/* * linux/kernel/seccomp.c * * Copyright 2004-2005 Andrea Arcangeli <andrea@cpushare.com> * * Copyright (C) 2012 Google, Inc. * Will Drewry <wad@chromium.org> * * This defines a simple but solid secure-computing facility. * * Mode 1 uses a fixed list of allowed system calls. * Mode 2 allows user-defined system call filters in the form * of Berkeley Packet Filters/Linux Socket Filters. */ #include <linux/atomic.h> #include <linux/audit.h> #include <linux/compat.h> #include <linux/sched.h> #include <linux/seccomp.h> #include <linux/slab.h> #include <linux/syscalls.h> #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER #include <asm/syscall.h> #endif #ifdef CONFIG_SECCOMP_FILTER #include <linux/filter.h> #include <linux/pid.h> #include <linux/ptrace.h> #include <linux/security.h> #include <linux/tracehook.h> #include <linux/uaccess.h> /** * struct seccomp_filter - container for seccomp BPF programs * * @usage: reference count to manage the object lifetime. * get/put helpers should be used when accessing an instance * outside of a lifetime-guarded section. In general, this * is only needed for handling filters shared across tasks. * @prev: points to a previously installed, or inherited, filter * @len: the number of instructions in the program * @insnsi: the BPF program instructions to evaluate * * seccomp_filter objects are organized in a tree linked via the @prev * pointer. For any task, it appears to be a singly-linked list starting * with current->seccomp.filter, the most recently attached or inherited filter. * However, multiple filters may share a @prev node, by way of fork(), which * results in a unidirectional tree existing in memory. This is similar to * how namespaces work. * * seccomp_filter objects should never be modified after being attached * to a task_struct (other than @usage). */ struct seccomp_filter { atomic_t usage; struct seccomp_filter *prev; struct bpf_prog *prog; }; /* Limit any path through the tree to 256KB worth of instructions. */ #define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter)) /* * Endianness is explicitly ignored and left for BPF program authors to manage * as per the specific architecture. */ static void populate_seccomp_data(struct seccomp_data *sd) { struct task_struct *task = current; struct pt_regs *regs = task_pt_regs(task); unsigned long args[6]; sd->nr = syscall_get_nr(task, regs); sd->arch = syscall_get_arch(); syscall_get_arguments(task, regs, 0, 6, args); sd->args[0] = args[0]; sd->args[1] = args[1]; sd->args[2] = args[2]; sd->args[3] = args[3]; sd->args[4] = args[4]; sd->args[5] = args[5]; sd->instruction_pointer = KSTK_EIP(task); } /** * seccomp_check_filter - verify seccomp filter code * @filter: filter to verify * @flen: length of filter * * Takes a previously checked filter (by bpf_check_classic) and * redirects all filter code that loads struct sk_buff data * and related data through seccomp_bpf_load. It also * enforces length and alignment checking of those loads. * * Returns 0 if the rule set is legal or -EINVAL if not. */ static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen) { int pc; for (pc = 0; pc < flen; pc++) { struct sock_filter *ftest = &filter[pc]; u16 code = ftest->code; u32 k = ftest->k; switch (code) { case BPF_LD | BPF_W | BPF_ABS: ftest->code = BPF_LDX | BPF_W | BPF_ABS; /* 32-bit aligned and not out of bounds. */ if (k >= sizeof(struct seccomp_data) || k & 3) return -EINVAL; continue; case BPF_LD | BPF_W | BPF_LEN: ftest->code = BPF_LD | BPF_IMM; ftest->k = sizeof(struct seccomp_data); continue; case BPF_LDX | BPF_W | BPF_LEN: ftest->code = BPF_LDX | BPF_IMM; ftest->k = sizeof(struct seccomp_data); continue; /* Explicitly include allowed calls. */ case BPF_RET | BPF_K: case BPF_RET | BPF_A: case BPF_ALU | BPF_ADD | BPF_K: case BPF_ALU | BPF_ADD | BPF_X: case BPF_ALU | BPF_SUB | BPF_K: case BPF_ALU | BPF_SUB | BPF_X: case BPF_ALU | BPF_MUL | BPF_K: case BPF_ALU | BPF_MUL | BPF_X: case BPF_ALU | BPF_DIV | BPF_K: case BPF_ALU | BPF_DIV | BPF_X: case BPF_ALU | BPF_AND | BPF_K: case BPF_ALU | BPF_AND | BPF_X: case BPF_ALU | BPF_OR | BPF_K: case BPF_ALU | BPF_OR | BPF_X: case BPF_ALU | BPF_XOR | BPF_K: case BPF_ALU | BPF_XOR | BPF_X: case BPF_ALU | BPF_LSH | BPF_K: case BPF_ALU | BPF_LSH | BPF_X: case BPF_ALU | BPF_RSH | BPF_K: case BPF_ALU | BPF_RSH | BPF_X: case BPF_ALU | BPF_NEG: case BPF_LD | BPF_IMM: case BPF_LDX | BPF_IMM: case BPF_MISC | BPF_TAX: case BPF_MISC | BPF_TXA: case BPF_LD | BPF_MEM: case BPF_LDX | BPF_MEM: case BPF_ST: case BPF_STX: case BPF_JMP | BPF_JA: case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JEQ | BPF_X: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP | BPF_JSET | BPF_K: case BPF_JMP | BPF_JSET | BPF_X: continue; default: return -EINVAL; } } return 0; } /** * seccomp_run_filters - evaluates all seccomp filters against @syscall * @syscall: number of the current system call * * Returns valid seccomp BPF response codes. */ static u32 seccomp_run_filters(struct seccomp_data *sd) { struct seccomp_data sd_local; u32 ret = SECCOMP_RET_ALLOW; /* Make sure cross-thread synced filter points somewhere sane. */ struct seccomp_filter *f = lockless_dereference(current->seccomp.filter); /* Ensure unexpected behavior doesn't result in failing open. */ if (unlikely(WARN_ON(f == NULL))) return SECCOMP_RET_KILL; if (!sd) { populate_seccomp_data(&sd_local); sd = &sd_local; } /* * All filters in the list are evaluated and the lowest BPF return * value always takes priority (ignoring the DATA). */ for (; f; f = f->prev) { u32 cur_ret = BPF_PROG_RUN(f->prog, (void *)sd); if ((cur_ret & SECCOMP_RET_ACTION) < (ret & SECCOMP_RET_ACTION)) ret = cur_ret; } return ret; } #endif /* CONFIG_SECCOMP_FILTER */ static inline bool seccomp_may_assign_mode(unsigned long seccomp_mode) { assert_spin_locked(¤t->sighand->siglock); if (current->seccomp.mode && current->seccomp.mode != seccomp_mode) return false; return true; } static inline void seccomp_assign_mode(struct task_struct *task, unsigned long seccomp_mode) { assert_spin_locked(&task->sighand->siglock); task->seccomp.mode = seccomp_mode; /* * Make sure TIF_SECCOMP cannot be set before the mode (and * filter) is set. */ smp_mb__before_atomic(); set_tsk_thread_flag(task, TIF_SECCOMP); } #ifdef CONFIG_SECCOMP_FILTER /* Returns 1 if the parent is an ancestor of the child. */ static int is_ancestor(struct seccomp_filter *parent, struct seccomp_filter *child) { /* NULL is the root ancestor. */ if (parent == NULL) return 1; for (; child; child = child->prev) if (child == parent) return 1; return 0; } /** * seccomp_can_sync_threads: checks if all threads can be synchronized * * Expects sighand and cred_guard_mutex locks to be held. * * Returns 0 on success, -ve on error, or the pid of a thread which was * either not in the correct seccomp mode or it did not have an ancestral * seccomp filter. */ static inline pid_t seccomp_can_sync_threads(void) { struct task_struct *thread, *caller; BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex)); assert_spin_locked(¤t->sighand->siglock); /* Validate all threads being eligible for synchronization. */ caller = current; for_each_thread(caller, thread) { pid_t failed; /* Skip current, since it is initiating the sync. */ if (thread == caller) continue; if (thread->seccomp.mode == SECCOMP_MODE_DISABLED || (thread->seccomp.mode == SECCOMP_MODE_FILTER && is_ancestor(thread->seccomp.filter, caller->seccomp.filter))) continue; /* Return the first thread that cannot be synchronized. */ failed = task_pid_vnr(thread); /* If the pid cannot be resolved, then return -ESRCH */ if (unlikely(WARN_ON(failed == 0))) failed = -ESRCH; return failed; } return 0; } /** * seccomp_sync_threads: sets all threads to use current's filter * * Expects sighand and cred_guard_mutex locks to be held, and for * seccomp_can_sync_threads() to have returned success already * without dropping the locks. * */ static inline void seccomp_sync_threads(void) { struct task_struct *thread, *caller; BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex)); assert_spin_locked(¤t->sighand->siglock); /* Synchronize all threads. */ caller = current; for_each_thread(caller, thread) { /* Skip current, since it needs no changes. */ if (thread == caller) continue; /* Get a task reference for the new leaf node. */ get_seccomp_filter(caller); /* * Drop the task reference to the shared ancestor since * current's path will hold a reference. (This also * allows a put before the assignment.) */ put_seccomp_filter(thread); smp_store_release(&thread->seccomp.filter, caller->seccomp.filter); /* * Opt the other thread into seccomp if needed. * As threads are considered to be trust-realm * equivalent (see ptrace_may_access), it is safe to * allow one thread to transition the other. */ if (thread->seccomp.mode == SECCOMP_MODE_DISABLED) { /* * Don't let an unprivileged task work around * the no_new_privs restriction by creating * a thread that sets it up, enters seccomp, * then dies. */ if (task_no_new_privs(caller)) task_set_no_new_privs(thread); seccomp_assign_mode(thread, SECCOMP_MODE_FILTER); } } } /** * seccomp_prepare_filter: Prepares a seccomp filter for use. * @fprog: BPF program to install * * Returns filter on success or an ERR_PTR on failure. */ static struct seccomp_filter *seccomp_prepare_filter(struct sock_fprog *fprog) { struct seccomp_filter *sfilter; int ret; const bool save_orig = config_enabled(CONFIG_CHECKPOINT_RESTORE); if (fprog->len == 0 || fprog->len > BPF_MAXINSNS) return ERR_PTR(-EINVAL); BUG_ON(INT_MAX / fprog->len < sizeof(struct sock_filter)); /* * Installing a seccomp filter requires that the task has * CAP_SYS_ADMIN in its namespace or be running with no_new_privs. * This avoids scenarios where unprivileged tasks can affect the * behavior of privileged children. */ if (!task_no_new_privs(current) && security_capable_noaudit(current_cred(), current_user_ns(), CAP_SYS_ADMIN) != 0) return ERR_PTR(-EACCES); /* Allocate a new seccomp_filter */ sfilter = kzalloc(sizeof(*sfilter), GFP_KERNEL | __GFP_NOWARN); if (!sfilter) return ERR_PTR(-ENOMEM); ret = bpf_prog_create_from_user(&sfilter->prog, fprog, seccomp_check_filter, save_orig); if (ret < 0) { kfree(sfilter); return ERR_PTR(ret); } atomic_set(&sfilter->usage, 1); return sfilter; } /** * seccomp_prepare_user_filter - prepares a user-supplied sock_fprog * @user_filter: pointer to the user data containing a sock_fprog. * * Returns 0 on success and non-zero otherwise. */ static struct seccomp_filter * seccomp_prepare_user_filter(const char __user *user_filter) { struct sock_fprog fprog; struct seccomp_filter *filter = ERR_PTR(-EFAULT); #ifdef CONFIG_COMPAT if (is_compat_task()) { struct compat_sock_fprog fprog32; if (copy_from_user(&fprog32, user_filter, sizeof(fprog32))) goto out; fprog.len = fprog32.len; fprog.filter = compat_ptr(fprog32.filter); } else /* falls through to the if below. */ #endif if (copy_from_user(&fprog, user_filter, sizeof(fprog))) goto out; filter = seccomp_prepare_filter(&fprog); out: return filter; } /** * seccomp_attach_filter: validate and attach filter * @flags: flags to change filter behavior * @filter: seccomp filter to add to the current process * * Caller must be holding current->sighand->siglock lock. * * Returns 0 on success, -ve on error. */ static long seccomp_attach_filter(unsigned int flags, struct seccomp_filter *filter) { unsigned long total_insns; struct seccomp_filter *walker; assert_spin_locked(¤t->sighand->siglock); /* Validate resulting filter length. */ total_insns = filter->prog->len; for (walker = current->seccomp.filter; walker; walker = walker->prev) total_insns += walker->prog->len + 4; /* 4 instr penalty */ if (total_insns > MAX_INSNS_PER_PATH) return -ENOMEM; /* If thread sync has been requested, check that it is possible. */ if (flags & SECCOMP_FILTER_FLAG_TSYNC) { int ret; ret = seccomp_can_sync_threads(); if (ret) return ret; } /* * If there is an existing filter, make it the prev and don't drop its * task reference. */ filter->prev = current->seccomp.filter; current->seccomp.filter = filter; /* Now that the new filter is in place, synchronize to all threads. */ if (flags & SECCOMP_FILTER_FLAG_TSYNC) seccomp_sync_threads(); return 0; } /* get_seccomp_filter - increments the reference count of the filter on @tsk */ void get_seccomp_filter(struct task_struct *tsk) { struct seccomp_filter *orig = tsk->seccomp.filter; if (!orig) return; /* Reference count is bounded by the number of total processes. */ atomic_inc(&orig->usage); } static inline void seccomp_filter_free(struct seccomp_filter *filter) { if (filter) { bpf_prog_destroy(filter->prog); kfree(filter); } } /* put_seccomp_filter - decrements the ref count of tsk->seccomp.filter */ void put_seccomp_filter(struct task_struct *tsk) { struct seccomp_filter *orig = tsk->seccomp.filter; /* Clean up single-reference branches iteratively. */ while (orig && atomic_dec_and_test(&orig->usage)) { struct seccomp_filter *freeme = orig; orig = orig->prev; seccomp_filter_free(freeme); } } /** * seccomp_send_sigsys - signals the task to allow in-process syscall emulation * @syscall: syscall number to send to userland * @reason: filter-supplied reason code to send to userland (via si_errno) * * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. */ static void seccomp_send_sigsys(int syscall, int reason) { struct siginfo info; memset(&info, 0, sizeof(info)); info.si_signo = SIGSYS; info.si_code = SYS_SECCOMP; info.si_call_addr = (void __user *)KSTK_EIP(current); info.si_errno = reason; info.si_arch = syscall_get_arch(); info.si_syscall = syscall; force_sig_info(SIGSYS, &info, current); } #endif /* CONFIG_SECCOMP_FILTER */ /* * Secure computing mode 1 allows only read/write/exit/sigreturn. * To be fully secure this must be combined with rlimit * to limit the stack allocations too. */ static int mode1_syscalls[] = { __NR_seccomp_read, __NR_seccomp_write, __NR_seccomp_exit, __NR_seccomp_sigreturn, 0, /* null terminated */ }; #ifdef CONFIG_COMPAT static int mode1_syscalls_32[] = { __NR_seccomp_read_32, __NR_seccomp_write_32, __NR_seccomp_exit_32, __NR_seccomp_sigreturn_32, 0, /* null terminated */ }; #endif static void __secure_computing_strict(int this_syscall) { int *syscall_whitelist = mode1_syscalls; #ifdef CONFIG_COMPAT if (is_compat_task()) syscall_whitelist = mode1_syscalls_32; #endif do { if (*syscall_whitelist == this_syscall) return; } while (*++syscall_whitelist); #ifdef SECCOMP_DEBUG dump_stack(); #endif audit_seccomp(this_syscall, SIGKILL, SECCOMP_RET_KILL); do_exit(SIGKILL); } #ifndef CONFIG_HAVE_ARCH_SECCOMP_FILTER void secure_computing_strict(int this_syscall) { int mode = current->seccomp.mode; if (config_enabled(CONFIG_CHECKPOINT_RESTORE) && unlikely(current->ptrace & PT_SUSPEND_SECCOMP)) return; if (mode == SECCOMP_MODE_DISABLED) return; else if (mode == SECCOMP_MODE_STRICT) __secure_computing_strict(this_syscall); else BUG(); } #else int __secure_computing(void) { u32 phase1_result = seccomp_phase1(NULL); if (likely(phase1_result == SECCOMP_PHASE1_OK)) return 0; else if (likely(phase1_result == SECCOMP_PHASE1_SKIP)) return -1; else return seccomp_phase2(phase1_result); } #ifdef CONFIG_SECCOMP_FILTER static u32 __seccomp_phase1_filter(int this_syscall, struct seccomp_data *sd) { u32 filter_ret, action; int data; /* * Make sure that any changes to mode from another thread have * been seen after TIF_SECCOMP was seen. */ rmb(); filter_ret = seccomp_run_filters(sd); data = filter_ret & SECCOMP_RET_DATA; action = filter_ret & SECCOMP_RET_ACTION; switch (action) { case SECCOMP_RET_ERRNO: /* Set low-order bits as an errno, capped at MAX_ERRNO. */ if (data > MAX_ERRNO) data = MAX_ERRNO; syscall_set_return_value(current, task_pt_regs(current), -data, 0); goto skip; case SECCOMP_RET_TRAP: /* Show the handler the original registers. */ syscall_rollback(current, task_pt_regs(current)); /* Let the filter pass back 16 bits of data. */ seccomp_send_sigsys(this_syscall, data); goto skip; case SECCOMP_RET_TRACE: return filter_ret; /* Save the rest for phase 2. */ case SECCOMP_RET_ALLOW: return SECCOMP_PHASE1_OK; case SECCOMP_RET_KILL: default: audit_seccomp(this_syscall, SIGSYS, action); do_exit(SIGSYS); } unreachable(); skip: audit_seccomp(this_syscall, 0, action); return SECCOMP_PHASE1_SKIP; } #endif /** * seccomp_phase1() - run fast path seccomp checks on the current syscall * @arg sd: The seccomp_data or NULL * * This only reads pt_regs via the syscall_xyz helpers. The only change * it will make to pt_regs is via syscall_set_return_value, and it will * only do that if it returns SECCOMP_PHASE1_SKIP. * * If sd is provided, it will not read pt_regs at all. * * It may also call do_exit or force a signal; these actions must be * safe. * * If it returns SECCOMP_PHASE1_OK, the syscall passes checks and should * be processed normally. * * If it returns SECCOMP_PHASE1_SKIP, then the syscall should not be * invoked. In this case, seccomp_phase1 will have set the return value * using syscall_set_return_value. * * If it returns anything else, then the return value should be passed * to seccomp_phase2 from a context in which ptrace hooks are safe. */ u32 seccomp_phase1(struct seccomp_data *sd) { int mode = current->seccomp.mode; int this_syscall = sd ? sd->nr : syscall_get_nr(current, task_pt_regs(current)); if (config_enabled(CONFIG_CHECKPOINT_RESTORE) && unlikely(current->ptrace & PT_SUSPEND_SECCOMP)) return SECCOMP_PHASE1_OK; switch (mode) { case SECCOMP_MODE_STRICT: __secure_computing_strict(this_syscall); /* may call do_exit */ return SECCOMP_PHASE1_OK; #ifdef CONFIG_SECCOMP_FILTER case SECCOMP_MODE_FILTER: return __seccomp_phase1_filter(this_syscall, sd); #endif default: BUG(); } } /** * seccomp_phase2() - finish slow path seccomp work for the current syscall * @phase1_result: The return value from seccomp_phase1() * * This must be called from a context in which ptrace hooks can be used. * * Returns 0 if the syscall should be processed or -1 to skip the syscall. */ int seccomp_phase2(u32 phase1_result) { struct pt_regs *regs = task_pt_regs(current); u32 action = phase1_result & SECCOMP_RET_ACTION; int data = phase1_result & SECCOMP_RET_DATA; BUG_ON(action != SECCOMP_RET_TRACE); audit_seccomp(syscall_get_nr(current, regs), 0, action); /* Skip these calls if there is no tracer. */ if (!ptrace_event_enabled(current, PTRACE_EVENT_SECCOMP)) { syscall_set_return_value(current, regs, -ENOSYS, 0); return -1; } /* Allow the BPF to provide the event message */ ptrace_event(PTRACE_EVENT_SECCOMP, data); /* * The delivery of a fatal signal during event * notification may silently skip tracer notification. * Terminating the task now avoids executing a system * call that may not be intended. */ if (fatal_signal_pending(current)) do_exit(SIGSYS); if (syscall_get_nr(current, regs) < 0) return -1; /* Explicit request to skip. */ return 0; } #endif /* CONFIG_HAVE_ARCH_SECCOMP_FILTER */ long prctl_get_seccomp(void) { return current->seccomp.mode; } /** * seccomp_set_mode_strict: internal function for setting strict seccomp * * Once current->seccomp.mode is non-zero, it may not be changed. * * Returns 0 on success or -EINVAL on failure. */ static long seccomp_set_mode_strict(void) { const unsigned long seccomp_mode = SECCOMP_MODE_STRICT; long ret = -EINVAL; spin_lock_irq(¤t->sighand->siglock); if (!seccomp_may_assign_mode(seccomp_mode)) goto out; #ifdef TIF_NOTSC disable_TSC(); #endif seccomp_assign_mode(current, seccomp_mode); ret = 0; out: spin_unlock_irq(¤t->sighand->siglock); return ret; } #ifdef CONFIG_SECCOMP_FILTER /** * seccomp_set_mode_filter: internal function for setting seccomp filter * @flags: flags to change filter behavior * @filter: struct sock_fprog containing filter * * This function may be called repeatedly to install additional filters. * Every filter successfully installed will be evaluated (in reverse order) * for each system call the task makes. * * Once current->seccomp.mode is non-zero, it may not be changed. * * Returns 0 on success or -EINVAL on failure. */ static long seccomp_set_mode_filter(unsigned int flags, const char __user *filter) { const unsigned long seccomp_mode = SECCOMP_MODE_FILTER; struct seccomp_filter *prepared = NULL; long ret = -EINVAL; /* Validate flags. */ if (flags & ~SECCOMP_FILTER_FLAG_MASK) return -EINVAL; /* Prepare the new filter before holding any locks. */ prepared = seccomp_prepare_user_filter(filter); if (IS_ERR(prepared)) return PTR_ERR(prepared); /* * Make sure we cannot change seccomp or nnp state via TSYNC * while another thread is in the middle of calling exec. */ if (flags & SECCOMP_FILTER_FLAG_TSYNC && mutex_lock_killable(¤t->signal->cred_guard_mutex)) goto out_free; spin_lock_irq(¤t->sighand->siglock); if (!seccomp_may_assign_mode(seccomp_mode)) goto out; ret = seccomp_attach_filter(flags, prepared); if (ret) goto out; /* Do not free the successfully attached filter. */ prepared = NULL; seccomp_assign_mode(current, seccomp_mode); out: spin_unlock_irq(¤t->sighand->siglock); if (flags & SECCOMP_FILTER_FLAG_TSYNC) mutex_unlock(¤t->signal->cred_guard_mutex); out_free: seccomp_filter_free(prepared); return ret; } #else static inline long seccomp_set_mode_filter(unsigned int flags, const char __user *filter) { return -EINVAL; } #endif /* Common entry point for both prctl and syscall. */ static long do_seccomp(unsigned int op, unsigned int flags, const char __user *uargs) { switch (op) { case SECCOMP_SET_MODE_STRICT: if (flags != 0 || uargs != NULL) return -EINVAL; return seccomp_set_mode_strict(); case SECCOMP_SET_MODE_FILTER: return seccomp_set_mode_filter(flags, uargs); default: return -EINVAL; } } SYSCALL_DEFINE3(seccomp, unsigned int, op, unsigned int, flags, const char __user *, uargs) { return do_seccomp(op, flags, uargs); } /** * prctl_set_seccomp: configures current->seccomp.mode * @seccomp_mode: requested mode to use * @filter: optional struct sock_fprog for use with SECCOMP_MODE_FILTER * * Returns 0 on success or -EINVAL on failure. */ long prctl_set_seccomp(unsigned long seccomp_mode, char __user *filter) { unsigned int op; char __user *uargs; switch (seccomp_mode) { case SECCOMP_MODE_STRICT: op = SECCOMP_SET_MODE_STRICT; /* * Setting strict mode through prctl always ignored filter, * so make sure it is always NULL here to pass the internal * check in do_seccomp(). */ uargs = NULL; break; case SECCOMP_MODE_FILTER: op = SECCOMP_SET_MODE_FILTER; uargs = filter; break; default: return -EINVAL; } /* prctl interface doesn't have flags, so they are always zero. */ return do_seccomp(op, 0, uargs); } #if defined(CONFIG_SECCOMP_FILTER) && defined(CONFIG_CHECKPOINT_RESTORE) long seccomp_get_filter(struct task_struct *task, unsigned long filter_off, void __user *data) { struct seccomp_filter *filter; struct sock_fprog_kern *fprog; long ret; unsigned long count = 0; if (!capable(CAP_SYS_ADMIN) || current->seccomp.mode != SECCOMP_MODE_DISABLED) { return -EACCES; } spin_lock_irq(&task->sighand->siglock); if (task->seccomp.mode != SECCOMP_MODE_FILTER) { ret = -EINVAL; goto out; } filter = task->seccomp.filter; while (filter) { filter = filter->prev; count++; } if (filter_off >= count) { ret = -ENOENT; goto out; } count -= filter_off; filter = task->seccomp.filter; while (filter && count > 1) { filter = filter->prev; count--; } if (WARN_ON(count != 1 || !filter)) { /* The filter tree shouldn't shrink while we're using it. */ ret = -ENOENT; goto out; } fprog = filter->prog->orig_prog; if (!fprog) { /* This must be a new non-cBPF filter, since we save every * every cBPF filter's orig_prog above when * CONFIG_CHECKPOINT_RESTORE is enabled. */ ret = -EMEDIUMTYPE; goto out; } ret = fprog->len; if (!data) goto out; get_seccomp_filter(task); spin_unlock_irq(&task->sighand->siglock); if (copy_to_user(data, fprog->filter, bpf_classic_proglen(fprog))) ret = -EFAULT; put_seccomp_filter(task); return ret; out: spin_unlock_irq(&task->sighand->siglock); return ret; } #endif