intr_vect, port);
pr_err("Can't alloc syncser%d RX IRQ", dev);
ret = -EBUSY;
goto unlock_and_exit;
}
if (artpec_request_dma(port->dma_in_nbr, tmp,
DMA_VERBOSE_ON_ERROR, 0, port->req_dma)) {
artpec_free_dma(port->dma_out_nbr);
free_irq(port->dma_out_intr_vect, port);
free_irq(port->dma_in_intr_vect, port);
pr_err("Can't alloc syncser%d RX DMA", dev);
ret = -EBUSY;
goto unlock_and_exit;
}
/* Enable DMAs */
REG_WR(dma, port->regi_dmain, rw_cfg, cfg);
REG_WR(dma, port->regi_dmaout, rw_cfg, cfg);
/* Enable DMA IRQs */
REG_WR(dma, port->regi_dmain, rw_intr_mask, intr_mask);
REG_WR(dma, port->regi_dmaout, rw_intr_mask, intr_mask);
/* Set up wordsize = 1 for DMAs. */
DMA_WR_CMD(port->regi_dmain, regk_dma_set_w_size1);
DMA_WR_CMD(port->regi_dmaout, regk_dma_set_w_size1);
start_dma_in(port);
port->init_irqs = dma_irq_setup;
#endif
} else { /* !port->use_dma */
#ifdef SYNC_SER_MANUAL
const char *tmp = dev == 0 ? "syncser0 manual irq" :
"syncser1 manual irq";
if (request_irq(port->syncser_intr_vect, manual_interrupt,
0, tmp, port)) {
pr_err("Can't alloc syncser%d manual irq",
dev);
ret = -EBUSY;
goto unlock_and_exit;
}
port->init_irqs = manual_irq_setup;
#else
panic("sync_serial: Manual mode not supported\n");
#endif /* SYNC_SER_MANUAL */
}
port->busy++;
ret = 0;
unlock_and_exit:
mutex_unlock(&sync_serial_mutex);
return ret;
}
static int sync_serial_release(struct inode *inode, struct file *file)
{
int dev = iminor(inode);
struct sync_port *port;
if (dev < 0 || dev >= NBR_PORTS || !ports[dev].enabled) {
DEBUG(pr_info("Invalid minor %d\n", dev));
return -ENODEV;
}
port = &ports[dev];
if (port->busy)
port->busy--;
if (!port->busy)
/* XXX */;
return 0;
}
static unsigned int sync_serial_poll(struct file *file, poll_table *wait)
{
int dev = iminor(file_inode(file));
unsigned int mask = 0;
struct sync_port *port;
DEBUGPOLL(
static unsigned int prev_mask;
);
port = &ports[dev];
if (!port->started)
sync_serial_start_port(port);
poll_wait(file, &port->out_wait_q, wait);
poll_wait(file, &port->in_wait_q, wait);
/* No active transfer, descriptors are available */
if (port->output && !port->tr_running)
mask |= POLLOUT | POLLWRNORM;
/* Descriptor and buffer space available. */
if (port->output &&
port->active_tr_descr != port->catch_tr_descr &&
port->out_buf_count < OUT_BUFFER_SIZE)
mask |= POLLOUT | POLLWRNORM;
/* At least an inbufchunk of data */
if (port->input && sync_data_avail(port) >= port->inbufchunk)
mask |= POLLIN | POLLRDNORM;
DEBUGPOLL(
if (mask != prev_mask)
pr_info("sync_serial_poll: mask 0x%08X %s %s\n",
mask,
mask & POLLOUT ? "POLLOUT" : "",
mask & POLLIN ? "POLLIN" : "");
prev_mask = mask;
);
return mask;
}
static ssize_t __sync_serial_read(struct file *file,
char __user *buf,
size_t count,
loff_t *ppos,
struct timespec *ts)
{
unsigned long flags;
int dev = MINOR(file_inode(file)->i_rdev);
int avail;
struct sync_port *port;
unsigned char *start;
unsigned char *end;
if (dev < 0 || dev >= NBR_PORTS || !ports[dev].enabled) {
DEBUG(pr_info("Invalid minor %d\n", dev));
return -ENODEV;
}
port = &ports[dev];
if (!port->started)
sync_serial_start_port(port);
/* Calculate number of available bytes */
/* Save pointers to avoid that they are modified by interrupt */
spin_lock_irqsave(&port->lock, flags);
start = port->readp;
end = port->writep;
spin_unlock_irqrestore(&port->lock, flags);
while ((start == end) && !port->in_buffer_len) {
if (file->f_flags & O_NONBLOCK)
return -EAGAIN;
wait_event_interruptible(port->in_wait_q,
!(start == end && !port->full));
if (signal_pending(current))
return -EINTR;
spin_lock_irqsave(&port->lock, flags);
start = port->readp;
end = port->writep;
spin_unlock_irqrestore(&port->lock, flags);
}
DEBUGREAD(pr_info("R%d c %d ri %u wi %u /%u\n",
dev, count,
start - port->flip, end - port->flip,
port->in_buffer_size));
/* Lazy read, never return wrapped data. */
if (end > start)
avail = end - start;
else
avail = port->flip + port->in_buffer_size - start;
count = count > avail ? avail : count;
if (copy_to_user(buf, start, count))
return -EFAULT;
/* If timestamp requested, find timestamp of first returned byte
* and copy it.
* N.B: Applications that request timstamps MUST read data in
* chunks that are multiples of IN_DESCR_SIZE.
* Otherwise the timestamps will not be aligned to the data read.
*/
if (ts != NULL) {
int idx = port->read_ts_idx;
memcpy(ts, &port->timestamp[idx], sizeof(struct timespec));
port->read_ts_idx += count / IN_DESCR_SIZE;
if (port->read_ts_idx >= NBR_IN_DESCR)
port->read_ts_idx = 0;
}
spin_lock_irqsave(&port->lock, flags);
port->readp += count;
/* Check for wrap */
if (port->readp >= port->flip + port->in_buffer_size)
port->readp = port->flip;
port->in_buffer_len -= count;
port->full = 0;
spin_unlock_irqrestore(&port->lock, flags);
DEBUGREAD(pr_info("r %d\n", count));
return count;
}
static ssize_t sync_serial_input(struct file *file, unsigned long arg)
{
struct ssp_request req;
int count;
int ret;
/* Copy the request structure from user-mode. */
ret = copy_from_user(&req, (struct ssp_request __user *)arg,
sizeof(struct ssp_request));
if (ret) {
DEBUG(pr_info("sync_serial_input copy from user failed\n"));
return -EFAULT;
}
/* To get the timestamps aligned, make sure that 'len'
* is a multiple of IN_DESCR_SIZE.
*/
if ((req.len % IN_DESCR_SIZE) != 0) {
DEBUG(pr_info("sync_serial: req.len %x, IN_DESCR_SIZE %x\n",
req.len, IN_DESCR_SIZE));
return -EFAULT;
}
/* Do the actual read. */
/* Note that req.buf is actually a pointer to user space. */
count = __sync_serial_read(file, req.buf, req.len,
NULL, &req.ts);
if (count < 0) {
DEBUG(pr_info("sync_serial_input read failed\n"));
return count;
}
/* Copy the request back to user-mode. */
ret = copy_to_user((struct ssp_request __user *)arg, &req,
sizeof(struct ssp_request));
if (ret) {
DEBUG(pr_info("syncser input copy2user failed\n"));
return -EFAULT;
}
/* Return the number of bytes read. */
return count;
}
static int sync_serial_ioctl_unlocked(struct file *file,
unsigned int cmd, unsigned long arg)
{
int return_val = 0;
int dma_w_size = regk_dma_set_w_size1;
int dev = iminor(file_inode(file));
struct sync_port *port;
reg_sser_rw_tr_cfg tr_cfg;
reg_sser_rw_rec_cfg rec_cfg;
reg_sser_rw_frm_cfg frm_cfg;
reg_sser_rw_cfg gen_cfg;
reg_sser_rw_intr_mask intr_mask;
if (dev < 0 || dev >= NBR_PORTS || !ports[dev].enabled) {
DEBUG(pr_info("Invalid minor %d\n", dev));
return -1;
}
if (cmd == SSP_INPUT)
return sync_serial_input(file, arg);
port = &ports[dev];
spin_lock_irq(&port->lock);
tr_cfg = REG_RD(sser, port->regi_sser, rw_tr_cfg);
rec_cfg = REG_RD(sser, port->regi_sser, rw_rec_cfg);
frm_cfg = REG_RD(sser, port->regi_sser, rw_frm_cfg);
gen_cfg = REG_RD(sser, port->regi_sser, rw_cfg);
intr_mask = REG_RD(sser, port->regi_sser, rw_intr_mask);
switch (cmd) {
case SSP_SPEED:
if (GET_SPEED(arg) == CODEC) {
unsigned int freq;
gen_cfg.base_freq = regk_sser_f32;
/* Clock divider will internally be
* gen_cfg.clk_div + 1.
*/
freq = GET_FREQ(arg);
switch (freq) {
case FREQ_32kHz:
case FREQ_64kHz:
case FREQ_128kHz:
case FREQ_256kHz:
gen_cfg.clk_div = 125 *
(1 << (freq - FREQ_256kHz)) - 1;
break;
case FREQ_512kHz:
gen_cfg.clk_div = 62;
break;
case FREQ_1MHz:
case FREQ_2MHz:
case FREQ_4MHz:
gen_cfg.clk_div = 8 * (1 << freq) - 1;
break;
}
} else if (GET_SPEED(arg) == CODEC_f32768) {
gen_cfg.base_freq = regk_sser_f32_768;
switch (GET_FREQ(arg)) {
case FREQ_4096kHz:
gen_cfg.clk_div = 7;
break;
default:
spin_unlock_irq(&port->lock);
return -EINVAL;
}
} else {
gen_cfg.base_freq = regk_sser_f29_493;
switch (GET_SPEED(arg)) {
case SSP150:
gen_cfg.clk_div = 29493000 / (150 * 8) - 1;
break;
case SSP300:
gen_cfg.clk_div = 29493000 / (300 * 8) - 1;
break;
case SSP600:
gen_cfg.clk_div = 29493000 / (600 * 8) - 1;
break;
case SSP1200:
gen_cfg.clk_div = 29493000 / (1200 * 8) - 1;
break;
case SSP2400:
gen_cfg.clk_div = 29493000 / (2400 * 8) - 1;
break;
case SSP4800:
gen_cfg.clk_div = 29493000 / (4800 * 8) - 1;
break;
case SSP9600:
gen_cfg.clk_div = 29493000 / (9600 * 8) - 1;
break;
case SSP19200:
gen_cfg.clk_div = 29493000 / (19200 * 8) - 1;
break;
case SSP28800:
gen_cfg.clk_div = 29493000 / (28800 * 8) - 1;
break;
case SSP57600:
gen_cfg.clk_div = 29493000 / (57600 * 8) - 1;
break;
case SSP115200:
gen_cfg.clk_div = 29493000 / (115200 * 8) - 1;
break;
case SSP230400:
gen_cfg.clk_div = 29493000 / (230400 * 8) - 1;
break;
case SSP460800:
gen_cfg.clk_div = 29493000 / (460800 * 8) - 1;
break;
case SSP921600:
gen_cfg.clk_div = 29493000 / (921600 * 8) - 1;
break;
case SSP3125000:
gen_cfg.base_freq = regk_sser_f100;
gen_cfg.clk_div = 100000000 / (3125000 * 8) - 1;
break;
}
}
frm_cfg.wordrate = GET_WORD_RATE(arg);
break;
case SSP_MODE:
switch (arg) {
case MASTER_OUTPUT:
port->output = 1;
port->input = 0;
frm_cfg.out_on = regk_sser_tr;
frm_cfg.frame_pin_dir = regk_sser_out;
gen_cfg.clk_dir = regk_sser_out;
break;
case SLAVE_OUTPUT:
port->output = 1;
port->input = 0;
frm_cfg.frame_pin_dir = regk_sser_in;
gen_cfg.clk_dir = regk_sser_in;
break;
case MASTER_INPUT:
port->output = 0;
port->input = 1;
frm_cfg.frame_pin_dir = regk_sser_out;
frm_cfg.out_on = regk_sser_intern_tb;
gen_cfg.clk_dir = regk_sser_out;
break;
case SLAVE_INPUT:
port->output = 0;
port->input = 1;
frm_cfg.frame_pin_dir = regk_sser_in;
gen_cfg.clk_dir = regk_sser_in;
break;
case MASTER_BIDIR:
port->output = 1;
port->input = 1;
frm_cfg.frame_pin_dir = regk_sser_out;
frm_cfg.out_on = regk_sser_intern_tb;
gen_cfg.clk_dir = regk_sser_out;
break;
case SLAVE_BIDIR:
port->output = 1;
port->input = 1;
frm_cfg.frame_pin_dir = regk_sser_in;
gen_cfg.clk_dir = regk_sser_in;
break;
default:
spin_unlock_irq(&port->lock);
return -EINVAL;
}
if (!port->use_dma || arg == MASTER_OUTPUT ||
arg == SLAVE_OUTPUT)
intr_mask.rdav = regk_sser_yes;
break;
case SSP_FRAME_SYNC:
if (arg & NORMAL_SYNC) {
frm_cfg.rec_delay = 1;
frm_cfg.tr_delay = 1;
} else if (arg & EARLY_SYNC)
frm_cfg.rec_delay = frm_cfg.tr_delay = 0;
else if (arg & LATE_SYNC) {
frm_cfg.tr_delay = 2;
frm_cfg.rec_delay = 2;
} else if (arg & SECOND_WORD_SYNC) {
frm_cfg.rec_delay = 7;
frm_cfg.tr_delay = 1;
}
tr_cfg.bulk_wspace = frm_cfg.tr_delay;
frm_cfg.early_wend = regk_sser_yes;
if (arg & BIT_SYNC)
frm_cfg.type = regk_sser_edge;
else if (arg & WORD_SYNC)
frm_cfg.type = regk_sser_level;
else if (arg & EXTENDED_SYNC)
frm_cfg.early_wend = regk_sser_no;
if (arg & SYNC_ON)
frm_cfg.frame_pin_use = regk_sser_frm;
else if (arg & SYNC_OFF)
frm_cfg.frame_pin_use = regk_sser_gio0;
dma_w_size = regk_dma_set_w_size2;
if (arg & WORD_SIZE_8) {
rec_cfg.sample_size = tr_cfg.sample_size = 7;
dma_w_size = regk_dma_set_w_size1;
} else if (arg & WORD_SIZE_12)
rec_cfg.sample_size = tr_cfg.sample_size = 11;
else if (arg & WORD_SIZE_16)
rec_cfg.sample_size = tr_cfg.sample_size = 15;
else if (arg & WORD_SIZE_24)
rec_cfg.sample_size = tr_cfg.sample_size = 23;
else if (arg & WORD_SIZE_32)
rec_cfg.sample_size = tr_cfg.sample_size = 31;
if (arg & BIT_ORDER_MSB)
rec_cfg.sh_dir = tr_cfg.sh_dir = regk_sser_msbfirst;
else if (arg & BIT_ORDER_LSB)
rec_cfg.sh_dir = tr_cfg.sh_dir = regk_sser_lsbfirst;
if (arg & FLOW_CONTROL_ENABLE) {
frm_cfg.status_pin_use = regk_sser_frm;
rec_cfg.fifo_thr = regk_sser_thr16;
} else if (arg & FLOW_CONTROL_DISABLE) {
frm_cfg.status_pin_use = regk_sser_gio0;
rec_cfg.fifo_thr = regk_sser_inf;
}
if (arg & CLOCK_NOT_GATED)
gen_cfg.gate_clk = regk_sser_no;
else if (arg & CLOCK_GATED)
gen_cfg.gate_clk = regk_sser_yes;
break;
case SSP_IPOLARITY:
/* NOTE!! negedge is considered NORMAL */
if (arg & CLOCK_NORMAL)
rec_cfg.clk_pol = regk_sser_neg;
else if (arg & CLOCK_INVERT)
rec_cfg.clk_pol = regk_sser_pos;
if (arg & FRAME_NORMAL)
frm_cfg.level = regk_sser_pos_hi;
else if (arg & FRAME_INVERT)
frm_cfg.level = regk_sser_neg_lo;
if (arg & STATUS_NORMAL)
gen_cfg.hold_pol = regk_sser_pos;
else if (arg & STATUS_INVERT)
gen_cfg.hold_pol = regk_sser_neg;
break;
case SSP_OPOLARITY:
if (arg & CLOCK_NORMAL)
gen_cfg.out_clk_pol = regk_sser_pos;
else if (arg & CLOCK_INVERT)
gen_cfg.out_clk_pol = regk_sser_neg;
if (arg & FRAME_NORMAL)
frm_cfg.level = regk_sser_pos_hi;
else if (arg & FRAME_INVERT)
frm_cfg.level = regk_sser_neg_lo;
if (arg & STATUS_NORMAL)
gen_cfg.hold_pol = regk_sser_pos;
else if (arg & STATUS_INVERT)
gen_cfg.hold_pol = regk_sser_neg;
break;
case SSP_SPI:
rec_cfg.fifo_thr = regk_sser_inf;
rec_cfg.sh_dir = tr_cfg.sh_dir = regk_sser_msbfirst;
rec_cfg.sample_size = tr_cfg.sample_size = 7;
frm_cfg.frame_pin_use = regk_sser_frm;
frm_cfg.type = regk_sser_level;
frm_cfg.tr_delay = 1;
frm_cfg.level = regk_sser_neg_lo;
if (arg & SPI_SLAVE) {
rec_cfg.clk_pol = regk_sser_neg;
gen_cfg.clk_dir = regk_sser_in;
port->input = 1;
port->output = 0;
} else {
gen_cfg.out_clk_pol = regk_sser_pos;
port->input = 0;
port->output = 1;
gen_cfg.clk_dir = regk_sser_out;
}
break;
case SSP_INBUFCHUNK:
break;
default:
return_val = -1;
}
if (port->started) {
rec_cfg.rec_en = port->input;
gen_cfg.en = (port->output | port->input);
}
REG_WR(sser, port->regi_sser, rw_tr_cfg, tr_cfg);
REG_WR(sser, port->regi_sser, rw_rec_cfg, rec_cfg);
REG_WR(sser, port->regi_sser, rw_frm_cfg, frm_cfg);
REG_WR(sser, port->regi_sser, rw_intr_mask, intr_mask);
REG_WR(sser, port->regi_sser, rw_cfg, gen_cfg);
if (cmd == SSP_FRAME_SYNC && (arg & (WORD_SIZE_8 | WORD_SIZE_12 |
WORD_SIZE_16 | WORD_SIZE_24 | WORD_SIZE_32))) {
int en = gen_cfg.en;
gen_cfg.en = 0;
REG_WR(sser, port->regi_sser, rw_cfg, gen_cfg);
/* ##### Should DMA be stoped before we change dma size? */
DMA_WR_CMD(port->regi_dmain, dma_w_size);
DMA_WR_CMD(port->regi_dmaout, dma_w_size);
gen_cfg.en = en;
REG_WR(sser, port->regi_sser, rw_cfg, gen_cfg);
}
spin_unlock_irq(&port->lock);
return return_val;
}
static long sync_serial_ioctl(struct file *file,
unsigned int cmd, unsigned long arg)
{
long ret;
mutex_lock(&sync_serial_mutex);
ret = sync_serial_ioctl_unlocked(file, cmd, arg);
mutex_unlock(&sync_serial_mutex);
return ret;
}
/* NOTE: sync_serial_write does not support concurrency */
static ssize_t sync_serial_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
int dev = iminor(file_inode(file));
DECLARE_WAITQUEUE(wait, current);
struct sync_port *port;
int trunc_count;
unsigned long flags;
int bytes_free;
int out_buf_count;
unsigned char *rd_ptr; /* First allocated byte in the buffer */
unsigned char *wr_ptr; /* First free byte in the buffer */
unsigned char *buf_stop_ptr; /* Last byte + 1 */
if (dev < 0 || dev >= NBR_PORTS || !ports[dev].enabled) {
DEBUG(pr_info("Invalid minor %d\n", dev));
return -ENODEV;
}
port = &ports[dev];
/* |<- OUT_BUFFER_SIZE ->|
* |<- out_buf_count ->|
* |<- trunc_count ->| ...->|
* ______________________________________________________
* | free | data | free |
* |_________|___________________|________________________|
* ^ rd_ptr ^ wr_ptr
*/
DEBUGWRITE(pr_info("W d%d c %u a: %p c: %p\n",
port->port_nbr, count, port->active_tr_descr,
port->catch_tr_descr));
/* Read variables that may be updated by interrupts */
spin_lock_irqsave(&port->lock, flags);
rd_ptr = port->out_rd_ptr;
out_buf_count = port->out_buf_count;
spin_unlock_irqrestore(&port->lock, flags);
/* Check if resources are available */
if (port->tr_running &&
((port->use_dma && port->active_tr_descr == port->catch_tr_descr) ||
out_buf_count >= OUT_BUFFER_SIZE)) {
DEBUGWRITE(pr_info("sser%d full\n", dev));
return -EAGAIN;
}
buf_stop_ptr = port->out_buffer + OUT_BUFFER_SIZE;
/* Determine pointer to the first free byte, before copying. */
wr_ptr = rd_ptr + out_buf_count;
if (wr_ptr >= buf_stop_ptr)
wr_ptr -= OUT_BUFFER_SIZE;
/* If we wrap the ring buffer, let the user space program handle it by
* truncating the data. This could be more elegant, small buffer
* fragments may occur.
*/
bytes_free = OUT_BUFFER_SIZE - out_buf_count;
if (wr_ptr + bytes_free > buf_stop_ptr)
bytes_free = buf_stop_ptr - wr_ptr;
trunc_count = (count < bytes_free) ? count : bytes_free;
if (copy_from_user(wr_ptr, buf, trunc_count))
return -EFAULT;
DEBUGOUTBUF(pr_info("%-4d + %-4d = %-4d %p %p %p\n",
out_buf_count, trunc_count,
port->out_buf_count, port->out_buffer,
wr_ptr, buf_stop_ptr));
/* Make sure transmitter/receiver is running */
if (!port->started) {
reg_sser_rw_cfg cfg = REG_RD(sser, port->regi_sser, rw_cfg);
reg_sser_rw_rec_cfg rec_cfg =
REG_RD(sser, port->regi_sser, rw_rec_cfg);
cfg.en = regk_sser_yes;
rec_cfg.rec_en = port->input;
REG_WR(sser, port->regi_sser, rw_cfg, cfg);
REG_WR(sser, port->regi_sser, rw_rec_cfg, rec_cfg);
port->started = 1;
}
/* Setup wait if blocking */
if (!(file->f_flags & O_NONBLOCK)) {
add_wait_queue(&port->out_wait_q, &wait);
set_current_state(TASK_INTERRUPTIBLE);
}
spin_lock_irqsave(&port->lock, flags);
port->out_buf_count += trunc_count;
if (port->use_dma) {
#ifdef SYNC_SER_DMA
start_dma_out(port, wr_ptr, trunc_count);
#endif
} else if (!port->tr_running) {
#ifdef SYNC_SER_MANUAL
reg_sser_rw_intr_mask intr_mask;
intr_mask = REG_RD(sser, port->regi_sser, rw_intr_mask);
/* Start sender by writing data */
send_word(port);
/* and enable transmitter ready IRQ */
intr_mask.trdy = 1;
REG_WR(sser, port->regi_sser, rw_intr_mask, intr_mask);
#endif
}
spin_unlock_irqrestore(&port->lock, flags);
/* Exit if non blocking */
if (file->f_flags & O_NONBLOCK) {
DEBUGWRITE(pr_info("w d%d c %u %08x\n",
port->port_nbr, trunc_count,
REG_RD_INT(dma, port->regi_dmaout, r_intr)));
return trunc_count;
}
schedule();
remove_wait_queue(&port->out_wait_q, &wait);
if (signal_pending(current))
return -EINTR;
DEBUGWRITE(pr_info("w d%d c %u\n", port->port_nbr, trunc_count));
return trunc_count;
}
static ssize_t sync_serial_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
return __sync_serial_read(file, buf, count, ppos, NULL);
}
#ifdef SYNC_SER_MANUAL
static void send_word(struct sync_port *port)
{
reg_sser_rw_tr_cfg tr_cfg = REG_RD(sser, port->regi_sser, rw_tr_cfg);
reg_sser_rw_tr_data tr_data = {0};
switch (tr_cfg.sample_size) {
case 8:
port->out_buf_count--;
tr_data.data = *port->out_rd_ptr++;
REG_WR(sser, port->regi_sser, rw_tr_data, tr_data);
if (port->out_rd_ptr >= port->out_buffer + OUT_BUFFER_SIZE)
port->out_rd_ptr = port->out_buffer;
break;
case 12:
{
int data = (*port->out_rd_ptr++) << 8;
data |= *port->out_rd_ptr++;
port->out_buf_count -= 2;
tr_data.data = data;
REG_WR(sser, port->regi_sser, rw_tr_data, tr_data);
if (port->out_rd_ptr >= port->out_buffer + OUT_BUFFER_SIZE)
port->out_rd_ptr = port->out_buffer;
break;
}
case 16:
port->out_buf_count -= 2;
tr_data.data = *(unsigned short *)port->out_rd_ptr;
REG_WR(sser, port->regi_sser, rw_tr_data, tr_data);
port->out_rd_ptr += 2;
if (port->out_rd_ptr >= port->out_buffer + OUT_BUFFER_SIZE)
port->out_rd_ptr = port->out_buffer;
break;
case 24:
port->out_buf_count -= 3;
tr_data.data = *(unsigned short *)port->out_rd_ptr;
REG_WR(sser, port->regi_sser, rw_tr_data, tr_data);
port->out_rd_ptr += 2;
tr_data.data = *port->out_rd_ptr++;
REG_WR(sser, port->regi_sser, rw_tr_data, tr_data);
if (port->out_rd_ptr >= port->out_buffer + OUT_BUFFER_SIZE)
port->out_rd_ptr = port->out_buffer;
break;
case 32:
port->out_buf_count -= 4;
tr_data.data = *(unsigned short *)port->out_rd_ptr;
REG_WR(sser, port->regi_sser, rw_tr_data, tr_data);
port->out_rd_ptr += 2;
tr_data.data = *(unsigned short *)port->out_rd_ptr;
REG_WR(sser, port->regi_sser, rw_tr_data, tr_data);
port->out_rd_ptr += 2;
if (port->out_rd_ptr >= port->out_buffer + OUT_BUFFER_SIZE)
port->out_rd_ptr = port->out_buffer;
break;
}
}
#endif
#ifdef SYNC_SER_DMA
static void start_dma_out(struct sync_port *port, const char *data, int count)
{
port->active_tr_descr->buf = (char *)virt_to_phys((char *)data);
port->active_tr_descr->after = port->active_tr_descr->buf + count;
port->active_tr_descr->intr = 1;
port->active_tr_descr->eol = 1;
port->prev_tr_descr->eol = 0;
DEBUGTRDMA(pr_info("Inserting eolr:%p eol@:%p\n",
port->prev_tr_descr, port->active_tr_descr));
port->prev_tr_descr = port->active_tr_descr;
port->active_tr_descr = phys_to_virt((int)port->active_tr_descr->next);
if (!port->tr_running) {
reg_sser_rw_tr_cfg tr_cfg = REG_RD(sser, port->regi_sser,
rw_tr_cfg);
port->out_context.next = NULL;
port->out_context.saved_data =
(dma_descr_data *)virt_to_phys(port->prev_tr_descr);
port->out_context.saved_data_buf = port->prev_tr_descr->buf;
DMA_START_CONTEXT(port->regi_dmaout,
virt_to_phys((char *)&port->out_context));
tr_cfg.tr_en = regk_sser_yes;
REG_WR(sser, port->regi_sser, rw_tr_cfg, tr_cfg);
DEBUGTRDMA(pr_info("dma s\n"););
} else {
DMA_CONTINUE_DATA(port->regi_dmaout);
DEBUGTRDMA(pr_info("dma c\n"););
}
port->tr_running = 1;
}
static void start_dma_in(struct sync_port *port)
{
int i;
char *buf;
unsigned long flags;
spin_lock_irqsave(&port->lock, flags);
port->writep = port->flip;
spin_unlock_irqrestore(&port->lock, flags);
buf = (char *)virt_to_phys(port->in_buffer);
for (i = 0; i < NBR_IN_DESCR; i++) {
port->in_descr[i].buf = buf;
port->in_descr[i].after = buf + port->inbufchunk;
port->in_descr[i].intr = 1;
port->in_descr[i].next =
(dma_descr_data *)virt_to_phys(&port->in_descr[i+1]);
port->in_descr[i].buf = buf;
buf += port->inbufchunk;
}
/* Link the last descriptor to the first */
port->in_descr[i-1].next =
(dma_descr_data *)virt_to_phys(&port->in_descr[0]);
port->in_descr[i-1].eol = regk_sser_yes;
port->next_rx_desc = &port->in_descr[0];
port->prev_rx_desc = &port->in_descr[NBR_IN_DESCR - 1];
port->in_context.saved_data =
(dma_descr_data *)virt_to_phys(&port->in_descr[0]);
port->in_context.saved_data_buf = port->in_descr[0].buf;
DMA_START_CONTEXT(port->regi_dmain, virt_to_phys(&port->in_context));
}
static irqreturn_t tr_interrupt(int irq, void *dev_id)
{
reg_dma_r_masked_intr masked;
reg_dma_rw_ack_intr ack_intr = { .data = regk_dma_yes };
reg_dma_rw_stat stat;
int i;
int found = 0;
int stop_sser = 0;
for (i = 0; i < NBR_PORTS; i++) {
struct sync_port *port = &ports[i];
if (!port->enabled || !port->use_dma)
continue;
/* IRQ active for the port? */
masked = REG_RD(dma, port->regi_dmaout, r_masked_intr);
if (!masked.data)
continue;
found = 1;
/* Check if we should stop the DMA transfer */
stat = REG_RD(dma, port->regi_dmaout, rw_stat);
if (stat.list_state == regk_dma_data_at_eol)
stop_sser = 1;
/* Clear IRQ */
REG_WR(dma, port->regi_dmaout, rw_ack_intr, ack_intr);
if (!stop_sser) {
/* The DMA has completed a descriptor, EOL was not
* encountered, so step relevant descriptor and
* datapointers forward. */
int sent;
sent = port->catch_tr_descr->after -
port->catch_tr_descr->buf;
DEBUGTXINT(pr_info("%-4d - %-4d = %-4d\t"
"in descr %p (ac: %p)\n",
port->out_buf_count, sent,
port->out_buf_count - sent,
port->catch_tr_descr,
port->active_tr_descr););
port->out_buf_count -= sent;
port->catch_tr_descr =
phys_to_virt((int) port->catch_tr_descr->next);
port->out_rd_ptr =
phys_to_virt((int) port->catch_tr_descr->buf);
} else {
reg_sser_rw_tr_cfg tr_cfg;
int j, sent;
/* EOL handler.
* Note that if an EOL was encountered during the irq
* locked section of sync_ser_write the DMA will be
* restarted and the eol flag will be cleared.
* The remaining descriptors will be traversed by
* the descriptor interrupts as usual.
*/
j = 0;
while (!port->catch_tr_descr->eol) {
sent = port->catch_tr_descr->after -
port->catch_tr_descr->buf;
DEBUGOUTBUF(pr_info(
"traversing descr %p -%d (%d)\n",
port->catch_tr_descr,
sent,
port->out_buf_count));
port->out_buf_count -= sent;
port->catch_tr_descr = phys_to_virt(
(int)port->catch_tr_descr->next);
j++;
if (j >= NBR_OUT_DESCR) {
/* TODO: Reset and recover */
panic("sync_serial: missing eol");
}
}
sent = port->catch_tr_descr->after -
port->catch_tr_descr->buf;
DEBUGOUTBUF(pr_info("eol at descr %p -%d (%d)\n",
port->catch_tr_descr,
sent,
port->out_buf_count));
port->out_buf_count -= sent;
/* Update read pointer to first free byte, we
* may already be writing data there. */
port->out_rd_ptr =
phys_to_virt((int) port->catch_tr_descr->after);
if (port->out_rd_ptr > port->out_buffer +
OUT_BUFFER_SIZE)
port->out_rd_ptr = port->out_buffer;
tr_cfg = REG_RD(sser, port->regi_sser, rw_tr_cfg);
DEBUGTXINT(pr_info(
"tr_int DMA stop %d, set catch @ %p\n",
port->out_buf_count,
port->active_tr_descr));
if (port->out_buf_count != 0)
pr_err("sync_ser: buf not empty after eol\n");
port->catch_tr_descr = port->active_tr_descr;
port->tr_running = 0;
tr_cfg.tr_en = regk_sser_no;
REG_WR(sser, port->regi_sser, rw_tr_cfg, tr_cfg);
}
/* wake up the waiting process */
wake_up_interruptible(&port->out_wait_q);
}
return IRQ_RETVAL(found);
} /* tr_interrupt */
static inline void handle_rx_packet(struct sync_port *port)
{
int idx;
reg_dma_rw_ack_intr ack_intr = { .data = regk_dma_yes };
unsigned long flags;
DEBUGRXINT(pr_info("!"));
spin_lock_irqsave(&port->lock, flags);
/* If we overrun the user experience is crap regardless if we
* drop new or old data. Its much easier to get it right when
* dropping new data so lets do that.
*/
if ((port->writep + port->inbufchunk <=
port->flip + port->in_buffer_size) &&
(port->in_buffer_len + port->inbufchunk < IN_BUFFER_SIZE)) {
memcpy(port->writep,
phys_to_virt((unsigned)port->next_rx_desc->buf),
port->inbufchunk);
port->writep += port->inbufchunk;
if (port->writep >= port->flip + port->in_buffer_size)
port->writep = port->flip;
/* Timestamp the new data chunk. */
if (port->write_ts_idx == NBR_IN_DESCR)
port->write_ts_idx = 0;
idx = port->write_ts_idx++;
ktime_get_ts(&port->timestamp[idx]);
port->in_buffer_len += port->inbufchunk;
}
spin_unlock_irqrestore(&port->lock, flags);
port->next_rx_desc->eol = 1;
port->prev_rx_desc->eol = 0;
/* Cache bug workaround */
flush_dma_descr(port->prev_rx_desc, 0);
port->prev_rx_desc = port->next_rx_desc;
port->next_rx_desc = phys_to_virt((unsigned)port->next_rx_desc->next);
/* Cache bug workaround */
flush_dma_descr(port->prev_rx_desc, 1);
/* wake up the waiting process */
wake_up_interruptible(&port->in_wait_q);
DMA_CONTINUE(port->regi_dmain);
REG_WR(dma, port->regi_dmain, rw_ack_intr, ack_intr);
}
static irqreturn_t rx_interrupt(int irq, void *dev_id)
{
reg_dma_r_masked_intr masked;
int i;
int found = 0;
DEBUG(pr_info("rx_interrupt\n"));
for (i = 0; i < NBR_PORTS; i++) {
struct sync_port *port = &ports[i];
if (!port->enabled || !port->use_dma)
continue;
masked = REG_RD(dma, port->regi_dmain, r_masked_intr);
if (!masked.data)
continue;
/* Descriptor interrupt */
found = 1;
while (REG_RD(dma, port->regi_dmain, rw_data) !=
virt_to_phys(port->next_rx_desc))
handle_rx_packet(port);
}
return IRQ_RETVAL(found);
} /* rx_interrupt */
#endif /* SYNC_SER_DMA */
#ifdef SYNC_SER_MANUAL
static irqreturn_t manual_interrupt(int irq, void *dev_id)
{
unsigned long flags;
int i;
int found = 0;
reg_sser_r_masked_intr masked;
for (i = 0; i < NBR_PORTS; i++) {
struct sync_port *port = &ports[i];
if (!port->enabled || port->use_dma)
continue;
masked = REG_RD(sser, port->regi_sser, r_masked_intr);
/* Data received? */
if (masked.rdav) {
reg_sser_rw_rec_cfg rec_cfg =
REG_RD(sser, port->regi_sser, rw_rec_cfg);
reg_sser_r_rec_data data = REG_RD(sser,
port->regi_sser, r_rec_data);
found = 1;
/* Read data */
spin_lock_irqsave(&port->lock, flags);
switch (rec_cfg.sample_size) {
case 8:
*port->writep++ = data.data & 0xff;
break;
case 12:
*port->writep = (data.data & 0x0ff0) >> 4;
*(port->writep + 1) = data.data & 0x0f;
port->writep += 2;
break;
case 16:
*(unsigned short *)port->writep = data.data;
port->writep += 2;
break;
case 24:
*(unsigned int *)port->writep = data.data;
port->writep += 3;
break;
case 32:
*(unsigned int *)port->writep = data.data;
port->writep += 4;
break;
}
/* Wrap? */
if (port->writep >= port->flip + port->in_buffer_size)
port->writep = port->flip;
if (port->writep == port->readp) {
/* Receive buf overrun, discard oldest data */
port->readp++;
/* Wrap? */
if (port->readp >= port->flip +
port->in_buffer_size)
port->readp = port->flip;
}
spin_unlock_irqrestore(&port->lock, flags);
if (sync_data_avail(port) >= port->inbufchunk)
/* Wake up application */
wake_up_interruptible(&port->in_wait_q);
}
/* Transmitter ready? */
if (masked.trdy) {
found = 1;
/* More data to send */
if (port->out_buf_count > 0)
send_word(port);
else {
/* Transmission finished */
reg_sser_rw_intr_mask intr_mask;
intr_mask = REG_RD(sser, port->regi_sser,
rw_intr_mask);
intr_mask.trdy = 0;
REG_WR(sser, port->regi_sser,
rw_intr_mask, intr_mask);
/* Wake up application */
wake_up_interruptible(&port->out_wait_q);
}
}
}
return IRQ_RETVAL(found);
}
#endif
static int __init etrax_sync_serial_init(void)
{
#if 1
/* This code will be removed when we move to udev for all devices. */
syncser_first = MKDEV(SYNC_SERIAL_MAJOR, 0);
if (register_chrdev_region(syncser_first, minor_count, SYNCSER_NAME)) {
pr_err("Failed to register major %d\n", SYNC_SERIAL_MAJOR);
return -1;
}
#else
/* Allocate dynamic major number. */
if (alloc_chrdev_region(&syncser_first, 0, minor_count, SYNCSER_NAME)) {
pr_err("Failed to allocate character device region\n");
return -1;
}
#endif
syncser_cdev = cdev_alloc();
if (!syncser_cdev) {
pr_err("Failed to allocate cdev for syncser\n");
unregister_chrdev_region(syncser_first, minor_count);
return -1;
}
cdev_init(syncser_cdev, &syncser_fops);
/* Create a sysfs class for syncser */
syncser_class = class_create(THIS_MODULE, "syncser_class");
/* Initialize Ports */
#if defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL_PORT0)
if (artpec_pinmux_alloc_fixed(PINMUX_SSER0)) {
pr_warn("Unable to alloc pins for synchronous serial port 0\n");
unregister_chrdev_region(syncser_first, minor_count);
return -EIO;
}
initialize_port(0);
ports[0].enabled = 1;
/* Register with sysfs so udev can pick it up. */
device_create(syncser_class, NULL, syncser_first, NULL,
"%s%d", SYNCSER_NAME, 0);
#endif
#if defined(CONFIG_ETRAXFS) && defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL_PORT1)
if (artpec_pinmux_alloc_fixed(PINMUX_SSER1)) {
pr_warn("Unable to alloc pins for synchronous serial port 1\n");
unregister_chrdev_region(syncser_first, minor_count);
class_destroy(syncser_class);
return -EIO;
}
initialize_port(1);
ports[1].enabled = 1;
/* Register with sysfs so udev can pick it up. */
device_create(syncser_class, NULL, syncser_first, NULL,
"%s%d", SYNCSER_NAME, 0);
#endif
/* Add it to system */
if (cdev_add(syncser_cdev, syncser_first, minor_count) < 0) {
pr_err("Failed to add syncser as char device\n");
device_destroy(syncser_class, syncser_first);
class_destroy(syncser_class);
cdev_del(syncser_cdev);
unregister_chrdev_region(syncser_first, minor_count);
return -1;
}
pr_info("ARTPEC synchronous serial port (%s: %d, %d)\n",
SYNCSER_NAME, MAJOR(syncser_first), MINOR(syncser_first));
return 0;
}
static void __exit etrax_sync_serial_exit(void)
{
int i;
device_destroy(syncser_class, syncser_first);
class_destroy(syncser_class);
if (syncser_cdev) {
cdev_del(syncser_cdev);
unregister_chrdev_region(syncser_first, minor_count);
}
for (i = 0; i < NBR_PORTS; i++) {
struct sync_port *port = &ports[i];
if (port->init_irqs == dma_irq_setup) {
/* Free dma irqs and dma channels. */
#ifdef SYNC_SER_DMA
artpec_free_dma(port->dma_in_nbr);
artpec_free_dma(port->dma_out_nbr);
free_irq(port->dma_out_intr_vect, port);
free_irq(port->dma_in_intr_vect, port);
#endif
} else if (port->init_irqs == manual_irq_setup) {
/* Free manual irq. */
free_irq(port->syncser_intr_vect, port);
}
}
pr_info("ARTPEC synchronous serial port unregistered\n");
}
module_init(etrax_sync_serial_init);
module_exit(etrax_sync_serial_exit);
MODULE_LICENSE("GPL");