/* * linux/fs/hfsplus/bnode.c * * Copyright (C) 2001 * Brad Boyer (flar@allandria.com) * (C) 2003 Ardis Technologies <roman@ardistech.com> * * Handle basic btree node operations */ #include <linux/string.h> #include <linux/slab.h> #include <linux/pagemap.h> #include <linux/fs.h> #include <linux/swap.h> #include "hfsplus_fs.h" #include "hfsplus_raw.h" /* Copy a specified range of bytes from the raw data of a node */ void hfs_bnode_read(struct hfs_bnode *node, void *buf, int off, int len) { struct page **pagep; int l; off += node->page_offset; pagep = node->page + (off >> PAGE_CACHE_SHIFT); off &= ~PAGE_CACHE_MASK; l = min_t(int, len, PAGE_CACHE_SIZE - off); memcpy(buf, kmap(*pagep) + off, l); kunmap(*pagep); while ((len -= l) != 0) { buf += l; l = min_t(int, len, PAGE_CACHE_SIZE); memcpy(buf, kmap(*++pagep), l); kunmap(*pagep); } } u16 hfs_bnode_read_u16(struct hfs_bnode *node, int off) { __be16 data; /* TODO: optimize later... */ hfs_bnode_read(node, &data, off, 2); return be16_to_cpu(data); } u8 hfs_bnode_read_u8(struct hfs_bnode *node, int off) { u8 data; /* TODO: optimize later... */ hfs_bnode_read(node, &data, off, 1); return data; } void hfs_bnode_read_key(struct hfs_bnode *node, void *key, int off) { struct hfs_btree *tree; int key_len; tree = node->tree; if (node->type == HFS_NODE_LEAF || tree->attributes & HFS_TREE_VARIDXKEYS || node->tree->cnid == HFSPLUS_ATTR_CNID) key_len = hfs_bnode_read_u16(node, off) + 2; else key_len = tree->max_key_len + 2; hfs_bnode_read(node, key, off, key_len); } void hfs_bnode_write(struct hfs_bnode *node, void *buf, int off, int len) { struct page **pagep; int l; off += node->page_offset; pagep = node->page + (off >> PAGE_CACHE_SHIFT); off &= ~PAGE_CACHE_MASK; l = min_t(int, len, PAGE_CACHE_SIZE - off); memcpy(kmap(*pagep) + off, buf, l); set_page_dirty(*pagep); kunmap(*pagep); while ((len -= l) != 0) { buf += l; l = min_t(int, len, PAGE_CACHE_SIZE); memcpy(kmap(*++pagep), buf, l); set_page_dirty(*pagep); kunmap(*pagep); } } void hfs_bnode_write_u16(struct hfs_bnode *node, int off, u16 data) { __be16 v = cpu_to_be16(data); /* TODO: optimize later... */ hfs_bnode_write(node, &v, off, 2); } void hfs_bnode_clear(struct hfs_bnode *node, int off, int len) { struct page **pagep; int l; off += node->page_offset; pagep = node->page + (off >> PAGE_CACHE_SHIFT); off &= ~PAGE_CACHE_MASK; l = min_t(int, len, PAGE_CACHE_SIZE - off); memset(kmap(*pagep) + off, 0, l); set_page_dirty(*pagep); kunmap(*pagep); while ((len -= l) != 0) { l = min_t(int, len, PAGE_CACHE_SIZE); memset(kmap(*++pagep), 0, l); set_page_dirty(*pagep); kunmap(*pagep); } } void hfs_bnode_copy(struct hfs_bnode *dst_node, int dst, struct hfs_bnode *src_node, int src, int len) { struct hfs_btree *tree; struct page **src_page, **dst_page; int l; hfs_dbg(BNODE_MOD, "copybytes: %u,%u,%u\n", dst, src, len); if (!len) return; tree = src_node->tree; src += src_node->page_offset; dst += dst_node->page_offset; src_page = src_node->page + (src >> PAGE_CACHE_SHIFT); src &= ~PAGE_CACHE_MASK; dst_page = dst_node->page + (dst >> PAGE_CACHE_SHIFT); dst &= ~PAGE_CACHE_MASK; if (src == dst) { l = min_t(int, len, PAGE_CACHE_SIZE - src); memcpy(kmap(*dst_page) + src, kmap(*src_page) + src, l); kunmap(*src_page); set_page_dirty(*dst_page); kunmap(*dst_page); while ((len -= l) != 0) { l = min_t(int, len, PAGE_CACHE_SIZE); memcpy(kmap(*++dst_page), kmap(*++src_page), l); kunmap(*src_page); set_page_dirty(*dst_page); kunmap(*dst_page); } } else { void *src_ptr, *dst_ptr; do { src_ptr = kmap(*src_page) + src; dst_ptr = kmap(*dst_page) + dst; if (PAGE_CACHE_SIZE - src < PAGE_CACHE_SIZE - dst) { l = PAGE_CACHE_SIZE - src; src = 0; dst += l; } else { l = PAGE_CACHE_SIZE - dst; src += l; dst = 0; } l = min(len, l); memcpy(dst_ptr, src_ptr, l); kunmap(*src_page); set_page_dirty(*dst_page); kunmap(*dst_page); if (!dst) dst_page++; else src_page++; } while ((len -= l)); } } void hfs_bnode_move(struct hfs_bnode *node, int dst, int src, int len) { struct page **src_page, **dst_page; int l; hfs_dbg(BNODE_MOD, "movebytes: %u,%u,%u\n", dst, src, len); if (!len) return; src += node->page_offset; dst += node->page_offset; if (dst > src) { src += len - 1; src_page = node->page + (src >> PAGE_CACHE_SHIFT); src = (src & ~PAGE_CACHE_MASK) + 1; dst += len - 1; dst_page = node->page + (dst >> PAGE_CACHE_SHIFT); dst = (dst & ~PAGE_CACHE_MASK) + 1; if (src == dst) { while (src < len) { memmove(kmap(*dst_page), kmap(*src_page), src); kunmap(*src_page); set_page_dirty(*dst_page); kunmap(*dst_page); len -= src; src = PAGE_CACHE_SIZE; src_page--; dst_page--; } src -= len; memmove(kmap(*dst_page) + src, kmap(*src_page) + src, len); kunmap(*src_page); set_page_dirty(*dst_page); kunmap(*dst_page); } else { void *src_ptr, *dst_ptr; do { src_ptr = kmap(*src_page) + src; dst_ptr = kmap(*dst_page) + dst; if (src < dst) { l = src; src = PAGE_CACHE_SIZE; dst -= l; } else { l = dst; src -= l; dst = PAGE_CACHE_SIZE; } l = min(len, l); memmove(dst_ptr - l, src_ptr - l, l); kunmap(*src_page); set_page_dirty(*dst_page); kunmap(*dst_page); if (dst == PAGE_CACHE_SIZE) dst_page--; else src_page--; } while ((len -= l)); } } else { src_page = node->page + (src >> PAGE_CACHE_SHIFT); src &= ~PAGE_CACHE_MASK; dst_page = node->page + (dst >> PAGE_CACHE_SHIFT); dst &= ~PAGE_CACHE_MASK; if (src == dst) { l = min_t(int, len, PAGE_CACHE_SIZE - src); memmove(kmap(*dst_page) + src, kmap(*src_page) + src, l); kunmap(*src_page); set_page_dirty(*dst_page); kunmap(*dst_page); while ((len -= l) != 0) { l = min_t(int, len, PAGE_CACHE_SIZE); memmove(kmap(*++dst_page), kmap(*++src_page), l); kunmap(*src_page); set_page_dirty(*dst_page); kunmap(*dst_page); } } else { void *src_ptr, *dst_ptr; do { src_ptr = kmap(*src_page) + src; dst_ptr = kmap(*dst_page) + dst; if (PAGE_CACHE_SIZE - src < PAGE_CACHE_SIZE - dst) { l = PAGE_CACHE_SIZE - src; src = 0; dst += l; } else { l = PAGE_CACHE_SIZE - dst; src += l; dst = 0; } l = min(len, l); memmove(dst_ptr, src_ptr, l); kunmap(*src_page); set_page_dirty(*dst_page); kunmap(*dst_page); if (!dst) dst_page++; else src_page++; } while ((len -= l)); } } } void hfs_bnode_dump(struct hfs_bnode *node) { struct hfs_bnode_desc desc; __be32 cnid; int i, off, key_off; hfs_dbg(BNODE_MOD, "bnode: %d\n", node->this); hfs_bnode_read(node, &desc, 0, sizeof(desc)); hfs_dbg(BNODE_MOD, "%d, %d, %d, %d, %d\n", be32_to_cpu(desc.next), be32_to_cpu(desc.prev), desc.type, desc.height, be16_to_cpu(desc.num_recs)); off = node->tree->node_size - 2; for (i = be16_to_cpu(desc.num_recs); i >= 0; off -= 2, i--) { key_off = hfs_bnode_read_u16(node, off); hfs_dbg(BNODE_MOD, " %d", key_off); if (i && node->type == HFS_NODE_INDEX) { int tmp; if (node->tree->attributes & HFS_TREE_VARIDXKEYS || node->tree->cnid == HFSPLUS_ATTR_CNID) tmp = hfs_bnode_read_u16(node, key_off) + 2; else tmp = node->tree->max_key_len + 2; hfs_dbg_cont(BNODE_MOD, " (%d", tmp); hfs_bnode_read(node, &cnid, key_off + tmp, 4); hfs_dbg_cont(BNODE_MOD, ",%d)", be32_to_cpu(cnid)); } else if (i && node->type == HFS_NODE_LEAF) { int tmp; tmp = hfs_bnode_read_u16(node, key_off); hfs_dbg_cont(BNODE_MOD, " (%d)", tmp); } } hfs_dbg_cont(BNODE_MOD, "\n"); } void hfs_bnode_unlink(struct hfs_bnode *node) { struct hfs_btree *tree; struct hfs_bnode *tmp; __be32 cnid; tree = node->tree; if (node->prev) { tmp = hfs_bnode_find(tree, node->prev); if (IS_ERR(tmp)) return; tmp->next = node->next; cnid = cpu_to_be32(tmp->next); hfs_bnode_write(tmp, &cnid, offsetof(struct hfs_bnode_desc, next), 4); hfs_bnode_put(tmp); } else if (node->type == HFS_NODE_LEAF) tree->leaf_head = node->next; if (node->next) { tmp = hfs_bnode_find(tree, node->next); if (IS_ERR(tmp)) return; tmp->prev = node->prev; cnid = cpu_to_be32(tmp->prev); hfs_bnode_write(tmp, &cnid, offsetof(struct hfs_bnode_desc, prev), 4); hfs_bnode_put(tmp); } else if (node->type == HFS_NODE_LEAF) tree->leaf_tail = node->prev; /* move down? */ if (!node->prev && !node->next) hfs_dbg(BNODE_MOD, "hfs_btree_del_level\n"); if (!node->parent) { tree->root = 0; tree->depth = 0; } set_bit(HFS_BNODE_DELETED, &node->flags); } static inline int hfs_bnode_hash(u32 num) { num = (num >> 16) + num; num += num >> 8; return num & (NODE_HASH_SIZE - 1); } struct hfs_bnode *hfs_bnode_findhash(struct hfs_btree *tree, u32 cnid) { struct hfs_bnode *node; if (cnid >= tree->node_count) { pr_err("request for non-existent node %d in B*Tree\n", cnid); return NULL; } for (node = tree->node_hash[hfs_bnode_hash(cnid)]; node; node = node->next_hash) if (node->this == cnid) return node; return NULL; } static struct hfs_bnode *__hfs_bnode_create(struct hfs_btree *tree, u32 cnid) { struct super_block *sb; struct hfs_bnode *node, *node2; struct address_space *mapping; struct page *page; int size, block, i, hash; loff_t off; if (cnid >= tree->node_count) { pr_err("request for non-existent node %d in B*Tree\n", cnid); return NULL; } sb = tree->inode->i_sb; size = sizeof(struct hfs_bnode) + tree->pages_per_bnode * sizeof(struct page *); node = kzalloc(size, GFP_KERNEL); if (!node) return NULL; node->tree = tree; node->this = cnid; set_bit(HFS_BNODE_NEW, &node->flags); atomic_set(&node->refcnt, 1); hfs_dbg(BNODE_REFS, "new_node(%d:%d): 1\n", node->tree->cnid, node->this); init_waitqueue_head(&node->lock_wq); spin_lock(&tree->hash_lock); node2 = hfs_bnode_findhash(tree, cnid); if (!node2) { hash = hfs_bnode_hash(cnid); node->next_hash = tree->node_hash[hash]; tree->node_hash[hash] = node; tree->node_hash_cnt++; } else { spin_unlock(&tree->hash_lock); kfree(node); wait_event(node2->lock_wq, !test_bit(HFS_BNODE_NEW, &node2->flags)); return node2; } spin_unlock(&tree->hash_lock); mapping = tree->inode->i_mapping; off = (loff_t)cnid << tree->node_size_shift; block = off >> PAGE_CACHE_SHIFT; node->page_offset = off & ~PAGE_CACHE_MASK; for (i = 0; i < tree->pages_per_bnode; block++, i++) { page = read_mapping_page(mapping, block, NULL); if (IS_ERR(page)) goto fail; if (PageError(page)) { page_cache_release(page); goto fail; } node->page[i] = page; } return node; fail: set_bit(HFS_BNODE_ERROR, &node->flags); return node; } void hfs_bnode_unhash(struct hfs_bnode *node) { struct hfs_bnode **p; hfs_dbg(BNODE_REFS, "remove_node(%d:%d): %d\n", node->tree->cnid, node->this, atomic_read(&node->refcnt)); for (p = &node->tree->node_hash[hfs_bnode_hash(node->this)]; *p && *p != node; p = &(*p)->next_hash) ; BUG_ON(!*p); *p = node->next_hash; node->tree->node_hash_cnt--; } /* Load a particular node out of a tree */ struct hfs_bnode *hfs_bnode_find(struct hfs_btree *tree, u32 num) { struct hfs_bnode *node; struct hfs_bnode_desc *desc; int i, rec_off, off, next_off; int entry_size, key_size; spin_lock(&tree->hash_lock); node = hfs_bnode_findhash(tree, num); if (node) { hfs_bnode_get(node); spin_unlock(&tree->hash_lock); wait_event(node->lock_wq, !test_bit(HFS_BNODE_NEW, &node->flags)); if (test_bit(HFS_BNODE_ERROR, &node->flags)) goto node_error; return node; } spin_unlock(&tree->hash_lock); node = __hfs_bnode_create(tree, num); if (!node) return ERR_PTR(-ENOMEM); if (test_bit(HFS_BNODE_ERROR, &node->flags)) goto node_error; if (!test_bit(HFS_BNODE_NEW, &node->flags)) return node; desc = (struct hfs_bnode_desc *)(kmap(node->page[0]) + node->page_offset); node->prev = be32_to_cpu(desc->prev); node->next = be32_to_cpu(desc->next); node->num_recs = be16_to_cpu(desc->num_recs); node->type = desc->type; node->height = desc->height; kunmap(node->page[0]); switch (node->type) { case HFS_NODE_HEADER: case HFS_NODE_MAP: if (node->height != 0) goto node_error; break; case HFS_NODE_LEAF: if (node->height != 1) goto node_error; break; case HFS_NODE_INDEX: if (node->height <= 1 || node->height > tree->depth) goto node_error; break; default: goto node_error; } rec_off = tree->node_size - 2; off = hfs_bnode_read_u16(node, rec_off); if (off != sizeof(struct hfs_bnode_desc)) goto node_error; for (i = 1; i <= node->num_recs; off = next_off, i++) { rec_off -= 2; next_off = hfs_bnode_read_u16(node, rec_off); if (next_off <= off || next_off > tree->node_size || next_off & 1) goto node_error; entry_size = next_off - off; if (node->type != HFS_NODE_INDEX && node->type != HFS_NODE_LEAF) continue; key_size = hfs_bnode_read_u16(node, off) + 2; if (key_size >= entry_size || key_size & 1) goto node_error; } clear_bit(HFS_BNODE_NEW, &node->flags); wake_up(&node->lock_wq); return node; node_error: set_bit(HFS_BNODE_ERROR, &node->flags); clear_bit(HFS_BNODE_NEW, &node->flags); wake_up(&node->lock_wq); hfs_bnode_put(node); return ERR_PTR(-EIO); } void hfs_bnode_free(struct hfs_bnode *node) { int i; for (i = 0; i < node->tree->pages_per_bnode; i++) if (node->page[i]) page_cache_release(node->page[i]); kfree(node); } struct hfs_bnode *hfs_bnode_create(struct hfs_btree *tree, u32 num) { struct hfs_bnode *node; struct page **pagep; int i; spin_lock(&tree->hash_lock); node = hfs_bnode_findhash(tree, num); spin_unlock(&tree->hash_lock); if (node) { pr_crit("new node %u already hashed?\n", num); WARN_ON(1); return node; } node = __hfs_bnode_create(tree, num); if (!node) return ERR_PTR(-ENOMEM); if (test_bit(HFS_BNODE_ERROR, &node->flags)) { hfs_bnode_put(node); return ERR_PTR(-EIO); } pagep = node->page; memset(kmap(*pagep) + node->page_offset, 0, min_t(int, PAGE_CACHE_SIZE, tree->node_size)); set_page_dirty(*pagep); kunmap(*pagep); for (i = 1; i < tree->pages_per_bnode; i++) { memset(kmap(*++pagep), 0, PAGE_CACHE_SIZE); set_page_dirty(*pagep); kunmap(*pagep); } clear_bit(HFS_BNODE_NEW, &node->flags); wake_up(&node->lock_wq); return node; } void hfs_bnode_get(struct hfs_bnode *node) { if (node) { atomic_inc(&node->refcnt); hfs_dbg(BNODE_REFS, "get_node(%d:%d): %d\n", node->tree->cnid, node->this, atomic_read(&node->refcnt)); } } /* Dispose of resources used by a node */ void hfs_bnode_put(struct hfs_bnode *node) { if (node) { struct hfs_btree *tree = node->tree; int i; hfs_dbg(BNODE_REFS, "put_node(%d:%d): %d\n", node->tree->cnid, node->this, atomic_read(&node->refcnt)); BUG_ON(!atomic_read(&node->refcnt)); if (!atomic_dec_and_lock(&node->refcnt, &tree->hash_lock)) return; for (i = 0; i < tree->pages_per_bnode; i++) { if (!node->page[i]) continue; mark_page_accessed(node->page[i]); } if (test_bit(HFS_BNODE_DELETED, &node->flags)) { hfs_bnode_unhash(node); spin_unlock(&tree->hash_lock); if (hfs_bnode_need_zeroout(tree)) hfs_bnode_clear(node, 0, tree->node_size); hfs_bmap_free(node); hfs_bnode_free(node); return; } spin_unlock(&tree->hash_lock); } } /* * Unused nodes have to be zeroed if this is the catalog tree and * a corresponding flag in the volume header is set. */ bool hfs_bnode_need_zeroout(struct hfs_btree *tree) { struct super_block *sb = tree->inode->i_sb; struct hfsplus_sb_info *sbi = HFSPLUS_SB(sb); const u32 volume_attr = be32_to_cpu(sbi->s_vhdr->attributes); return tree->cnid == HFSPLUS_CAT_CNID && volume_attr & HFSPLUS_VOL_UNUSED_NODE_FIX; }