/* * card driver for the Xonar DG/DGX * * Copyright (c) Clemens Ladisch <clemens@ladisch.de> * Copyright (c) Roman Volkov <v1ron@mail.ru> * * This driver is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2. * * This driver is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this driver; if not, see <http://www.gnu.org/licenses/>. */ /* * Xonar DG/DGX * ------------ * * CS4245 and CS4361 both will mute all outputs if any clock ratio * is invalid. * * CMI8788: * * SPI 0 -> CS4245 * * Playback: * I²S 1 -> CS4245 * I²S 2 -> CS4361 (center/LFE) * I²S 3 -> CS4361 (surround) * I²S 4 -> CS4361 (front) * Capture: * I²S ADC 1 <- CS4245 * * GPIO 3 <- ? * GPIO 4 <- headphone detect * GPIO 5 -> enable ADC analog circuit for the left channel * GPIO 6 -> enable ADC analog circuit for the right channel * GPIO 7 -> switch green rear output jack between CS4245 and and the first * channel of CS4361 (mechanical relay) * GPIO 8 -> enable output to speakers * * CS4245: * * input 0 <- mic * input 1 <- aux * input 2 <- front mic * input 4 <- line * DAC out -> headphones * aux out -> front panel headphones */ #include <linux/pci.h> #include <linux/delay.h> #include <sound/control.h> #include <sound/core.h> #include <sound/info.h> #include <sound/pcm.h> #include <sound/tlv.h> #include "oxygen.h" #include "xonar_dg.h" #include "cs4245.h" int cs4245_write_spi(struct oxygen *chip, u8 reg) { struct dg *data = chip->model_data; unsigned int packet; packet = reg << 8; packet |= (CS4245_SPI_ADDRESS | CS4245_SPI_WRITE) << 16; packet |= data->cs4245_shadow[reg]; return oxygen_write_spi(chip, OXYGEN_SPI_TRIGGER | OXYGEN_SPI_DATA_LENGTH_3 | OXYGEN_SPI_CLOCK_1280 | (0 << OXYGEN_SPI_CODEC_SHIFT) | OXYGEN_SPI_CEN_LATCH_CLOCK_HI, packet); } int cs4245_read_spi(struct oxygen *chip, u8 addr) { struct dg *data = chip->model_data; int ret; ret = oxygen_write_spi(chip, OXYGEN_SPI_TRIGGER | OXYGEN_SPI_DATA_LENGTH_2 | OXYGEN_SPI_CEN_LATCH_CLOCK_HI | OXYGEN_SPI_CLOCK_1280 | (0 << OXYGEN_SPI_CODEC_SHIFT), ((CS4245_SPI_ADDRESS | CS4245_SPI_WRITE) << 8) | addr); if (ret < 0) return ret; ret = oxygen_write_spi(chip, OXYGEN_SPI_TRIGGER | OXYGEN_SPI_DATA_LENGTH_2 | OXYGEN_SPI_CEN_LATCH_CLOCK_HI | OXYGEN_SPI_CLOCK_1280 | (0 << OXYGEN_SPI_CODEC_SHIFT), (CS4245_SPI_ADDRESS | CS4245_SPI_READ) << 8); if (ret < 0) return ret; data->cs4245_shadow[addr] = oxygen_read8(chip, OXYGEN_SPI_DATA1); return 0; } int cs4245_shadow_control(struct oxygen *chip, enum cs4245_shadow_operation op) { struct dg *data = chip->model_data; unsigned char addr; int ret; for (addr = 1; addr < ARRAY_SIZE(data->cs4245_shadow); addr++) { ret = (op == CS4245_SAVE_TO_SHADOW ? cs4245_read_spi(chip, addr) : cs4245_write_spi(chip, addr)); if (ret < 0) return ret; } return 0; } static void cs4245_init(struct oxygen *chip) { struct dg *data = chip->model_data; /* save the initial state: codec version, registers */ cs4245_shadow_control(chip, CS4245_SAVE_TO_SHADOW); /* * Power up the CODEC internals, enable soft ramp & zero cross, work in * async. mode, enable aux output from DAC. Invert DAC output as in the * Windows driver. */ data->cs4245_shadow[CS4245_POWER_CTRL] = 0; data->cs4245_shadow[CS4245_SIGNAL_SEL] = CS4245_A_OUT_SEL_DAC | CS4245_ASYNCH; data->cs4245_shadow[CS4245_DAC_CTRL_1] = CS4245_DAC_FM_SINGLE | CS4245_DAC_DIF_LJUST; data->cs4245_shadow[CS4245_DAC_CTRL_2] = CS4245_DAC_SOFT | CS4245_DAC_ZERO | CS4245_INVERT_DAC; data->cs4245_shadow[CS4245_ADC_CTRL] = CS4245_ADC_FM_SINGLE | CS4245_ADC_DIF_LJUST; data->cs4245_shadow[CS4245_ANALOG_IN] = CS4245_PGA_SOFT | CS4245_PGA_ZERO; data->cs4245_shadow[CS4245_PGA_B_CTRL] = 0; data->cs4245_shadow[CS4245_PGA_A_CTRL] = 0; data->cs4245_shadow[CS4245_DAC_A_CTRL] = 8; data->cs4245_shadow[CS4245_DAC_B_CTRL] = 8; cs4245_shadow_control(chip, CS4245_LOAD_FROM_SHADOW); snd_component_add(chip->card, "CS4245"); } void dg_init(struct oxygen *chip) { struct dg *data = chip->model_data; data->output_sel = PLAYBACK_DST_HP_FP; data->input_sel = CAPTURE_SRC_MIC; cs4245_init(chip); oxygen_write16(chip, OXYGEN_GPIO_CONTROL, GPIO_OUTPUT_ENABLE | GPIO_HP_REAR | GPIO_INPUT_ROUTE); /* anti-pop delay, wait some time before enabling the output */ msleep(2500); oxygen_write16(chip, OXYGEN_GPIO_DATA, GPIO_OUTPUT_ENABLE | GPIO_INPUT_ROUTE); } void dg_cleanup(struct oxygen *chip) { oxygen_clear_bits16(chip, OXYGEN_GPIO_DATA, GPIO_OUTPUT_ENABLE); } void dg_suspend(struct oxygen *chip) { dg_cleanup(chip); } void dg_resume(struct oxygen *chip) { cs4245_shadow_control(chip, CS4245_LOAD_FROM_SHADOW); msleep(2500); oxygen_set_bits16(chip, OXYGEN_GPIO_DATA, GPIO_OUTPUT_ENABLE); } void set_cs4245_dac_params(struct oxygen *chip, struct snd_pcm_hw_params *params) { struct dg *data = chip->model_data; unsigned char dac_ctrl; unsigned char mclk_freq; dac_ctrl = data->cs4245_shadow[CS4245_DAC_CTRL_1] & ~CS4245_DAC_FM_MASK; mclk_freq = data->cs4245_shadow[CS4245_MCLK_FREQ] & ~CS4245_MCLK1_MASK; if (params_rate(params) <= 50000) { dac_ctrl |= CS4245_DAC_FM_SINGLE; mclk_freq |= CS4245_MCLK_1 << CS4245_MCLK1_SHIFT; } else if (params_rate(params) <= 100000) { dac_ctrl |= CS4245_DAC_FM_DOUBLE; mclk_freq |= CS4245_MCLK_1 << CS4245_MCLK1_SHIFT; } else { dac_ctrl |= CS4245_DAC_FM_QUAD; mclk_freq |= CS4245_MCLK_2 << CS4245_MCLK1_SHIFT; } data->cs4245_shadow[CS4245_DAC_CTRL_1] = dac_ctrl; data->cs4245_shadow[CS4245_MCLK_FREQ] = mclk_freq; cs4245_write_spi(chip, CS4245_DAC_CTRL_1); cs4245_write_spi(chip, CS4245_MCLK_FREQ); } void set_cs4245_adc_params(struct oxygen *chip, struct snd_pcm_hw_params *params) { struct dg *data = chip->model_data; unsigned char adc_ctrl; unsigned char mclk_freq; adc_ctrl = data->cs4245_shadow[CS4245_ADC_CTRL] & ~CS4245_ADC_FM_MASK; mclk_freq = data->cs4245_shadow[CS4245_MCLK_FREQ] & ~CS4245_MCLK2_MASK; if (params_rate(params) <= 50000) { adc_ctrl |= CS4245_ADC_FM_SINGLE; mclk_freq |= CS4245_MCLK_1 << CS4245_MCLK2_SHIFT; } else if (params_rate(params) <= 100000) { adc_ctrl |= CS4245_ADC_FM_DOUBLE; mclk_freq |= CS4245_MCLK_1 << CS4245_MCLK2_SHIFT; } else { adc_ctrl |= CS4245_ADC_FM_QUAD; mclk_freq |= CS4245_MCLK_2 << CS4245_MCLK2_SHIFT; } data->cs4245_shadow[CS4245_ADC_CTRL] = adc_ctrl; data->cs4245_shadow[CS4245_MCLK_FREQ] = mclk_freq; cs4245_write_spi(chip, CS4245_ADC_CTRL); cs4245_write_spi(chip, CS4245_MCLK_FREQ); } static inline unsigned int shift_bits(unsigned int value, unsigned int shift_from, unsigned int shift_to, unsigned int mask) { if (shift_from < shift_to) return (value << (shift_to - shift_from)) & mask; else return (value >> (shift_from - shift_to)) & mask; } unsigned int adjust_dg_dac_routing(struct oxygen *chip, unsigned int play_routing) { struct dg *data = chip->model_data; switch (data->output_sel) { case PLAYBACK_DST_HP: case PLAYBACK_DST_HP_FP: oxygen_write8_masked(chip, OXYGEN_PLAY_ROUTING, OXYGEN_PLAY_MUTE23 | OXYGEN_PLAY_MUTE45 | OXYGEN_PLAY_MUTE67, OXYGEN_PLAY_MUTE_MASK); break; case PLAYBACK_DST_MULTICH: oxygen_write8_masked(chip, OXYGEN_PLAY_ROUTING, OXYGEN_PLAY_MUTE01, OXYGEN_PLAY_MUTE_MASK); break; } return (play_routing & OXYGEN_PLAY_DAC0_SOURCE_MASK) | shift_bits(play_routing, OXYGEN_PLAY_DAC2_SOURCE_SHIFT, OXYGEN_PLAY_DAC1_SOURCE_SHIFT, OXYGEN_PLAY_DAC1_SOURCE_MASK) | shift_bits(play_routing, OXYGEN_PLAY_DAC1_SOURCE_SHIFT, OXYGEN_PLAY_DAC2_SOURCE_SHIFT, OXYGEN_PLAY_DAC2_SOURCE_MASK) | shift_bits(play_routing, OXYGEN_PLAY_DAC0_SOURCE_SHIFT, OXYGEN_PLAY_DAC3_SOURCE_SHIFT, OXYGEN_PLAY_DAC3_SOURCE_MASK); } void dump_cs4245_registers(struct oxygen *chip, struct snd_info_buffer *buffer) { struct dg *data = chip->model_data; unsigned int addr; snd_iprintf(buffer, "\nCS4245:"); cs4245_read_spi(chip, CS4245_INT_STATUS); for (addr = 1; addr < ARRAY_SIZE(data->cs4245_shadow); addr++) snd_iprintf(buffer, " %02x", data->cs4245_shadow[addr]); snd_iprintf(buffer, "\n"); }