/******************************************************************************* * * "swarm_cs4297a.c" -- Cirrus Logic-Crystal CS4297a linux audio driver. * * Copyright (C) 2001 Broadcom Corporation. * Copyright (C) 2000,2001 Cirrus Logic Corp. * -- adapted from drivers by Thomas Sailer, * -- but don't bug him; Problems should go to: * -- tom woller (twoller@crystal.cirrus.com) or * (audio@crystal.cirrus.com). * -- adapted from cs4281 PCI driver for cs4297a on * BCM1250 Synchronous Serial interface * (Kip Walker, Broadcom Corp.) * Copyright (C) 2004 Maciej W. Rozycki * Copyright (C) 2005 Ralf Baechle (ralf@linux-mips.org) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Module command line parameters: * none * * Supported devices: * /dev/dsp standard /dev/dsp device, (mostly) OSS compatible * /dev/mixer standard /dev/mixer device, (mostly) OSS compatible * /dev/midi simple MIDI UART interface, no ioctl * * Modification History * 08/20/00 trw - silence and no stopping DAC until release * 08/23/00 trw - added CS_DBG statements, fix interrupt hang issue on DAC stop. * 09/18/00 trw - added 16bit only record with conversion * 09/24/00 trw - added Enhanced Full duplex (separate simultaneous * capture/playback rates) * 10/03/00 trw - fixed mmap (fixed GRECORD and the XMMS mmap test plugin * libOSSm.so) * 10/11/00 trw - modified for 2.4.0-test9 kernel enhancements (NR_MAP removal) * 11/03/00 trw - fixed interrupt loss/stutter, added debug. * 11/10/00 bkz - added __devinit to cs4297a_hw_init() * 11/10/00 trw - fixed SMP and capture spinlock hang. * 12/04/00 trw - cleaned up CSDEBUG flags and added "defaultorder" moduleparm. * 12/05/00 trw - fixed polling (myth2), and added underrun swptr fix. * 12/08/00 trw - added PM support. * 12/14/00 trw - added wrapper code, builds under 2.4.0, 2.2.17-20, 2.2.17-8 * (RH/Dell base), 2.2.18, 2.2.12. cleaned up code mods by ident. * 12/19/00 trw - added PM support for 2.2 base (apm_callback). other PM cleanup. * 12/21/00 trw - added fractional "defaultorder" inputs. if >100 then use * defaultorder-100 as power of 2 for the buffer size. example: * 106 = 2^(106-100) = 2^6 = 64 bytes for the buffer size. * *******************************************************************************/ #include <linux/list.h> #include <linux/module.h> #include <linux/string.h> #include <linux/ioport.h> #include <linux/sched.h> #include <linux/delay.h> #include <linux/sound.h> #include <linux/slab.h> #include <linux/soundcard.h> #include <linux/pci.h> #include <linux/bitops.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/poll.h> #include <linux/mutex.h> #include <linux/kernel.h> #include <asm/byteorder.h> #include <asm/dma.h> #include <asm/io.h> #include <asm/uaccess.h> #include <asm/sibyte/sb1250_regs.h> #include <asm/sibyte/sb1250_int.h> #include <asm/sibyte/sb1250_dma.h> #include <asm/sibyte/sb1250_scd.h> #include <asm/sibyte/sb1250_syncser.h> #include <asm/sibyte/sb1250_mac.h> #include <asm/sibyte/sb1250.h> #include "sleep.h" struct cs4297a_state; static DEFINE_MUTEX(swarm_cs4297a_mutex); static void stop_dac(struct cs4297a_state *s); static void stop_adc(struct cs4297a_state *s); static void start_dac(struct cs4297a_state *s); static void start_adc(struct cs4297a_state *s); #undef OSS_DOCUMENTED_MIXER_SEMANTICS // --------------------------------------------------------------------- #define CS4297a_MAGIC 0xf00beef1 // buffer order determines the size of the dma buffer for the driver. // under Linux, a smaller buffer allows more responsiveness from many of the // applications (e.g. games). A larger buffer allows some of the apps (esound) // to not underrun the dma buffer as easily. As default, use 32k (order=3) // rather than 64k as some of the games work more responsively. // log base 2( buff sz = 32k). // // Turn on/off debugging compilation by commenting out "#define CSDEBUG" // #define CSDEBUG 0 #if CSDEBUG #define CSDEBUG_INTERFACE 1 #else #undef CSDEBUG_INTERFACE #endif // // cs_debugmask areas // #define CS_INIT 0x00000001 // initialization and probe functions #define CS_ERROR 0x00000002 // tmp debugging bit placeholder #define CS_INTERRUPT 0x00000004 // interrupt handler (separate from all other) #define CS_FUNCTION 0x00000008 // enter/leave functions #define CS_WAVE_WRITE 0x00000010 // write information for wave #define CS_WAVE_READ 0x00000020 // read information for wave #define CS_AC97 0x00000040 // AC97 register access #define CS_DESCR 0x00000080 // descriptor management #define CS_OPEN 0x00000400 // all open functions in the driver #define CS_RELEASE 0x00000800 // all release functions in the driver #define CS_PARMS 0x00001000 // functional and operational parameters #define CS_IOCTL 0x00002000 // ioctl (non-mixer) #define CS_TMP 0x10000000 // tmp debug mask bit // // CSDEBUG is usual mode is set to 1, then use the // cs_debuglevel and cs_debugmask to turn on or off debugging. // Debug level of 1 has been defined to be kernel errors and info // that should be printed on any released driver. // #if CSDEBUG #define CS_DBGOUT(mask,level,x) if((cs_debuglevel >= (level)) && ((mask) & cs_debugmask) ) {x;} #else #define CS_DBGOUT(mask,level,x) #endif #if CSDEBUG static unsigned long cs_debuglevel = 4; // levels range from 1-9 static unsigned long cs_debugmask = CS_INIT /*| CS_IOCTL*/; module_param(cs_debuglevel, int, 0); module_param(cs_debugmask, int, 0); #endif #define CS_TRUE 1 #define CS_FALSE 0 #define CS_TYPE_ADC 0 #define CS_TYPE_DAC 1 #define SER_BASE (A_SER_BASE_1 + KSEG1) #define SS_CSR(t) (SER_BASE+t) #define SS_TXTBL(t) (SER_BASE+R_SER_TX_TABLE_BASE+(t*8)) #define SS_RXTBL(t) (SER_BASE+R_SER_RX_TABLE_BASE+(t*8)) #define FRAME_BYTES 32 #define FRAME_SAMPLE_BYTES 4 /* Should this be variable? */ #define SAMPLE_BUF_SIZE (16*1024) #define SAMPLE_FRAME_COUNT (SAMPLE_BUF_SIZE / FRAME_SAMPLE_BYTES) /* The driver can explode/shrink the frames to/from a smaller sample buffer */ #define DMA_BLOAT_FACTOR 1 #define DMA_DESCR (SAMPLE_FRAME_COUNT / DMA_BLOAT_FACTOR) #define DMA_BUF_SIZE (DMA_DESCR * FRAME_BYTES) /* Use the maxmium count (255 == 5.1 ms between interrupts) */ #define DMA_INT_CNT ((1 << S_DMA_INT_PKTCNT) - 1) /* Figure this out: how many TX DMAs ahead to schedule a reg access */ #define REG_LATENCY 150 #define FRAME_TX_US 20 #define SERDMA_NEXTBUF(d,f) (((d)->f+1) % (d)->ringsz) static const char invalid_magic[] = KERN_CRIT "cs4297a: invalid magic value\n"; #define VALIDATE_STATE(s) \ ({ \ if (!(s) || (s)->magic != CS4297a_MAGIC) { \ printk(invalid_magic); \ return -ENXIO; \ } \ }) /* AC97 registers */ #define AC97_MASTER_VOL_STEREO 0x0002 /* Line Out */ #define AC97_PCBEEP_VOL 0x000a /* none */ #define AC97_PHONE_VOL 0x000c /* TAD Input (mono) */ #define AC97_MIC_VOL 0x000e /* MIC Input (mono) */ #define AC97_LINEIN_VOL 0x0010 /* Line Input (stereo) */ #define AC97_CD_VOL 0x0012 /* CD Input (stereo) */ #define AC97_AUX_VOL 0x0016 /* Aux Input (stereo) */ #define AC97_PCMOUT_VOL 0x0018 /* Wave Output (stereo) */ #define AC97_RECORD_SELECT 0x001a /* */ #define AC97_RECORD_GAIN 0x001c #define AC97_GENERAL_PURPOSE 0x0020 #define AC97_3D_CONTROL 0x0022 #define AC97_POWER_CONTROL 0x0026 #define AC97_VENDOR_ID1 0x007c struct list_head cs4297a_devs = { &cs4297a_devs, &cs4297a_devs }; typedef struct serdma_descr_s { u64 descr_a; u64 descr_b; } serdma_descr_t; typedef unsigned long paddr_t; typedef struct serdma_s { unsigned ringsz; serdma_descr_t *descrtab; serdma_descr_t *descrtab_end; paddr_t descrtab_phys; serdma_descr_t *descr_add; serdma_descr_t *descr_rem; u64 *dma_buf; // buffer for DMA contents (frames) paddr_t dma_buf_phys; u16 *sample_buf; // tmp buffer for sample conversions u16 *sb_swptr; u16 *sb_hwptr; u16 *sb_end; dma_addr_t dmaaddr; // unsigned buforder; // Log base 2 of 'dma_buf' size in bytes.. unsigned numfrag; // # of 'fragments' in the buffer. unsigned fragshift; // Log base 2 of fragment size. unsigned hwptr, swptr; unsigned total_bytes; // # bytes process since open. unsigned blocks; // last returned blocks value GETOPTR unsigned wakeup; // interrupt occurred on block int count; unsigned underrun; // underrun flag unsigned error; // over/underrun wait_queue_head_t wait; wait_queue_head_t reg_wait; // redundant, but makes calculations easier unsigned fragsize; // 2**fragshift.. unsigned sbufsz; // 2**buforder. unsigned fragsamples; // OSS stuff unsigned mapped:1; // Buffer mapped in cs4297a_mmap()? unsigned ready:1; // prog_dmabuf_dac()/adc() successful? unsigned endcleared:1; unsigned type:1; // adc or dac buffer (CS_TYPE_XXX) unsigned ossfragshift; int ossmaxfrags; unsigned subdivision; } serdma_t; struct cs4297a_state { // magic unsigned int magic; struct list_head list; // soundcore stuff int dev_audio; int dev_mixer; // hardware resources unsigned int irq; struct { unsigned int rx_ovrrn; /* FIFO */ unsigned int rx_overflow; /* staging buffer */ unsigned int tx_underrun; unsigned int rx_bad; unsigned int rx_good; } stats; // mixer registers struct { unsigned short vol[10]; unsigned int recsrc; unsigned int modcnt; unsigned short micpreamp; } mix; // wave stuff struct properties { unsigned fmt; unsigned fmt_original; // original requested format unsigned channels; unsigned rate; } prop_dac, prop_adc; unsigned conversion:1; // conversion from 16 to 8 bit in progress unsigned ena; spinlock_t lock; struct mutex open_mutex; struct mutex open_sem_adc; struct mutex open_sem_dac; fmode_t open_mode; wait_queue_head_t open_wait; wait_queue_head_t open_wait_adc; wait_queue_head_t open_wait_dac; dma_addr_t dmaaddr_sample_buf; unsigned buforder_sample_buf; // Log base 2 of 'dma_buf' size in bytes.. serdma_t dma_dac, dma_adc; volatile u16 read_value; volatile u16 read_reg; volatile u64 reg_request; }; #if 1 #define prog_codec(a,b) #define dealloc_dmabuf(a,b); #endif static int prog_dmabuf_adc(struct cs4297a_state *s) { s->dma_adc.ready = 1; return 0; } static int prog_dmabuf_dac(struct cs4297a_state *s) { s->dma_dac.ready = 1; return 0; } static void clear_advance(void *buf, unsigned bsize, unsigned bptr, unsigned len, unsigned char c) { if (bptr + len > bsize) { unsigned x = bsize - bptr; memset(((char *) buf) + bptr, c, x); bptr = 0; len -= x; } CS_DBGOUT(CS_WAVE_WRITE, 4, printk(KERN_INFO "cs4297a: clear_advance(): memset %d at 0x%.8x for %d size \n", (unsigned)c, (unsigned)((char *) buf) + bptr, len)); memset(((char *) buf) + bptr, c, len); } #if CSDEBUG // DEBUG ROUTINES #define SOUND_MIXER_CS_GETDBGLEVEL _SIOWR('M',120, int) #define SOUND_MIXER_CS_SETDBGLEVEL _SIOWR('M',121, int) #define SOUND_MIXER_CS_GETDBGMASK _SIOWR('M',122, int) #define SOUND_MIXER_CS_SETDBGMASK _SIOWR('M',123, int) static void cs_printioctl(unsigned int x) { unsigned int i; unsigned char vidx; // Index of mixtable1[] member is Device ID // and must be <= SOUND_MIXER_NRDEVICES. // Value of array member is index into s->mix.vol[] static const unsigned char mixtable1[SOUND_MIXER_NRDEVICES] = { [SOUND_MIXER_PCM] = 1, // voice [SOUND_MIXER_LINE1] = 2, // AUX [SOUND_MIXER_CD] = 3, // CD [SOUND_MIXER_LINE] = 4, // Line [SOUND_MIXER_SYNTH] = 5, // FM [SOUND_MIXER_MIC] = 6, // Mic [SOUND_MIXER_SPEAKER] = 7, // Speaker [SOUND_MIXER_RECLEV] = 8, // Recording level [SOUND_MIXER_VOLUME] = 9 // Master Volume }; switch (x) { case SOUND_MIXER_CS_GETDBGMASK: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_CS_GETDBGMASK:\n")); break; case SOUND_MIXER_CS_GETDBGLEVEL: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_CS_GETDBGLEVEL:\n")); break; case SOUND_MIXER_CS_SETDBGMASK: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_CS_SETDBGMASK:\n")); break; case SOUND_MIXER_CS_SETDBGLEVEL: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_CS_SETDBGLEVEL:\n")); break; case OSS_GETVERSION: CS_DBGOUT(CS_IOCTL, 4, printk("OSS_GETVERSION:\n")); break; case SNDCTL_DSP_SYNC: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SYNC:\n")); break; case SNDCTL_DSP_SETDUPLEX: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETDUPLEX:\n")); break; case SNDCTL_DSP_GETCAPS: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETCAPS:\n")); break; case SNDCTL_DSP_RESET: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_RESET:\n")); break; case SNDCTL_DSP_SPEED: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SPEED:\n")); break; case SNDCTL_DSP_STEREO: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_STEREO:\n")); break; case SNDCTL_DSP_CHANNELS: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_CHANNELS:\n")); break; case SNDCTL_DSP_GETFMTS: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETFMTS:\n")); break; case SNDCTL_DSP_SETFMT: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETFMT:\n")); break; case SNDCTL_DSP_POST: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_POST:\n")); break; case SNDCTL_DSP_GETTRIGGER: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETTRIGGER:\n")); break; case SNDCTL_DSP_SETTRIGGER: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETTRIGGER:\n")); break; case SNDCTL_DSP_GETOSPACE: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETOSPACE:\n")); break; case SNDCTL_DSP_GETISPACE: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETISPACE:\n")); break; case SNDCTL_DSP_NONBLOCK: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_NONBLOCK:\n")); break; case SNDCTL_DSP_GETODELAY: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETODELAY:\n")); break; case SNDCTL_DSP_GETIPTR: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETIPTR:\n")); break; case SNDCTL_DSP_GETOPTR: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETOPTR:\n")); break; case SNDCTL_DSP_GETBLKSIZE: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETBLKSIZE:\n")); break; case SNDCTL_DSP_SETFRAGMENT: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETFRAGMENT:\n")); break; case SNDCTL_DSP_SUBDIVIDE: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SUBDIVIDE:\n")); break; case SOUND_PCM_READ_RATE: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_READ_RATE:\n")); break; case SOUND_PCM_READ_CHANNELS: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_READ_CHANNELS:\n")); break; case SOUND_PCM_READ_BITS: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_READ_BITS:\n")); break; case SOUND_PCM_WRITE_FILTER: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_WRITE_FILTER:\n")); break; case SNDCTL_DSP_SETSYNCRO: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETSYNCRO:\n")); break; case SOUND_PCM_READ_FILTER: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_READ_FILTER:\n")); break; case SOUND_MIXER_PRIVATE1: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE1:\n")); break; case SOUND_MIXER_PRIVATE2: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE2:\n")); break; case SOUND_MIXER_PRIVATE3: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE3:\n")); break; case SOUND_MIXER_PRIVATE4: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE4:\n")); break; case SOUND_MIXER_PRIVATE5: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE5:\n")); break; case SOUND_MIXER_INFO: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_INFO:\n")); break; case SOUND_OLD_MIXER_INFO: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_OLD_MIXER_INFO:\n")); break; default: switch (_IOC_NR(x)) { case SOUND_MIXER_VOLUME: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_VOLUME:\n")); break; case SOUND_MIXER_SPEAKER: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_SPEAKER:\n")); break; case SOUND_MIXER_RECLEV: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_RECLEV:\n")); break; case SOUND_MIXER_MIC: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_MIC:\n")); break; case SOUND_MIXER_SYNTH: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_SYNTH:\n")); break; case SOUND_MIXER_RECSRC: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_RECSRC:\n")); break; case SOUND_MIXER_DEVMASK: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_DEVMASK:\n")); break; case SOUND_MIXER_RECMASK: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_RECMASK:\n")); break; case SOUND_MIXER_STEREODEVS: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_STEREODEVS:\n")); break; case SOUND_MIXER_CAPS: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_CAPS:\n")); break; default: i = _IOC_NR(x); if (i >= SOUND_MIXER_NRDEVICES || !(vidx = mixtable1[i])) { CS_DBGOUT(CS_IOCTL, 4, printk ("UNKNOWN IOCTL: 0x%.8x NR=%d\n", x, i)); } else { CS_DBGOUT(CS_IOCTL, 4, printk ("SOUND_MIXER_IOCTL AC9x: 0x%.8x NR=%d\n", x, i)); } break; } } } #endif static int ser_init(struct cs4297a_state *s) { int i; CS_DBGOUT(CS_INIT, 2, printk(KERN_INFO "cs4297a: Setting up serial parameters\n")); __raw_writeq(M_SYNCSER_CMD_RX_RESET | M_SYNCSER_CMD_TX_RESET, SS_CSR(R_SER_CMD)); __raw_writeq(M_SYNCSER_MSB_FIRST, SS_CSR(R_SER_MODE)); __raw_writeq(32, SS_CSR(R_SER_MINFRM_SZ)); __raw_writeq(32, SS_CSR(R_SER_MAXFRM_SZ)); __raw_writeq(1, SS_CSR(R_SER_TX_RD_THRSH)); __raw_writeq(4, SS_CSR(R_SER_TX_WR_THRSH)); __raw_writeq(8, SS_CSR(R_SER_RX_RD_THRSH)); /* This looks good from experimentation */ __raw_writeq((M_SYNCSER_TXSYNC_INT | V_SYNCSER_TXSYNC_DLY(0) | M_SYNCSER_TXCLK_EXT | M_SYNCSER_RXSYNC_INT | V_SYNCSER_RXSYNC_DLY(1) | M_SYNCSER_RXCLK_EXT | M_SYNCSER_RXSYNC_EDGE), SS_CSR(R_SER_LINE_MODE)); /* This looks good from experimentation */ __raw_writeq(V_SYNCSER_SEQ_COUNT(14) | M_SYNCSER_SEQ_ENABLE | M_SYNCSER_SEQ_STROBE, SS_TXTBL(0)); __raw_writeq(V_SYNCSER_SEQ_COUNT(15) | M_SYNCSER_SEQ_ENABLE | M_SYNCSER_SEQ_BYTE, SS_TXTBL(1)); __raw_writeq(V_SYNCSER_SEQ_COUNT(13) | M_SYNCSER_SEQ_ENABLE | M_SYNCSER_SEQ_BYTE, SS_TXTBL(2)); __raw_writeq(V_SYNCSER_SEQ_COUNT( 0) | M_SYNCSER_SEQ_ENABLE | M_SYNCSER_SEQ_STROBE | M_SYNCSER_SEQ_LAST, SS_TXTBL(3)); __raw_writeq(V_SYNCSER_SEQ_COUNT(14) | M_SYNCSER_SEQ_ENABLE | M_SYNCSER_SEQ_STROBE, SS_RXTBL(0)); __raw_writeq(V_SYNCSER_SEQ_COUNT(15) | M_SYNCSER_SEQ_ENABLE | M_SYNCSER_SEQ_BYTE, SS_RXTBL(1)); __raw_writeq(V_SYNCSER_SEQ_COUNT(13) | M_SYNCSER_SEQ_ENABLE | M_SYNCSER_SEQ_BYTE, SS_RXTBL(2)); __raw_writeq(V_SYNCSER_SEQ_COUNT( 0) | M_SYNCSER_SEQ_ENABLE | M_SYNCSER_SEQ_STROBE | M_SYNCSER_SEQ_LAST, SS_RXTBL(3)); for (i=4; i<16; i++) { /* Just in case... */ __raw_writeq(M_SYNCSER_SEQ_LAST, SS_TXTBL(i)); __raw_writeq(M_SYNCSER_SEQ_LAST, SS_RXTBL(i)); } return 0; } static int init_serdma(serdma_t *dma) { CS_DBGOUT(CS_INIT, 2, printk(KERN_ERR "cs4297a: desc - %d sbufsize - %d dbufsize - %d\n", DMA_DESCR, SAMPLE_BUF_SIZE, DMA_BUF_SIZE)); /* Descriptors */ dma->ringsz = DMA_DESCR; dma->descrtab = kzalloc(dma->ringsz * sizeof(serdma_descr_t), GFP_KERNEL); if (!dma->descrtab) { printk(KERN_ERR "cs4297a: kzalloc descrtab failed\n"); return -1; } dma->descrtab_end = dma->descrtab + dma->ringsz; /* XXX bloddy mess, use proper DMA API here ... */ dma->descrtab_phys = CPHYSADDR((long)dma->descrtab); dma->descr_add = dma->descr_rem = dma->descrtab; /* Frame buffer area */ dma->dma_buf = kzalloc(DMA_BUF_SIZE, GFP_KERNEL); if (!dma->dma_buf) { printk(KERN_ERR "cs4297a: kzalloc dma_buf failed\n"); kfree(dma->descrtab); return -1; } dma->dma_buf_phys = CPHYSADDR((long)dma->dma_buf); /* Samples buffer area */ dma->sbufsz = SAMPLE_BUF_SIZE; dma->sample_buf = kmalloc(dma->sbufsz, GFP_KERNEL); if (!dma->sample_buf) { printk(KERN_ERR "cs4297a: kmalloc sample_buf failed\n"); kfree(dma->descrtab); kfree(dma->dma_buf); return -1; } dma->sb_swptr = dma->sb_hwptr = dma->sample_buf; dma->sb_end = (u16 *)((void *)dma->sample_buf + dma->sbufsz); dma->fragsize = dma->sbufsz >> 1; CS_DBGOUT(CS_INIT, 4, printk(KERN_ERR "cs4297a: descrtab - %08x dma_buf - %x sample_buf - %x\n", (int)dma->descrtab, (int)dma->dma_buf, (int)dma->sample_buf)); return 0; } static int dma_init(struct cs4297a_state *s) { int i; CS_DBGOUT(CS_INIT, 2, printk(KERN_INFO "cs4297a: Setting up DMA\n")); if (init_serdma(&s->dma_adc) || init_serdma(&s->dma_dac)) return -1; if (__raw_readq(SS_CSR(R_SER_DMA_DSCR_COUNT_RX))|| __raw_readq(SS_CSR(R_SER_DMA_DSCR_COUNT_TX))) { panic("DMA state corrupted?!"); } /* Initialize now - the descr/buffer pairings will never change... */ for (i=0; i<DMA_DESCR; i++) { s->dma_dac.descrtab[i].descr_a = M_DMA_SERRX_SOP | V_DMA_DSCRA_A_SIZE(1) | (s->dma_dac.dma_buf_phys + i*FRAME_BYTES); s->dma_dac.descrtab[i].descr_b = V_DMA_DSCRB_PKT_SIZE(FRAME_BYTES); s->dma_adc.descrtab[i].descr_a = V_DMA_DSCRA_A_SIZE(1) | (s->dma_adc.dma_buf_phys + i*FRAME_BYTES); s->dma_adc.descrtab[i].descr_b = 0; } __raw_writeq((M_DMA_EOP_INT_EN | V_DMA_INT_PKTCNT(DMA_INT_CNT) | V_DMA_RINGSZ(DMA_DESCR) | M_DMA_TDX_EN), SS_CSR(R_SER_DMA_CONFIG0_RX)); __raw_writeq(M_DMA_L2CA, SS_CSR(R_SER_DMA_CONFIG1_RX)); __raw_writeq(s->dma_adc.descrtab_phys, SS_CSR(R_SER_DMA_DSCR_BASE_RX)); __raw_writeq(V_DMA_RINGSZ(DMA_DESCR), SS_CSR(R_SER_DMA_CONFIG0_TX)); __raw_writeq(M_DMA_L2CA | M_DMA_NO_DSCR_UPDT, SS_CSR(R_SER_DMA_CONFIG1_TX)); __raw_writeq(s->dma_dac.descrtab_phys, SS_CSR(R_SER_DMA_DSCR_BASE_TX)); /* Prep the receive DMA descriptor ring */ __raw_writeq(DMA_DESCR, SS_CSR(R_SER_DMA_DSCR_COUNT_RX)); __raw_writeq(M_SYNCSER_DMA_RX_EN | M_SYNCSER_DMA_TX_EN, SS_CSR(R_SER_DMA_ENABLE)); __raw_writeq((M_SYNCSER_RX_SYNC_ERR | M_SYNCSER_RX_OVERRUN | M_SYNCSER_RX_EOP_COUNT), SS_CSR(R_SER_INT_MASK)); /* Enable the rx/tx; let the codec warm up to the sync and start sending good frames before the receive FIFO is enabled */ __raw_writeq(M_SYNCSER_CMD_TX_EN, SS_CSR(R_SER_CMD)); udelay(1000); __raw_writeq(M_SYNCSER_CMD_RX_EN | M_SYNCSER_CMD_TX_EN, SS_CSR(R_SER_CMD)); /* XXXKW is this magic? (the "1" part) */ while ((__raw_readq(SS_CSR(R_SER_STATUS)) & 0xf1) != 1) ; CS_DBGOUT(CS_INIT, 4, printk(KERN_INFO "cs4297a: status: %08x\n", (unsigned int)(__raw_readq(SS_CSR(R_SER_STATUS)) & 0xffffffff))); return 0; } static int serdma_reg_access(struct cs4297a_state *s, u64 data) { serdma_t *d = &s->dma_dac; u64 *data_p; unsigned swptr; unsigned long flags; serdma_descr_t *descr; if (s->reg_request) { printk(KERN_ERR "cs4297a: attempt to issue multiple reg_access\n"); return -1; } if (s->ena & FMODE_WRITE) { /* Since a writer has the DSP open, we have to mux the request in */ s->reg_request = data; oss_broken_sleep_on(&s->dma_dac.reg_wait, MAX_SCHEDULE_TIMEOUT); /* XXXKW how can I deal with the starvation case where the opener isn't writing? */ } else { /* Be safe when changing ring pointers */ spin_lock_irqsave(&s->lock, flags); if (d->hwptr != d->swptr) { printk(KERN_ERR "cs4297a: reg access found bookkeeping error (hw/sw = %d/%d\n", d->hwptr, d->swptr); spin_unlock_irqrestore(&s->lock, flags); return -1; } swptr = d->swptr; d->hwptr = d->swptr = (d->swptr + 1) % d->ringsz; spin_unlock_irqrestore(&s->lock, flags); descr = &d->descrtab[swptr]; data_p = &d->dma_buf[swptr * 4]; *data_p = cpu_to_be64(data); __raw_writeq(1, SS_CSR(R_SER_DMA_DSCR_COUNT_TX)); CS_DBGOUT(CS_DESCR, 4, printk(KERN_INFO "cs4297a: add_tx %p (%x -> %x)\n", data_p, swptr, d->hwptr)); } CS_DBGOUT(CS_FUNCTION, 6, printk(KERN_INFO "cs4297a: serdma_reg_access()-\n")); return 0; } //**************************************************************************** // "cs4297a_read_ac97" -- Reads an AC97 register //**************************************************************************** static int cs4297a_read_ac97(struct cs4297a_state *s, u32 offset, u32 * value) { CS_DBGOUT(CS_AC97, 1, printk(KERN_INFO "cs4297a: read reg %2x\n", offset)); if (serdma_reg_access(s, (0xCLL << 60) | (1LL << 47) | ((u64)(offset & 0x7F) << 40))) return -1; oss_broken_sleep_on(&s->dma_adc.reg_wait, MAX_SCHEDULE_TIMEOUT); *value = s->read_value; CS_DBGOUT(CS_AC97, 2, printk(KERN_INFO "cs4297a: rdr reg %x -> %x\n", s->read_reg, s->read_value)); return 0; } //**************************************************************************** // "cs4297a_write_ac97()"-- writes an AC97 register //**************************************************************************** static int cs4297a_write_ac97(struct cs4297a_state *s, u32 offset, u32 value) { CS_DBGOUT(CS_AC97, 1, printk(KERN_INFO "cs4297a: write reg %2x -> %04x\n", offset, value)); return (serdma_reg_access(s, (0xELL << 60) | ((u64)(offset & 0x7F) << 40) | ((value & 0xffff) << 12))); } static void stop_dac(struct cs4297a_state *s) { unsigned long flags; CS_DBGOUT(CS_WAVE_WRITE, 3, printk(KERN_INFO "cs4297a: stop_dac():\n")); spin_lock_irqsave(&s->lock, flags); s->ena &= ~FMODE_WRITE; #if 0 /* XXXKW what do I really want here? My theory for now is that I just flip the "ena" bit, and the interrupt handler will stop processing the xmit channel */ __raw_writeq((s->ena & FMODE_READ) ? M_SYNCSER_DMA_RX_EN : 0, SS_CSR(R_SER_DMA_ENABLE)); #endif spin_unlock_irqrestore(&s->lock, flags); } static void start_dac(struct cs4297a_state *s) { unsigned long flags; CS_DBGOUT(CS_FUNCTION, 3, printk(KERN_INFO "cs4297a: start_dac()+\n")); spin_lock_irqsave(&s->lock, flags); if (!(s->ena & FMODE_WRITE) && (s->dma_dac.mapped || (s->dma_dac.count > 0 && s->dma_dac.ready))) { s->ena |= FMODE_WRITE; /* XXXKW what do I really want here? My theory for now is that I just flip the "ena" bit, and the interrupt handler will start processing the xmit channel */ CS_DBGOUT(CS_WAVE_WRITE | CS_PARMS, 8, printk(KERN_INFO "cs4297a: start_dac(): start dma\n")); } spin_unlock_irqrestore(&s->lock, flags); CS_DBGOUT(CS_FUNCTION, 3, printk(KERN_INFO "cs4297a: start_dac()-\n")); } static void stop_adc(struct cs4297a_state *s) { unsigned long flags; CS_DBGOUT(CS_FUNCTION, 3, printk(KERN_INFO "cs4297a: stop_adc()+\n")); spin_lock_irqsave(&s->lock, flags); s->ena &= ~FMODE_READ; if (s->conversion == 1) { s->conversion = 0; s->prop_adc.fmt = s->prop_adc.fmt_original; } /* Nothing to do really, I need to keep the DMA going XXXKW when do I get here, and is there more I should do? */ spin_unlock_irqrestore(&s->lock, flags); CS_DBGOUT(CS_FUNCTION, 3, printk(KERN_INFO "cs4297a: stop_adc()-\n")); } static void start_adc(struct cs4297a_state *s) { unsigned long flags; CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_INFO "cs4297a: start_adc()+\n")); if (!(s->ena & FMODE_READ) && (s->dma_adc.mapped || s->dma_adc.count <= (signed) (s->dma_adc.sbufsz - 2 * s->dma_adc.fragsize)) && s->dma_adc.ready) { if (s->prop_adc.fmt & AFMT_S8 || s->prop_adc.fmt & AFMT_U8) { // // now only use 16 bit capture, due to truncation issue // in the chip, noticeable distortion occurs. // allocate buffer and then convert from 16 bit to // 8 bit for the user buffer. // s->prop_adc.fmt_original = s->prop_adc.fmt; if (s->prop_adc.fmt & AFMT_S8) { s->prop_adc.fmt &= ~AFMT_S8; s->prop_adc.fmt |= AFMT_S16_LE; } if (s->prop_adc.fmt & AFMT_U8) { s->prop_adc.fmt &= ~AFMT_U8; s->prop_adc.fmt |= AFMT_U16_LE; } // // prog_dmabuf_adc performs a stop_adc() but that is // ok since we really haven't started the DMA yet. // prog_codec(s, CS_TYPE_ADC); prog_dmabuf_adc(s); s->conversion = 1; } spin_lock_irqsave(&s->lock, flags); s->ena |= FMODE_READ; /* Nothing to do really, I am probably already DMAing... XXXKW when do I get here, and is there more I should do? */ spin_unlock_irqrestore(&s->lock, flags); CS_DBGOUT(CS_PARMS, 6, printk(KERN_INFO "cs4297a: start_adc(): start adc\n")); } CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_INFO "cs4297a: start_adc()-\n")); } // call with spinlock held! static void cs4297a_update_ptr(struct cs4297a_state *s, int intflag) { int good_diff, diff, diff2; u64 *data_p, data; u32 *s_ptr; unsigned hwptr; u32 status; serdma_t *d; serdma_descr_t *descr; // update ADC pointer status = intflag ? __raw_readq(SS_CSR(R_SER_STATUS)) : 0; if ((s->ena & FMODE_READ) || (status & (M_SYNCSER_RX_EOP_COUNT))) { d = &s->dma_adc; hwptr = (unsigned) (((__raw_readq(SS_CSR(R_SER_DMA_CUR_DSCR_ADDR_RX)) & M_DMA_CURDSCR_ADDR) - d->descrtab_phys) / sizeof(serdma_descr_t)); if (s->ena & FMODE_READ) { CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_INFO "cs4297a: upd_rcv sw->hw->hw %x/%x/%x (int-%d)n", d->swptr, d->hwptr, hwptr, intflag)); /* Number of DMA buffers available for software: */ diff2 = diff = (d->ringsz + hwptr - d->hwptr) % d->ringsz; d->hwptr = hwptr; good_diff = 0; s_ptr = (u32 *)&(d->dma_buf[d->swptr*4]); descr = &d->descrtab[d->swptr]; while (diff2--) { u64 data = be64_to_cpu(*(u64 *)s_ptr); u64 descr_a; u16 left, right; descr_a = descr->descr_a; descr->descr_a &= ~M_DMA_SERRX_SOP; if ((descr_a & M_DMA_DSCRA_A_ADDR) != CPHYSADDR((long)s_ptr)) { printk(KERN_ERR "cs4297a: RX Bad address (read)\n"); } if (((data & 0x9800000000000000) != 0x9800000000000000) || (!(descr_a & M_DMA_SERRX_SOP)) || (G_DMA_DSCRB_PKT_SIZE(descr->descr_b) != FRAME_BYTES)) { s->stats.rx_bad++; printk(KERN_DEBUG "cs4297a: RX Bad attributes (read)\n"); continue; } s->stats.rx_good++; if ((data >> 61) == 7) { s->read_value = (data >> 12) & 0xffff; s->read_reg = (data >> 40) & 0x7f; wake_up(&d->reg_wait); } if (d->count && (d->sb_hwptr == d->sb_swptr)) { s->stats.rx_overflow++; printk(KERN_DEBUG "cs4297a: RX overflow\n"); continue; } good_diff++; left = ((be32_to_cpu(s_ptr[1]) & 0xff) << 8) | ((be32_to_cpu(s_ptr[2]) >> 24) & 0xff); right = (be32_to_cpu(s_ptr[2]) >> 4) & 0xffff; *d->sb_hwptr++ = cpu_to_be16(left); *d->sb_hwptr++ = cpu_to_be16(right); if (d->sb_hwptr == d->sb_end) d->sb_hwptr = d->sample_buf; descr++; if (descr == d->descrtab_end) { descr = d->descrtab; s_ptr = (u32 *)s->dma_adc.dma_buf; } else { s_ptr += 8; } } d->total_bytes += good_diff * FRAME_SAMPLE_BYTES; d->count += good_diff * FRAME_SAMPLE_BYTES; if (d->count > d->sbufsz) { printk(KERN_ERR "cs4297a: bogus receive overflow!!\n"); } d->swptr = (d->swptr + diff) % d->ringsz; __raw_writeq(diff, SS_CSR(R_SER_DMA_DSCR_COUNT_RX)); if (d->mapped) { if (d->count >= (signed) d->fragsize) wake_up(&d->wait); } else { if (d->count > 0) { CS_DBGOUT(CS_WAVE_READ, 4, printk(KERN_INFO "cs4297a: update count -> %d\n", d->count)); wake_up(&d->wait); } } } else { /* Receive is going even if no one is listening (for register accesses and to avoid FIFO overrun) */ diff2 = diff = (hwptr + d->ringsz - d->hwptr) % d->ringsz; if (!diff) { printk(KERN_ERR "cs4297a: RX full or empty?\n"); } descr = &d->descrtab[d->swptr]; data_p = &d->dma_buf[d->swptr*4]; /* Force this to happen at least once; I got here because of an interrupt, so there must be a buffer to process. */ do { data = be64_to_cpu(*data_p); if ((descr->descr_a & M_DMA_DSCRA_A_ADDR) != CPHYSADDR((long)data_p)) { printk(KERN_ERR "cs4297a: RX Bad address %d (%llx %lx)\n", d->swptr, (long long)(descr->descr_a & M_DMA_DSCRA_A_ADDR), (long)CPHYSADDR((long)data_p)); } if (!(data & (1LL << 63)) || !(descr->descr_a & M_DMA_SERRX_SOP) || (G_DMA_DSCRB_PKT_SIZE(descr->descr_b) != FRAME_BYTES)) { s->stats.rx_bad++; printk(KERN_DEBUG "cs4297a: RX Bad attributes\n"); } else { s->stats.rx_good++; if ((data >> 61) == 7) { s->read_value = (data >> 12) & 0xffff; s->read_reg = (data >> 40) & 0x7f; wake_up(&d->reg_wait); } } descr->descr_a &= ~M_DMA_SERRX_SOP; descr++; d->swptr++; data_p += 4; if (descr == d->descrtab_end) { descr = d->descrtab; d->swptr = 0; data_p = d->dma_buf; } __raw_writeq(1, SS_CSR(R_SER_DMA_DSCR_COUNT_RX)); } while (--diff); d->hwptr = hwptr; CS_DBGOUT(CS_DESCR, 6, printk(KERN_INFO "cs4297a: hw/sw %x/%x\n", d->hwptr, d->swptr)); } CS_DBGOUT(CS_PARMS, 8, printk(KERN_INFO "cs4297a: cs4297a_update_ptr(): s=0x%.8x hwptr=%d total_bytes=%d count=%d \n", (unsigned)s, d->hwptr, d->total_bytes, d->count)); } /* XXXKW worry about s->reg_request -- there is a starvation case if s->ena has FMODE_WRITE on, but the client isn't doing writes */ // update DAC pointer // // check for end of buffer, means that we are going to wait for another interrupt // to allow silence to fill the fifos on the part, to keep pops down to a minimum. // if (s->ena & FMODE_WRITE) { serdma_t *d = &s->dma_dac; hwptr = (unsigned) (((__raw_readq(SS_CSR(R_SER_DMA_CUR_DSCR_ADDR_TX)) & M_DMA_CURDSCR_ADDR) - d->descrtab_phys) / sizeof(serdma_descr_t)); diff = (d->ringsz + hwptr - d->hwptr) % d->ringsz; CS_DBGOUT(CS_WAVE_WRITE, 4, printk(KERN_INFO "cs4297a: cs4297a_update_ptr(): hw/hw/sw %x/%x/%x diff %d count %d\n", d->hwptr, hwptr, d->swptr, diff, d->count)); d->hwptr = hwptr; /* XXXKW stereo? conversion? Just assume 2 16-bit samples for now */ d->total_bytes += diff * FRAME_SAMPLE_BYTES; if (d->mapped) { d->count += diff * FRAME_SAMPLE_BYTES; if (d->count >= d->fragsize) { d->wakeup = 1; wake_up(&d->wait); if (d->count > d->sbufsz) d->count &= d->sbufsz - 1; } } else { d->count -= diff * FRAME_SAMPLE_BYTES; if (d->count <= 0) { // // fill with silence, and do not shut down the DAC. // Continue to play silence until the _release. // CS_DBGOUT(CS_WAVE_WRITE, 6, printk(KERN_INFO "cs4297a: cs4297a_update_ptr(): memset %d at 0x%.8x for %d size \n", (unsigned)(s->prop_dac.fmt & (AFMT_U8 | AFMT_U16_LE)) ? 0x80 : 0, (unsigned)d->dma_buf, d->ringsz)); memset(d->dma_buf, 0, d->ringsz * FRAME_BYTES); if (d->count < 0) { d->underrun = 1; s->stats.tx_underrun++; d->count = 0; CS_DBGOUT(CS_ERROR, 9, printk(KERN_INFO "cs4297a: cs4297a_update_ptr(): underrun\n")); } } else if (d->count <= (signed) d->fragsize && !d->endcleared) { /* XXXKW what is this for? */ clear_advance(d->dma_buf, d->sbufsz, d->swptr, d->fragsize, 0); d->endcleared = 1; } if ( (d->count <= (signed) d->sbufsz/2) || intflag) { CS_DBGOUT(CS_WAVE_WRITE, 4, printk(KERN_INFO "cs4297a: update count -> %d\n", d->count)); wake_up(&d->wait); } } CS_DBGOUT(CS_PARMS, 8, printk(KERN_INFO "cs4297a: cs4297a_update_ptr(): s=0x%.8x hwptr=%d total_bytes=%d count=%d \n", (unsigned) s, d->hwptr, d->total_bytes, d->count)); } } static int mixer_ioctl(struct cs4297a_state *s, unsigned int cmd, unsigned long arg) { // Index to mixer_src[] is value of AC97 Input Mux Select Reg. // Value of array member is recording source Device ID Mask. static const unsigned int mixer_src[8] = { SOUND_MASK_MIC, SOUND_MASK_CD, 0, SOUND_MASK_LINE1, SOUND_MASK_LINE, SOUND_MASK_VOLUME, 0, 0 }; // Index of mixtable1[] member is Device ID // and must be <= SOUND_MIXER_NRDEVICES. // Value of array member is index into s->mix.vol[] static const unsigned char mixtable1[SOUND_MIXER_NRDEVICES] = { [SOUND_MIXER_PCM] = 1, // voice [SOUND_MIXER_LINE1] = 2, // AUX [SOUND_MIXER_CD] = 3, // CD [SOUND_MIXER_LINE] = 4, // Line [SOUND_MIXER_SYNTH] = 5, // FM [SOUND_MIXER_MIC] = 6, // Mic [SOUND_MIXER_SPEAKER] = 7, // Speaker [SOUND_MIXER_RECLEV] = 8, // Recording level [SOUND_MIXER_VOLUME] = 9 // Master Volume }; static const unsigned mixreg[] = { AC97_PCMOUT_VOL, AC97_AUX_VOL, AC97_CD_VOL, AC97_LINEIN_VOL }; unsigned char l, r, rl, rr, vidx; unsigned char attentbl[11] = { 63, 42, 26, 17, 14, 11, 8, 6, 4, 2, 0 }; unsigned temp1; int i, val; VALIDATE_STATE(s); CS_DBGOUT(CS_FUNCTION, 4, printk(KERN_INFO "cs4297a: mixer_ioctl(): s=0x%.8x cmd=0x%.8x\n", (unsigned) s, cmd)); #if CSDEBUG cs_printioctl(cmd); #endif #if CSDEBUG_INTERFACE if ((cmd == SOUND_MIXER_CS_GETDBGMASK) || (cmd == SOUND_MIXER_CS_SETDBGMASK) || (cmd == SOUND_MIXER_CS_GETDBGLEVEL) || (cmd == SOUND_MIXER_CS_SETDBGLEVEL)) { switch (cmd) { case SOUND_MIXER_CS_GETDBGMASK: return put_user(cs_debugmask, (unsigned long *) arg); case SOUND_MIXER_CS_GETDBGLEVEL: return put_user(cs_debuglevel, (unsigned long *) arg); case SOUND_MIXER_CS_SETDBGMASK: if (get_user(val, (unsigned long *) arg)) return -EFAULT; cs_debugmask = val; return 0; case SOUND_MIXER_CS_SETDBGLEVEL: if (get_user(val, (unsigned long *) arg)) return -EFAULT; cs_debuglevel = val; return 0; default: CS_DBGOUT(CS_ERROR, 1, printk(KERN_INFO "cs4297a: mixer_ioctl(): ERROR unknown debug cmd\n")); return 0; } } #endif if (cmd == SOUND_MIXER_PRIVATE1) { return -EINVAL; } if (cmd == SOUND_MIXER_PRIVATE2) { // enable/disable/query spatializer if (get_user(val, (int *) arg)) return -EFAULT; if (val != -1) { temp1 = (val & 0x3f) >> 2; cs4297a_write_ac97(s, AC97_3D_CONTROL, temp1); cs4297a_read_ac97(s, AC97_GENERAL_PURPOSE, &temp1); cs4297a_write_ac97(s, AC97_GENERAL_PURPOSE, temp1 | 0x2000); } cs4297a_read_ac97(s, AC97_3D_CONTROL, &temp1); return put_user((temp1 << 2) | 3, (int *) arg); } if (cmd == SOUND_MIXER_INFO) { mixer_info info; memset(&info, 0, sizeof(info)); strlcpy(info.id, "CS4297a", sizeof(info.id)); strlcpy(info.name, "Crystal CS4297a", sizeof(info.name)); info.modify_counter = s->mix.modcnt; if (copy_to_user((void *) arg, &info, sizeof(info))) return -EFAULT; return 0; } if (cmd == SOUND_OLD_MIXER_INFO) { _old_mixer_info info; memset(&info, 0, sizeof(info)); strlcpy(info.id, "CS4297a", sizeof(info.id)); strlcpy(info.name, "Crystal CS4297a", sizeof(info.name)); if (copy_to_user((void *) arg, &info, sizeof(info))) return -EFAULT; return 0; } if (cmd == OSS_GETVERSION) return put_user(SOUND_VERSION, (int *) arg); if (_IOC_TYPE(cmd) != 'M' || _SIOC_SIZE(cmd) != sizeof(int)) return -EINVAL; // If ioctl has only the SIOC_READ bit(bit 31) // on, process the only-read commands. if (_SIOC_DIR(cmd) == _SIOC_READ) { switch (_IOC_NR(cmd)) { case SOUND_MIXER_RECSRC: // Arg contains a bit for each recording source cs4297a_read_ac97(s, AC97_RECORD_SELECT, &temp1); return put_user(mixer_src[temp1 & 7], (int *) arg); case SOUND_MIXER_DEVMASK: // Arg contains a bit for each supported device return put_user(SOUND_MASK_PCM | SOUND_MASK_LINE | SOUND_MASK_VOLUME | SOUND_MASK_RECLEV, (int *) arg); case SOUND_MIXER_RECMASK: // Arg contains a bit for each supported recording source return put_user(SOUND_MASK_LINE | SOUND_MASK_VOLUME, (int *) arg); case SOUND_MIXER_STEREODEVS: // Mixer channels supporting stereo return put_user(SOUND_MASK_PCM | SOUND_MASK_LINE | SOUND_MASK_VOLUME | SOUND_MASK_RECLEV, (int *) arg); case SOUND_MIXER_CAPS: return put_user(SOUND_CAP_EXCL_INPUT, (int *) arg); default: i = _IOC_NR(cmd); if (i >= SOUND_MIXER_NRDEVICES || !(vidx = mixtable1[i])) return -EINVAL; return put_user(s->mix.vol[vidx - 1], (int *) arg); } } // If ioctl doesn't have both the SIOC_READ and // the SIOC_WRITE bit set, return invalid. if (_SIOC_DIR(cmd) != (_SIOC_READ | _SIOC_WRITE)) return -EINVAL; // Increment the count of volume writes. s->mix.modcnt++; // Isolate the command; it must be a write. switch (_IOC_NR(cmd)) { case SOUND_MIXER_RECSRC: // Arg contains a bit for each recording source if (get_user(val, (int *) arg)) return -EFAULT; i = hweight32(val); // i = # bits on in val. if (i != 1) // One & only 1 bit must be on. return 0; for (i = 0; i < sizeof(mixer_src) / sizeof(int); i++) { if (val == mixer_src[i]) { temp1 = (i << 8) | i; cs4297a_write_ac97(s, AC97_RECORD_SELECT, temp1); return 0; } } return 0; case SOUND_MIXER_VOLUME: if (get_user(val, (int *) arg)) return -EFAULT; l = val & 0xff; if (l > 100) l = 100; // Max soundcard.h vol is 100. if (l < 6) { rl = 63; l = 0; } else rl = attentbl[(10 * l) / 100]; // Convert 0-100 vol to 63-0 atten. r = (val >> 8) & 0xff; if (r > 100) r = 100; // Max right volume is 100, too if (r < 6) { rr = 63; r = 0; } else rr = attentbl[(10 * r) / 100]; // Convert volume to attenuation. if ((rl > 60) && (rr > 60)) // If both l & r are 'low', temp1 = 0x8000; // turn on the mute bit. else temp1 = 0; temp1 |= (rl << 8) | rr; cs4297a_write_ac97(s, AC97_MASTER_VOL_STEREO, temp1); cs4297a_write_ac97(s, AC97_PHONE_VOL, temp1); #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS s->mix.vol[8] = ((unsigned int) r << 8) | l; #else s->mix.vol[8] = val; #endif return put_user(s->mix.vol[8], (int *) arg); case SOUND_MIXER_SPEAKER: if (get_user(val, (int *) arg)) return -EFAULT; l = val & 0xff; if (l > 100) l = 100; if (l < 3) { rl = 0; l = 0; } else { rl = (l * 2 - 5) / 13; // Convert 0-100 range to 0-15. l = (rl * 13 + 5) / 2; } if (rl < 3) { temp1 = 0x8000; rl = 0; } else temp1 = 0; rl = 15 - rl; // Convert volume to attenuation. temp1 |= rl << 1; cs4297a_write_ac97(s, AC97_PCBEEP_VOL, temp1); #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS s->mix.vol[6] = l << 8; #else s->mix.vol[6] = val; #endif return put_user(s->mix.vol[6], (int *) arg); case SOUND_MIXER_RECLEV: if (get_user(val, (int *) arg)) return -EFAULT; l = val & 0xff; if (l > 100) l = 100; r = (val >> 8) & 0xff; if (r > 100) r = 100; rl = (l * 2 - 5) / 13; // Convert 0-100 scale to 0-15. rr = (r * 2 - 5) / 13; if (rl < 3 && rr < 3) temp1 = 0x8000; else temp1 = 0; temp1 = temp1 | (rl << 8) | rr; cs4297a_write_ac97(s, AC97_RECORD_GAIN, temp1); #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS s->mix.vol[7] = ((unsigned int) r << 8) | l; #else s->mix.vol[7] = val; #endif return put_user(s->mix.vol[7], (int *) arg); case SOUND_MIXER_MIC: if (get_user(val, (int *) arg)) return -EFAULT; l = val & 0xff; if (l > 100) l = 100; if (l < 1) { l = 0; rl = 0; } else { rl = ((unsigned) l * 5 - 4) / 16; // Convert 0-100 range to 0-31. l = (rl * 16 + 4) / 5; } cs4297a_read_ac97(s, AC97_MIC_VOL, &temp1); temp1 &= 0x40; // Isolate 20db gain bit. if (rl < 3) { temp1 |= 0x8000; rl = 0; } rl = 31 - rl; // Convert volume to attenuation. temp1 |= rl; cs4297a_write_ac97(s, AC97_MIC_VOL, temp1); #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS s->mix.vol[5] = val << 8; #else s->mix.vol[5] = val; #endif return put_user(s->mix.vol[5], (int *) arg); case SOUND_MIXER_SYNTH: if (get_user(val, (int *) arg)) return -EFAULT; l = val & 0xff; if (l > 100) l = 100; if (get_user(val, (int *) arg)) return -EFAULT; r = (val >> 8) & 0xff; if (r > 100) r = 100; rl = (l * 2 - 11) / 3; // Convert 0-100 range to 0-63. rr = (r * 2 - 11) / 3; if (rl < 3) // If l is low, turn on temp1 = 0x0080; // the mute bit. else temp1 = 0; rl = 63 - rl; // Convert vol to attenuation. // writel(temp1 | rl, s->pBA0 + FMLVC); if (rr < 3) // If rr is low, turn on temp1 = 0x0080; // the mute bit. else temp1 = 0; rr = 63 - rr; // Convert vol to attenuation. // writel(temp1 | rr, s->pBA0 + FMRVC); #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS s->mix.vol[4] = (r << 8) | l; #else s->mix.vol[4] = val; #endif return put_user(s->mix.vol[4], (int *) arg); default: CS_DBGOUT(CS_IOCTL, 4, printk(KERN_INFO "cs4297a: mixer_ioctl(): default\n")); i = _IOC_NR(cmd); if (i >= SOUND_MIXER_NRDEVICES || !(vidx = mixtable1[i])) return -EINVAL; if (get_user(val, (int *) arg)) return -EFAULT; l = val & 0xff; if (l > 100) l = 100; if (l < 1) { l = 0; rl = 31; } else rl = (attentbl[(l * 10) / 100]) >> 1; r = (val >> 8) & 0xff; if (r > 100) r = 100; if (r < 1) { r = 0; rr = 31; } else rr = (attentbl[(r * 10) / 100]) >> 1; if ((rl > 30) && (rr > 30)) temp1 = 0x8000; else temp1 = 0; temp1 = temp1 | (rl << 8) | rr; cs4297a_write_ac97(s, mixreg[vidx - 1], temp1); #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS s->mix.vol[vidx - 1] = ((unsigned int) r << 8) | l; #else s->mix.vol[vidx - 1] = val; #endif return put_user(s->mix.vol[vidx - 1], (int *) arg); } } // --------------------------------------------------------------------- static int cs4297a_open_mixdev(struct inode *inode, struct file *file) { int minor = iminor(inode); struct cs4297a_state *s=NULL; struct list_head *entry; CS_DBGOUT(CS_FUNCTION | CS_OPEN, 4, printk(KERN_INFO "cs4297a: cs4297a_open_mixdev()+\n")); mutex_lock(&swarm_cs4297a_mutex); list_for_each(entry, &cs4297a_devs) { s = list_entry(entry, struct cs4297a_state, list); if(s->dev_mixer == minor) break; } if (!s) { CS_DBGOUT(CS_FUNCTION | CS_OPEN | CS_ERROR, 2, printk(KERN_INFO "cs4297a: cs4297a_open_mixdev()- -ENODEV\n")); mutex_unlock(&swarm_cs4297a_mutex); return -ENODEV; } VALIDATE_STATE(s); file->private_data = s; CS_DBGOUT(CS_FUNCTION | CS_OPEN, 4, printk(KERN_INFO "cs4297a: cs4297a_open_mixdev()- 0\n")); mutex_unlock(&swarm_cs4297a_mutex); return nonseekable_open(inode, file); } static int cs4297a_release_mixdev(struct inode *inode, struct file *file) { struct cs4297a_state *s = (struct cs4297a_state *) file->private_data; VALIDATE_STATE(s); return 0; } static int cs4297a_ioctl_mixdev(struct file *file, unsigned int cmd, unsigned long arg) { int ret; mutex_lock(&swarm_cs4297a_mutex); ret = mixer_ioctl((struct cs4297a_state *) file->private_data, cmd, arg); mutex_unlock(&swarm_cs4297a_mutex); return ret; } // ****************************************************************************************** // Mixer file operations struct. // ****************************************************************************************** static const struct file_operations cs4297a_mixer_fops = { .owner = THIS_MODULE, .llseek = no_llseek, .unlocked_ioctl = cs4297a_ioctl_mixdev, .open = cs4297a_open_mixdev, .release = cs4297a_release_mixdev, }; // --------------------------------------------------------------------- static int drain_adc(struct cs4297a_state *s, int nonblock) { /* This routine serves no purpose currently - any samples sitting in the receive queue will just be processed by the background consumer. This would be different if DMA actually stopped when there were no clients. */ return 0; } static int drain_dac(struct cs4297a_state *s, int nonblock) { DECLARE_WAITQUEUE(wait, current); unsigned long flags; unsigned hwptr; unsigned tmo; int count; if (s->dma_dac.mapped) return 0; if (nonblock) return -EBUSY; add_wait_queue(&s->dma_dac.wait, &wait); while ((count = __raw_readq(SS_CSR(R_SER_DMA_DSCR_COUNT_TX))) || (s->dma_dac.count > 0)) { if (!signal_pending(current)) { set_current_state(TASK_INTERRUPTIBLE); /* XXXKW is this calculation working? */ tmo = ((count * FRAME_TX_US) * HZ) / 1000000; schedule_timeout(tmo + 1); } else { /* XXXKW do I care if there is a signal pending? */ } } spin_lock_irqsave(&s->lock, flags); /* Reset the bookkeeping */ hwptr = (int)(((__raw_readq(SS_CSR(R_SER_DMA_CUR_DSCR_ADDR_TX)) & M_DMA_CURDSCR_ADDR) - s->dma_dac.descrtab_phys) / sizeof(serdma_descr_t)); s->dma_dac.hwptr = s->dma_dac.swptr = hwptr; spin_unlock_irqrestore(&s->lock, flags); remove_wait_queue(&s->dma_dac.wait, &wait); __set_current_state(TASK_RUNNING); return 0; } // --------------------------------------------------------------------- static ssize_t cs4297a_read(struct file *file, char *buffer, size_t count, loff_t * ppos) { struct cs4297a_state *s = (struct cs4297a_state *) file->private_data; ssize_t ret; unsigned long flags; int cnt, count_fr, cnt_by; unsigned copied = 0; CS_DBGOUT(CS_FUNCTION | CS_WAVE_READ, 2, printk(KERN_INFO "cs4297a: cs4297a_read()+ %d \n", count)); VALIDATE_STATE(s); if (s->dma_adc.mapped) return -ENXIO; if (!s->dma_adc.ready && (ret = prog_dmabuf_adc(s))) return ret; if (!access_ok(VERIFY_WRITE, buffer, count)) return -EFAULT; ret = 0; // // "count" is the amount of bytes to read (from app), is decremented each loop // by the amount of bytes that have been returned to the user buffer. // "cnt" is the running total of each read from the buffer (changes each loop) // "buffer" points to the app's buffer // "ret" keeps a running total of the amount of bytes that have been copied // to the user buffer. // "copied" is the total bytes copied into the user buffer for each loop. // while (count > 0) { CS_DBGOUT(CS_WAVE_READ, 8, printk(KERN_INFO "_read() count>0 count=%d .count=%d .swptr=%d .hwptr=%d \n", count, s->dma_adc.count, s->dma_adc.swptr, s->dma_adc.hwptr)); spin_lock_irqsave(&s->lock, flags); /* cnt will be the number of available samples (16-bit stereo); it starts out as the maxmimum consequetive samples */ cnt = (s->dma_adc.sb_end - s->dma_adc.sb_swptr) / 2; count_fr = s->dma_adc.count / FRAME_SAMPLE_BYTES; // dma_adc.count is the current total bytes that have not been read. // if the amount of unread bytes from the current sw pointer to the // end of the buffer is greater than the current total bytes that // have not been read, then set the "cnt" (unread bytes) to the // amount of unread bytes. if (count_fr < cnt) cnt = count_fr; cnt_by = cnt * FRAME_SAMPLE_BYTES; spin_unlock_irqrestore(&s->lock, flags); // // if we are converting from 8/16 then we need to copy // twice the number of 16 bit bytes then 8 bit bytes. // if (s->conversion) { if (cnt_by > (count * 2)) { cnt = (count * 2) / FRAME_SAMPLE_BYTES; cnt_by = count * 2; } } else { if (cnt_by > count) { cnt = count / FRAME_SAMPLE_BYTES; cnt_by = count; } } // // "cnt" NOW is the smaller of the amount that will be read, // and the amount that is requested in this read (or partial). // if there are no bytes in the buffer to read, then start the // ADC and wait for the interrupt handler to wake us up. // if (cnt <= 0) { // start up the dma engine and then continue back to the top of // the loop when wake up occurs. start_adc(s); if (file->f_flags & O_NONBLOCK) return ret ? ret : -EAGAIN; oss_broken_sleep_on(&s->dma_adc.wait, MAX_SCHEDULE_TIMEOUT); if (signal_pending(current)) return ret ? ret : -ERESTARTSYS; continue; } // there are bytes in the buffer to read. // copy from the hw buffer over to the user buffer. // user buffer is designated by "buffer" // virtual address to copy from is dma_buf+swptr // the "cnt" is the number of bytes to read. CS_DBGOUT(CS_WAVE_READ, 2, printk(KERN_INFO "_read() copy_to cnt=%d count=%d ", cnt_by, count)); CS_DBGOUT(CS_WAVE_READ, 8, printk(KERN_INFO " .sbufsz=%d .count=%d buffer=0x%.8x ret=%d\n", s->dma_adc.sbufsz, s->dma_adc.count, (unsigned) buffer, ret)); if (copy_to_user (buffer, ((void *)s->dma_adc.sb_swptr), cnt_by)) return ret ? ret : -EFAULT; copied = cnt_by; /* Return the descriptors */ spin_lock_irqsave(&s->lock, flags); CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_INFO "cs4297a: upd_rcv sw->hw %x/%x\n", s->dma_adc.swptr, s->dma_adc.hwptr)); s->dma_adc.count -= cnt_by; s->dma_adc.sb_swptr += cnt * 2; if (s->dma_adc.sb_swptr == s->dma_adc.sb_end) s->dma_adc.sb_swptr = s->dma_adc.sample_buf; spin_unlock_irqrestore(&s->lock, flags); count -= copied; buffer += copied; ret += copied; start_adc(s); } CS_DBGOUT(CS_FUNCTION | CS_WAVE_READ, 2, printk(KERN_INFO "cs4297a: cs4297a_read()- %d\n", ret)); return ret; } static ssize_t cs4297a_write(struct file *file, const char *buffer, size_t count, loff_t * ppos) { struct cs4297a_state *s = (struct cs4297a_state *) file->private_data; ssize_t ret; unsigned long flags; unsigned swptr, hwptr; int cnt; CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE, 2, printk(KERN_INFO "cs4297a: cs4297a_write()+ count=%d\n", count)); VALIDATE_STATE(s); if (s->dma_dac.mapped) return -ENXIO; if (!s->dma_dac.ready && (ret = prog_dmabuf_dac(s))) return ret; if (!access_ok(VERIFY_READ, buffer, count)) return -EFAULT; ret = 0; while (count > 0) { serdma_t *d = &s->dma_dac; int copy_cnt; u32 *s_tmpl; u32 *t_tmpl; u32 left, right; int swap = (s->prop_dac.fmt == AFMT_S16_LE) || (s->prop_dac.fmt == AFMT_U16_LE); /* XXXXXX this is broken for BLOAT_FACTOR */ spin_lock_irqsave(&s->lock, flags); if (d->count < 0) { d->count = 0; d->swptr = d->hwptr; } if (d->underrun) { d->underrun = 0; hwptr = (unsigned) (((__raw_readq(SS_CSR(R_SER_DMA_CUR_DSCR_ADDR_TX)) & M_DMA_CURDSCR_ADDR) - d->descrtab_phys) / sizeof(serdma_descr_t)); d->swptr = d->hwptr = hwptr; } swptr = d->swptr; cnt = d->sbufsz - (swptr * FRAME_SAMPLE_BYTES); /* Will this write fill up the buffer? */ if (d->count + cnt > d->sbufsz) cnt = d->sbufsz - d->count; spin_unlock_irqrestore(&s->lock, flags); if (cnt > count) cnt = count; if (cnt <= 0) { start_dac(s); if (file->f_flags & O_NONBLOCK) return ret ? ret : -EAGAIN; oss_broken_sleep_on(&d->wait, MAX_SCHEDULE_TIMEOUT); if (signal_pending(current)) return ret ? ret : -ERESTARTSYS; continue; } if (copy_from_user(d->sample_buf, buffer, cnt)) return ret ? ret : -EFAULT; copy_cnt = cnt; s_tmpl = (u32 *)d->sample_buf; t_tmpl = (u32 *)(d->dma_buf + (swptr * 4)); /* XXXKW assuming 16-bit stereo! */ do { u32 tmp; t_tmpl[0] = cpu_to_be32(0x98000000); tmp = be32_to_cpu(s_tmpl[0]); left = tmp & 0xffff; right = tmp >> 16; if (swap) { left = swab16(left); right = swab16(right); } t_tmpl[1] = cpu_to_be32(left >> 8); t_tmpl[2] = cpu_to_be32(((left & 0xff) << 24) | (right << 4)); s_tmpl++; t_tmpl += 8; copy_cnt -= 4; } while (copy_cnt); /* Mux in any pending read/write accesses */ if (s->reg_request) { *(u64 *)(d->dma_buf + (swptr * 4)) |= cpu_to_be64(s->reg_request); s->reg_request = 0; wake_up(&s->dma_dac.reg_wait); } CS_DBGOUT(CS_WAVE_WRITE, 4, printk(KERN_INFO "cs4297a: copy in %d to swptr %x\n", cnt, swptr)); swptr = (swptr + (cnt/FRAME_SAMPLE_BYTES)) % d->ringsz; __raw_writeq(cnt/FRAME_SAMPLE_BYTES, SS_CSR(R_SER_DMA_DSCR_COUNT_TX)); spin_lock_irqsave(&s->lock, flags); d->swptr = swptr; d->count += cnt; d->endcleared = 0; spin_unlock_irqrestore(&s->lock, flags); count -= cnt; buffer += cnt; ret += cnt; start_dac(s); } CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE, 2, printk(KERN_INFO "cs4297a: cs4297a_write()- %d\n", ret)); return ret; } static unsigned int cs4297a_poll(struct file *file, struct poll_table_struct *wait) { struct cs4297a_state *s = (struct cs4297a_state *) file->private_data; unsigned long flags; unsigned int mask = 0; CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE | CS_WAVE_READ, 4, printk(KERN_INFO "cs4297a: cs4297a_poll()+\n")); VALIDATE_STATE(s); if (file->f_mode & FMODE_WRITE) { CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE | CS_WAVE_READ, 4, printk(KERN_INFO "cs4297a: cs4297a_poll() wait on FMODE_WRITE\n")); if(!s->dma_dac.ready && prog_dmabuf_dac(s)) return 0; poll_wait(file, &s->dma_dac.wait, wait); } if (file->f_mode & FMODE_READ) { CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE | CS_WAVE_READ, 4, printk(KERN_INFO "cs4297a: cs4297a_poll() wait on FMODE_READ\n")); if(!s->dma_dac.ready && prog_dmabuf_adc(s)) return 0; poll_wait(file, &s->dma_adc.wait, wait); } spin_lock_irqsave(&s->lock, flags); cs4297a_update_ptr(s,CS_FALSE); if (file->f_mode & FMODE_WRITE) { if (s->dma_dac.mapped) { if (s->dma_dac.count >= (signed) s->dma_dac.fragsize) { if (s->dma_dac.wakeup) mask |= POLLOUT | POLLWRNORM; else mask = 0; s->dma_dac.wakeup = 0; } } else { if ((signed) (s->dma_dac.sbufsz/2) >= s->dma_dac.count) mask |= POLLOUT | POLLWRNORM; } } else if (file->f_mode & FMODE_READ) { if (s->dma_adc.mapped) { if (s->dma_adc.count >= (signed) s->dma_adc.fragsize) mask |= POLLIN | POLLRDNORM; } else { if (s->dma_adc.count > 0) mask |= POLLIN | POLLRDNORM; } } spin_unlock_irqrestore(&s->lock, flags); CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE | CS_WAVE_READ, 4, printk(KERN_INFO "cs4297a: cs4297a_poll()- 0x%.8x\n", mask)); return mask; } static int cs4297a_mmap(struct file *file, struct vm_area_struct *vma) { /* XXXKW currently no mmap support */ return -EINVAL; return 0; } static int cs4297a_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct cs4297a_state *s = (struct cs4297a_state *) file->private_data; unsigned long flags; audio_buf_info abinfo; count_info cinfo; int val, mapped, ret; CS_DBGOUT(CS_FUNCTION|CS_IOCTL, 4, printk(KERN_INFO "cs4297a: cs4297a_ioctl(): file=0x%.8x cmd=0x%.8x\n", (unsigned) file, cmd)); #if CSDEBUG cs_printioctl(cmd); #endif VALIDATE_STATE(s); mapped = ((file->f_mode & FMODE_WRITE) && s->dma_dac.mapped) || ((file->f_mode & FMODE_READ) && s->dma_adc.mapped); switch (cmd) { case OSS_GETVERSION: CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO "cs4297a: cs4297a_ioctl(): SOUND_VERSION=0x%.8x\n", SOUND_VERSION)); return put_user(SOUND_VERSION, (int *) arg); case SNDCTL_DSP_SYNC: CS_DBGOUT(CS_IOCTL, 4, printk(KERN_INFO "cs4297a: cs4297a_ioctl(): DSP_SYNC\n")); if (file->f_mode & FMODE_WRITE) return drain_dac(s, 0 /*file->f_flags & O_NONBLOCK */ ); return 0; case SNDCTL_DSP_SETDUPLEX: return 0; case SNDCTL_DSP_GETCAPS: return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER | DSP_CAP_MMAP, (int *) arg); case SNDCTL_DSP_RESET: CS_DBGOUT(CS_IOCTL, 4, printk(KERN_INFO "cs4297a: cs4297a_ioctl(): DSP_RESET\n")); if (file->f_mode & FMODE_WRITE) { stop_dac(s); synchronize_irq(s->irq); s->dma_dac.count = s->dma_dac.total_bytes = s->dma_dac.blocks = s->dma_dac.wakeup = 0; s->dma_dac.swptr = s->dma_dac.hwptr = (int)(((__raw_readq(SS_CSR(R_SER_DMA_CUR_DSCR_ADDR_TX)) & M_DMA_CURDSCR_ADDR) - s->dma_dac.descrtab_phys) / sizeof(serdma_descr_t)); } if (file->f_mode & FMODE_READ) { stop_adc(s); synchronize_irq(s->irq); s->dma_adc.count = s->dma_adc.total_bytes = s->dma_adc.blocks = s->dma_dac.wakeup = 0; s->dma_adc.swptr = s->dma_adc.hwptr = (int)(((__raw_readq(SS_CSR(R_SER_DMA_CUR_DSCR_ADDR_RX)) & M_DMA_CURDSCR_ADDR) - s->dma_adc.descrtab_phys) / sizeof(serdma_descr_t)); } return 0; case SNDCTL_DSP_SPEED: if (get_user(val, (int *) arg)) return -EFAULT; CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO "cs4297a: cs4297a_ioctl(): DSP_SPEED val=%d -> 48000\n", val)); val = 48000; return put_user(val, (int *) arg); case SNDCTL_DSP_STEREO: if (get_user(val, (int *) arg)) return -EFAULT; CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO "cs4297a: cs4297a_ioctl(): DSP_STEREO val=%d\n", val)); if (file->f_mode & FMODE_READ) { stop_adc(s); s->dma_adc.ready = 0; s->prop_adc.channels = val ? 2 : 1; } if (file->f_mode & FMODE_WRITE) { stop_dac(s); s->dma_dac.ready = 0; s->prop_dac.channels = val ? 2 : 1; } return 0; case SNDCTL_DSP_CHANNELS: if (get_user(val, (int *) arg)) return -EFAULT; CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO "cs4297a: cs4297a_ioctl(): DSP_CHANNELS val=%d\n", val)); if (val != 0) { if (file->f_mode & FMODE_READ) { stop_adc(s); s->dma_adc.ready = 0; if (val >= 2) s->prop_adc.channels = 2; else s->prop_adc.channels = 1; } if (file->f_mode & FMODE_WRITE) { stop_dac(s); s->dma_dac.ready = 0; if (val >= 2) s->prop_dac.channels = 2; else s->prop_dac.channels = 1; } } if (file->f_mode & FMODE_WRITE) val = s->prop_dac.channels; else if (file->f_mode & FMODE_READ) val = s->prop_adc.channels; return put_user(val, (int *) arg); case SNDCTL_DSP_GETFMTS: // Returns a mask CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO "cs4297a: cs4297a_ioctl(): DSP_GETFMT val=0x%.8x\n", AFMT_S16_LE | AFMT_U16_LE | AFMT_S8 | AFMT_U8)); return put_user(AFMT_S16_LE | AFMT_U16_LE | AFMT_S8 | AFMT_U8, (int *) arg); case SNDCTL_DSP_SETFMT: if (get_user(val, (int *) arg)) return -EFAULT; CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO "cs4297a: cs4297a_ioctl(): DSP_SETFMT val=0x%.8x\n", val)); if (val != AFMT_QUERY) { if (file->f_mode & FMODE_READ) { stop_adc(s); s->dma_adc.ready = 0; if (val != AFMT_S16_LE && val != AFMT_U16_LE && val != AFMT_S8 && val != AFMT_U8) val = AFMT_U8; s->prop_adc.fmt = val; s->prop_adc.fmt_original = s->prop_adc.fmt; } if (file->f_mode & FMODE_WRITE) { stop_dac(s); s->dma_dac.ready = 0; if (val != AFMT_S16_LE && val != AFMT_U16_LE && val != AFMT_S8 && val != AFMT_U8) val = AFMT_U8; s->prop_dac.fmt = val; s->prop_dac.fmt_original = s->prop_dac.fmt; } } else { if (file->f_mode & FMODE_WRITE) val = s->prop_dac.fmt_original; else if (file->f_mode & FMODE_READ) val = s->prop_adc.fmt_original; } CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO "cs4297a: cs4297a_ioctl(): DSP_SETFMT return val=0x%.8x\n", val)); return put_user(val, (int *) arg); case SNDCTL_DSP_POST: CS_DBGOUT(CS_IOCTL, 4, printk(KERN_INFO "cs4297a: cs4297a_ioctl(): DSP_POST\n")); return 0; case SNDCTL_DSP_GETTRIGGER: val = 0; if (file->f_mode & s->ena & FMODE_READ) val |= PCM_ENABLE_INPUT; if (file->f_mode & s->ena & FMODE_WRITE) val |= PCM_ENABLE_OUTPUT; return put_user(val, (int *) arg); case SNDCTL_DSP_SETTRIGGER: if (get_user(val, (int *) arg)) return -EFAULT; if (file->f_mode & FMODE_READ) { if (val & PCM_ENABLE_INPUT) { if (!s->dma_adc.ready && (ret = prog_dmabuf_adc(s))) return ret; start_adc(s); } else stop_adc(s); } if (file->f_mode & FMODE_WRITE) { if (val & PCM_ENABLE_OUTPUT) { if (!s->dma_dac.ready && (ret = prog_dmabuf_dac(s))) return ret; start_dac(s); } else stop_dac(s); } return 0; case SNDCTL_DSP_GETOSPACE: if (!(file->f_mode & FMODE_WRITE)) return -EINVAL; if (!s->dma_dac.ready && (val = prog_dmabuf_dac(s))) return val; spin_lock_irqsave(&s->lock, flags); cs4297a_update_ptr(s,CS_FALSE); abinfo.fragsize = s->dma_dac.fragsize; if (s->dma_dac.mapped) abinfo.bytes = s->dma_dac.sbufsz; else abinfo.bytes = s->dma_dac.sbufsz - s->dma_dac.count; abinfo.fragstotal = s->dma_dac.numfrag; abinfo.fragments = abinfo.bytes >> s->dma_dac.fragshift; CS_DBGOUT(CS_FUNCTION | CS_PARMS, 4, printk(KERN_INFO "cs4297a: cs4297a_ioctl(): GETOSPACE .fragsize=%d .bytes=%d .fragstotal=%d .fragments=%d\n", abinfo.fragsize,abinfo.bytes,abinfo.fragstotal, abinfo.fragments)); spin_unlock_irqrestore(&s->lock, flags); return copy_to_user((void *) arg, &abinfo, sizeof(abinfo)) ? -EFAULT : 0; case SNDCTL_DSP_GETISPACE: if (!(file->f_mode & FMODE_READ)) return -EINVAL; if (!s->dma_adc.ready && (val = prog_dmabuf_adc(s))) return val; spin_lock_irqsave(&s->lock, flags); cs4297a_update_ptr(s,CS_FALSE); if (s->conversion) { abinfo.fragsize = s->dma_adc.fragsize / 2; abinfo.bytes = s->dma_adc.count / 2; abinfo.fragstotal = s->dma_adc.numfrag; abinfo.fragments = abinfo.bytes >> (s->dma_adc.fragshift - 1); } else { abinfo.fragsize = s->dma_adc.fragsize; abinfo.bytes = s->dma_adc.count; abinfo.fragstotal = s->dma_adc.numfrag; abinfo.fragments = abinfo.bytes >> s->dma_adc.fragshift; } spin_unlock_irqrestore(&s->lock, flags); return copy_to_user((void *) arg, &abinfo, sizeof(abinfo)) ? -EFAULT : 0; case SNDCTL_DSP_NONBLOCK: spin_lock(&file->f_lock); file->f_flags |= O_NONBLOCK; spin_unlock(&file->f_lock); return 0; case SNDCTL_DSP_GETODELAY: if (!(file->f_mode & FMODE_WRITE)) return -EINVAL; if(!s->dma_dac.ready && prog_dmabuf_dac(s)) return 0; spin_lock_irqsave(&s->lock, flags); cs4297a_update_ptr(s,CS_FALSE); val = s->dma_dac.count; spin_unlock_irqrestore(&s->lock, flags); return put_user(val, (int *) arg); case SNDCTL_DSP_GETIPTR: if (!(file->f_mode & FMODE_READ)) return -EINVAL; if(!s->dma_adc.ready && prog_dmabuf_adc(s)) return 0; spin_lock_irqsave(&s->lock, flags); cs4297a_update_ptr(s,CS_FALSE); cinfo.bytes = s->dma_adc.total_bytes; if (s->dma_adc.mapped) { cinfo.blocks = (cinfo.bytes >> s->dma_adc.fragshift) - s->dma_adc.blocks; s->dma_adc.blocks = cinfo.bytes >> s->dma_adc.fragshift; } else { if (s->conversion) { cinfo.blocks = s->dma_adc.count / 2 >> (s->dma_adc.fragshift - 1); } else cinfo.blocks = s->dma_adc.count >> s->dma_adc. fragshift; } if (s->conversion) cinfo.ptr = s->dma_adc.hwptr / 2; else cinfo.ptr = s->dma_adc.hwptr; if (s->dma_adc.mapped) s->dma_adc.count &= s->dma_adc.fragsize - 1; spin_unlock_irqrestore(&s->lock, flags); return copy_to_user((void *) arg, &cinfo, sizeof(cinfo)) ? -EFAULT : 0; case SNDCTL_DSP_GETOPTR: if (!(file->f_mode & FMODE_WRITE)) return -EINVAL; if(!s->dma_dac.ready && prog_dmabuf_dac(s)) return 0; spin_lock_irqsave(&s->lock, flags); cs4297a_update_ptr(s,CS_FALSE); cinfo.bytes = s->dma_dac.total_bytes; if (s->dma_dac.mapped) { cinfo.blocks = (cinfo.bytes >> s->dma_dac.fragshift) - s->dma_dac.blocks; s->dma_dac.blocks = cinfo.bytes >> s->dma_dac.fragshift; } else { cinfo.blocks = s->dma_dac.count >> s->dma_dac.fragshift; } cinfo.ptr = s->dma_dac.hwptr; if (s->dma_dac.mapped) s->dma_dac.count &= s->dma_dac.fragsize - 1; spin_unlock_irqrestore(&s->lock, flags); return copy_to_user((void *) arg, &cinfo, sizeof(cinfo)) ? -EFAULT : 0; case SNDCTL_DSP_GETBLKSIZE: if (file->f_mode & FMODE_WRITE) { if ((val = prog_dmabuf_dac(s))) return val; return put_user(s->dma_dac.fragsize, (int *) arg); } if ((val = prog_dmabuf_adc(s))) return val; if (s->conversion) return put_user(s->dma_adc.fragsize / 2, (int *) arg); else return put_user(s->dma_adc.fragsize, (int *) arg); case SNDCTL_DSP_SETFRAGMENT: if (get_user(val, (int *) arg)) return -EFAULT; return 0; // Say OK, but do nothing. case SNDCTL_DSP_SUBDIVIDE: if ((file->f_mode & FMODE_READ && s->dma_adc.subdivision) || (file->f_mode & FMODE_WRITE && s->dma_dac.subdivision)) return -EINVAL; if (get_user(val, (int *) arg)) return -EFAULT; if (val != 1 && val != 2 && val != 4) return -EINVAL; if (file->f_mode & FMODE_READ) s->dma_adc.subdivision = val; else if (file->f_mode & FMODE_WRITE) s->dma_dac.subdivision = val; return 0; case SOUND_PCM_READ_RATE: if (file->f_mode & FMODE_READ) return put_user(s->prop_adc.rate, (int *) arg); else if (file->f_mode & FMODE_WRITE) return put_user(s->prop_dac.rate, (int *) arg); case SOUND_PCM_READ_CHANNELS: if (file->f_mode & FMODE_READ) return put_user(s->prop_adc.channels, (int *) arg); else if (file->f_mode & FMODE_WRITE) return put_user(s->prop_dac.channels, (int *) arg); case SOUND_PCM_READ_BITS: if (file->f_mode & FMODE_READ) return put_user( (s->prop_adc. fmt & (AFMT_S8 | AFMT_U8)) ? 8 : 16, (int *) arg); else if (file->f_mode & FMODE_WRITE) return put_user( (s->prop_dac. fmt & (AFMT_S8 | AFMT_U8)) ? 8 : 16, (int *) arg); case SOUND_PCM_WRITE_FILTER: case SNDCTL_DSP_SETSYNCRO: case SOUND_PCM_READ_FILTER: return -EINVAL; } return mixer_ioctl(s, cmd, arg); } static long cs4297a_unlocked_ioctl(struct file *file, u_int cmd, u_long arg) { int ret; mutex_lock(&swarm_cs4297a_mutex); ret = cs4297a_ioctl(file, cmd, arg); mutex_unlock(&swarm_cs4297a_mutex); return ret; } static int cs4297a_release(struct inode *inode, struct file *file) { struct cs4297a_state *s = (struct cs4297a_state *) file->private_data; CS_DBGOUT(CS_FUNCTION | CS_RELEASE, 2, printk(KERN_INFO "cs4297a: cs4297a_release(): inode=0x%.8x file=0x%.8x f_mode=0x%x\n", (unsigned) inode, (unsigned) file, file->f_mode)); VALIDATE_STATE(s); if (file->f_mode & FMODE_WRITE) { drain_dac(s, file->f_flags & O_NONBLOCK); mutex_lock(&s->open_sem_dac); stop_dac(s); dealloc_dmabuf(s, &s->dma_dac); s->open_mode &= ~FMODE_WRITE; mutex_unlock(&s->open_sem_dac); wake_up(&s->open_wait_dac); } if (file->f_mode & FMODE_READ) { drain_adc(s, file->f_flags & O_NONBLOCK); mutex_lock(&s->open_sem_adc); stop_adc(s); dealloc_dmabuf(s, &s->dma_adc); s->open_mode &= ~FMODE_READ; mutex_unlock(&s->open_sem_adc); wake_up(&s->open_wait_adc); } return 0; } static int cs4297a_locked_open(struct inode *inode, struct file *file) { int minor = iminor(inode); struct cs4297a_state *s=NULL; struct list_head *entry; CS_DBGOUT(CS_FUNCTION | CS_OPEN, 2, printk(KERN_INFO "cs4297a: cs4297a_open(): inode=0x%.8x file=0x%.8x f_mode=0x%x\n", (unsigned) inode, (unsigned) file, file->f_mode)); CS_DBGOUT(CS_FUNCTION | CS_OPEN, 2, printk(KERN_INFO "cs4297a: status = %08x\n", (int)__raw_readq(SS_CSR(R_SER_STATUS_DEBUG)))); list_for_each(entry, &cs4297a_devs) { s = list_entry(entry, struct cs4297a_state, list); if (!((s->dev_audio ^ minor) & ~0xf)) break; } if (entry == &cs4297a_devs) return -ENODEV; if (!s) { CS_DBGOUT(CS_FUNCTION | CS_OPEN, 2, printk(KERN_INFO "cs4297a: cs4297a_open(): Error - unable to find audio state struct\n")); return -ENODEV; } VALIDATE_STATE(s); file->private_data = s; // wait for device to become free if (!(file->f_mode & (FMODE_WRITE | FMODE_READ))) { CS_DBGOUT(CS_FUNCTION | CS_OPEN | CS_ERROR, 2, printk(KERN_INFO "cs4297a: cs4297a_open(): Error - must open READ and/or WRITE\n")); return -ENODEV; } if (file->f_mode & FMODE_WRITE) { if (__raw_readq(SS_CSR(R_SER_DMA_DSCR_COUNT_TX)) != 0) { printk(KERN_ERR "cs4297a: TX pipe needs to drain\n"); while (__raw_readq(SS_CSR(R_SER_DMA_DSCR_COUNT_TX))) ; } mutex_lock(&s->open_sem_dac); while (s->open_mode & FMODE_WRITE) { if (file->f_flags & O_NONBLOCK) { mutex_unlock(&s->open_sem_dac); return -EBUSY; } mutex_unlock(&s->open_sem_dac); oss_broken_sleep_on(&s->open_wait_dac, MAX_SCHEDULE_TIMEOUT); if (signal_pending(current)) { printk("open - sig pending\n"); return -ERESTARTSYS; } mutex_lock(&s->open_sem_dac); } } if (file->f_mode & FMODE_READ) { mutex_lock(&s->open_sem_adc); while (s->open_mode & FMODE_READ) { if (file->f_flags & O_NONBLOCK) { mutex_unlock(&s->open_sem_adc); return -EBUSY; } mutex_unlock(&s->open_sem_adc); oss_broken_sleep_on(&s->open_wait_adc, MAX_SCHEDULE_TIMEOUT); if (signal_pending(current)) { printk("open - sig pending\n"); return -ERESTARTSYS; } mutex_lock(&s->open_sem_adc); } } s->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE); if (file->f_mode & FMODE_READ) { s->prop_adc.fmt = AFMT_S16_BE; s->prop_adc.fmt_original = s->prop_adc.fmt; s->prop_adc.channels = 2; s->prop_adc.rate = 48000; s->conversion = 0; s->ena &= ~FMODE_READ; s->dma_adc.ossfragshift = s->dma_adc.ossmaxfrags = s->dma_adc.subdivision = 0; mutex_unlock(&s->open_sem_adc); if (prog_dmabuf_adc(s)) { CS_DBGOUT(CS_OPEN | CS_ERROR, 2, printk(KERN_ERR "cs4297a: adc Program dmabufs failed.\n")); cs4297a_release(inode, file); return -ENOMEM; } } if (file->f_mode & FMODE_WRITE) { s->prop_dac.fmt = AFMT_S16_BE; s->prop_dac.fmt_original = s->prop_dac.fmt; s->prop_dac.channels = 2; s->prop_dac.rate = 48000; s->conversion = 0; s->ena &= ~FMODE_WRITE; s->dma_dac.ossfragshift = s->dma_dac.ossmaxfrags = s->dma_dac.subdivision = 0; mutex_unlock(&s->open_sem_dac); if (prog_dmabuf_dac(s)) { CS_DBGOUT(CS_OPEN | CS_ERROR, 2, printk(KERN_ERR "cs4297a: dac Program dmabufs failed.\n")); cs4297a_release(inode, file); return -ENOMEM; } } CS_DBGOUT(CS_FUNCTION | CS_OPEN, 2, printk(KERN_INFO "cs4297a: cs4297a_open()- 0\n")); return nonseekable_open(inode, file); } static int cs4297a_open(struct inode *inode, struct file *file) { int ret; mutex_lock(&swarm_cs4297a_mutex); ret = cs4297a_open(inode, file); mutex_unlock(&swarm_cs4297a_mutex); return ret; } // ****************************************************************************************** // Wave (audio) file operations struct. // ****************************************************************************************** static const struct file_operations cs4297a_audio_fops = { .owner = THIS_MODULE, .llseek = no_llseek, .read = cs4297a_read, .write = cs4297a_write, .poll = cs4297a_poll, .unlocked_ioctl = cs4297a_unlocked_ioctl, .mmap = cs4297a_mmap, .open = cs4297a_open, .release = cs4297a_release, }; static void cs4297a_interrupt(int irq, void *dev_id) { struct cs4297a_state *s = (struct cs4297a_state *) dev_id; u32 status; status = __raw_readq(SS_CSR(R_SER_STATUS_DEBUG)); CS_DBGOUT(CS_INTERRUPT, 6, printk(KERN_INFO "cs4297a: cs4297a_interrupt() HISR=0x%.8x\n", status)); #if 0 /* XXXKW what check *should* be done here? */ if (!(status & (M_SYNCSER_RX_EOP_COUNT | M_SYNCSER_RX_OVERRUN | M_SYNCSER_RX_SYNC_ERR))) { status = __raw_readq(SS_CSR(R_SER_STATUS)); printk(KERN_ERR "cs4297a: unexpected interrupt (status %08x)\n", status); return; } #endif if (status & M_SYNCSER_RX_SYNC_ERR) { status = __raw_readq(SS_CSR(R_SER_STATUS)); printk(KERN_ERR "cs4297a: rx sync error (status %08x)\n", status); return; } if (status & M_SYNCSER_RX_OVERRUN) { int newptr, i; s->stats.rx_ovrrn++; printk(KERN_ERR "cs4297a: receive FIFO overrun\n"); /* Fix things up: get the receive descriptor pool clean and give them back to the hardware */ while (__raw_readq(SS_CSR(R_SER_DMA_DSCR_COUNT_RX))) ; newptr = (unsigned) (((__raw_readq(SS_CSR(R_SER_DMA_CUR_DSCR_ADDR_RX)) & M_DMA_CURDSCR_ADDR) - s->dma_adc.descrtab_phys) / sizeof(serdma_descr_t)); for (i=0; i<DMA_DESCR; i++) { s->dma_adc.descrtab[i].descr_a &= ~M_DMA_SERRX_SOP; } s->dma_adc.swptr = s->dma_adc.hwptr = newptr; s->dma_adc.count = 0; s->dma_adc.sb_swptr = s->dma_adc.sb_hwptr = s->dma_adc.sample_buf; __raw_writeq(DMA_DESCR, SS_CSR(R_SER_DMA_DSCR_COUNT_RX)); } spin_lock(&s->lock); cs4297a_update_ptr(s,CS_TRUE); spin_unlock(&s->lock); CS_DBGOUT(CS_INTERRUPT, 6, printk(KERN_INFO "cs4297a: cs4297a_interrupt()-\n")); } #if 0 static struct initvol { int mixch; int vol; } initvol[] __initdata = { {SOUND_MIXER_WRITE_VOLUME, 0x4040}, {SOUND_MIXER_WRITE_PCM, 0x4040}, {SOUND_MIXER_WRITE_SYNTH, 0x4040}, {SOUND_MIXER_WRITE_CD, 0x4040}, {SOUND_MIXER_WRITE_LINE, 0x4040}, {SOUND_MIXER_WRITE_LINE1, 0x4040}, {SOUND_MIXER_WRITE_RECLEV, 0x0000}, {SOUND_MIXER_WRITE_SPEAKER, 0x4040}, {SOUND_MIXER_WRITE_MIC, 0x0000} }; #endif static int __init cs4297a_init(void) { struct cs4297a_state *s; u32 pwr, id; mm_segment_t fs; int rval; u64 cfg; int mdio_val; CS_DBGOUT(CS_INIT | CS_FUNCTION, 2, printk(KERN_INFO "cs4297a: cs4297a_init_module()+ \n")); mdio_val = __raw_readq(KSEG1 + A_MAC_REGISTER(2, R_MAC_MDIO)) & (M_MAC_MDIO_DIR|M_MAC_MDIO_OUT); /* Check syscfg for synchronous serial on port 1 */ cfg = __raw_readq(KSEG1 + A_SCD_SYSTEM_CFG); if (!(cfg & M_SYS_SER1_ENABLE)) { __raw_writeq(cfg | M_SYS_SER1_ENABLE, KSEG1+A_SCD_SYSTEM_CFG); cfg = __raw_readq(KSEG1 + A_SCD_SYSTEM_CFG); if (!(cfg & M_SYS_SER1_ENABLE)) { printk(KERN_INFO "cs4297a: serial port 1 not configured for synchronous operation\n"); return -1; } printk(KERN_INFO "cs4297a: serial port 1 switching to synchronous operation\n"); /* Force the codec (on SWARM) to reset by clearing GENO, preserving MDIO (no effect on CSWARM) */ __raw_writeq(mdio_val, KSEG1+A_MAC_REGISTER(2, R_MAC_MDIO)); udelay(10); } /* Now set GENO */ __raw_writeq(mdio_val | M_MAC_GENC, KSEG1+A_MAC_REGISTER(2, R_MAC_MDIO)); /* Give the codec some time to finish resetting (start the bit clock) */ udelay(100); if (!(s = kzalloc(sizeof(struct cs4297a_state), GFP_KERNEL))) { CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR "cs4297a: probe() no memory for state struct.\n")); return -1; } s->magic = CS4297a_MAGIC; init_waitqueue_head(&s->dma_adc.wait); init_waitqueue_head(&s->dma_dac.wait); init_waitqueue_head(&s->dma_adc.reg_wait); init_waitqueue_head(&s->dma_dac.reg_wait); init_waitqueue_head(&s->open_wait); init_waitqueue_head(&s->open_wait_adc); init_waitqueue_head(&s->open_wait_dac); mutex_init(&s->open_sem_adc); mutex_init(&s->open_sem_dac); spin_lock_init(&s->lock); s->irq = K_INT_SER_1; if (request_irq (s->irq, cs4297a_interrupt, 0, "Crystal CS4297a", s)) { CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_ERR "cs4297a: irq %u in use\n", s->irq)); goto err_irq; } if ((s->dev_audio = register_sound_dsp(&cs4297a_audio_fops, -1)) < 0) { CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_ERR "cs4297a: probe() register_sound_dsp() failed.\n")); goto err_dev1; } if ((s->dev_mixer = register_sound_mixer(&cs4297a_mixer_fops, -1)) < 0) { CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_ERR "cs4297a: probe() register_sound_mixer() failed.\n")); goto err_dev2; } if (ser_init(s) || dma_init(s)) { CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_ERR "cs4297a: ser_init failed.\n")); goto err_dev3; } do { udelay(4000); rval = cs4297a_read_ac97(s, AC97_POWER_CONTROL, &pwr); } while (!rval && (pwr != 0xf)); if (!rval) { char *sb1250_duart_present; fs = get_fs(); set_fs(KERNEL_DS); #if 0 val = SOUND_MASK_LINE; mixer_ioctl(s, SOUND_MIXER_WRITE_RECSRC, (unsigned long) &val); for (i = 0; i < ARRAY_SIZE(initvol); i++) { val = initvol[i].vol; mixer_ioctl(s, initvol[i].mixch, (unsigned long) &val); } // cs4297a_write_ac97(s, 0x18, 0x0808); #else // cs4297a_write_ac97(s, 0x5e, 0x180); cs4297a_write_ac97(s, 0x02, 0x0808); cs4297a_write_ac97(s, 0x18, 0x0808); #endif set_fs(fs); list_add(&s->list, &cs4297a_devs); cs4297a_read_ac97(s, AC97_VENDOR_ID1, &id); sb1250_duart_present = symbol_get(sb1250_duart_present); if (sb1250_duart_present) sb1250_duart_present[1] = 0; printk(KERN_INFO "cs4297a: initialized (vendor id = %x)\n", id); CS_DBGOUT(CS_INIT | CS_FUNCTION, 2, printk(KERN_INFO "cs4297a: cs4297a_init_module()-\n")); return 0; } err_dev3: unregister_sound_mixer(s->dev_mixer); err_dev2: unregister_sound_dsp(s->dev_audio); err_dev1: free_irq(s->irq, s); err_irq: kfree(s); printk(KERN_INFO "cs4297a: initialization failed\n"); return -1; } static void __exit cs4297a_cleanup(void) { /* XXXKW disable_irq, free_irq drain DMA queue disable DMA disable TX/RX free memory */ CS_DBGOUT(CS_INIT | CS_FUNCTION, 2, printk(KERN_INFO "cs4297a: cleanup_cs4297a() finished\n")); } // --------------------------------------------------------------------- MODULE_AUTHOR("Kip Walker, Broadcom Corp."); MODULE_DESCRIPTION("Cirrus Logic CS4297a Driver for Broadcom SWARM board"); // --------------------------------------------------------------------- module_init(cs4297a_init); module_exit(cs4297a_cleanup);