#ifndef __DRM_GEM_H__ #define __DRM_GEM_H__ /* * GEM Graphics Execution Manager Driver Interfaces * * Copyright 1999 Precision Insight, Inc., Cedar Park, Texas. * Copyright 2000 VA Linux Systems, Inc., Sunnyvale, California. * Copyright (c) 2009-2010, Code Aurora Forum. * All rights reserved. * Copyright © 2014 Intel Corporation * Daniel Vetter <daniel.vetter@ffwll.ch> * * Author: Rickard E. (Rik) Faith <faith@valinux.com> * Author: Gareth Hughes <gareth@valinux.com> * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ /** * This structure defines the drm_mm memory object, which will be used by the * DRM for its buffer objects. */ struct drm_gem_object { /** Reference count of this object */ struct kref refcount; /** * handle_count - gem file_priv handle count of this object * * Each handle also holds a reference. Note that when the handle_count * drops to 0 any global names (e.g. the id in the flink namespace) will * be cleared. * * Protected by dev->object_name_lock. * */ unsigned handle_count; /** Related drm device */ struct drm_device *dev; /** File representing the shmem storage */ struct file *filp; /* Mapping info for this object */ struct drm_vma_offset_node vma_node; /** * Size of the object, in bytes. Immutable over the object's * lifetime. */ size_t size; /** * Global name for this object, starts at 1. 0 means unnamed. * Access is covered by the object_name_lock in the related drm_device */ int name; /** * Memory domains. These monitor which caches contain read/write data * related to the object. When transitioning from one set of domains * to another, the driver is called to ensure that caches are suitably * flushed and invalidated */ uint32_t read_domains; uint32_t write_domain; /** * While validating an exec operation, the * new read/write domain values are computed here. * They will be transferred to the above values * at the point that any cache flushing occurs */ uint32_t pending_read_domains; uint32_t pending_write_domain; /** * dma_buf - dma buf associated with this GEM object * * Pointer to the dma-buf associated with this gem object (either * through importing or exporting). We break the resulting reference * loop when the last gem handle for this object is released. * * Protected by obj->object_name_lock */ struct dma_buf *dma_buf; /** * import_attach - dma buf attachment backing this object * * Any foreign dma_buf imported as a gem object has this set to the * attachment point for the device. This is invariant over the lifetime * of a gem object. * * The driver's ->gem_free_object callback is responsible for cleaning * up the dma_buf attachment and references acquired at import time. * * Note that the drm gem/prime core does not depend upon drivers setting * this field any more. So for drivers where this doesn't make sense * (e.g. virtual devices or a displaylink behind an usb bus) they can * simply leave it as NULL. */ struct dma_buf_attachment *import_attach; }; void drm_gem_object_release(struct drm_gem_object *obj); void drm_gem_object_free(struct kref *kref); int drm_gem_object_init(struct drm_device *dev, struct drm_gem_object *obj, size_t size); void drm_gem_private_object_init(struct drm_device *dev, struct drm_gem_object *obj, size_t size); void drm_gem_vm_open(struct vm_area_struct *vma); void drm_gem_vm_close(struct vm_area_struct *vma); int drm_gem_mmap_obj(struct drm_gem_object *obj, unsigned long obj_size, struct vm_area_struct *vma); int drm_gem_mmap(struct file *filp, struct vm_area_struct *vma); static inline void drm_gem_object_reference(struct drm_gem_object *obj) { kref_get(&obj->refcount); } static inline void drm_gem_object_unreference(struct drm_gem_object *obj) { if (obj != NULL) { WARN_ON(!mutex_is_locked(&obj->dev->struct_mutex)); kref_put(&obj->refcount, drm_gem_object_free); } } static inline void drm_gem_object_unreference_unlocked(struct drm_gem_object *obj) { struct drm_device *dev; if (!obj) return; dev = obj->dev; if (kref_put_mutex(&obj->refcount, drm_gem_object_free, &dev->struct_mutex)) mutex_unlock(&dev->struct_mutex); else might_lock(&dev->struct_mutex); } int drm_gem_handle_create(struct drm_file *file_priv, struct drm_gem_object *obj, u32 *handlep); int drm_gem_handle_delete(struct drm_file *filp, u32 handle); void drm_gem_free_mmap_offset(struct drm_gem_object *obj); int drm_gem_create_mmap_offset(struct drm_gem_object *obj); int drm_gem_create_mmap_offset_size(struct drm_gem_object *obj, size_t size); struct page **drm_gem_get_pages(struct drm_gem_object *obj); void drm_gem_put_pages(struct drm_gem_object *obj, struct page **pages, bool dirty, bool accessed); struct drm_gem_object *drm_gem_object_lookup(struct drm_device *dev, struct drm_file *filp, u32 handle); int drm_gem_dumb_destroy(struct drm_file *file, struct drm_device *dev, uint32_t handle); #endif /* __DRM_GEM_H__ */