/* * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2015 Intel Corporation. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * BSD LICENSE * * Copyright(c) 2015 Intel Corporation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #ifndef HFI1_VERBS_H #define HFI1_VERBS_H #include <linux/types.h> #include <linux/seqlock.h> #include <linux/kernel.h> #include <linux/interrupt.h> #include <linux/kref.h> #include <linux/workqueue.h> #include <linux/kthread.h> #include <linux/completion.h> #include <rdma/ib_pack.h> #include <rdma/ib_user_verbs.h> #include <rdma/ib_mad.h> struct hfi1_ctxtdata; struct hfi1_pportdata; struct hfi1_devdata; struct hfi1_packet; #include "iowait.h" #define HFI1_MAX_RDMA_ATOMIC 16 #define HFI1_GUIDS_PER_PORT 5 /* * Increment this value if any changes that break userspace ABI * compatibility are made. */ #define HFI1_UVERBS_ABI_VERSION 2 /* * Define an ib_cq_notify value that is not valid so we know when CQ * notifications are armed. */ #define IB_CQ_NONE (IB_CQ_NEXT_COMP + 1) #define IB_SEQ_NAK (3 << 29) /* AETH NAK opcode values */ #define IB_RNR_NAK 0x20 #define IB_NAK_PSN_ERROR 0x60 #define IB_NAK_INVALID_REQUEST 0x61 #define IB_NAK_REMOTE_ACCESS_ERROR 0x62 #define IB_NAK_REMOTE_OPERATIONAL_ERROR 0x63 #define IB_NAK_INVALID_RD_REQUEST 0x64 /* Flags for checking QP state (see ib_hfi1_state_ops[]) */ #define HFI1_POST_SEND_OK 0x01 #define HFI1_POST_RECV_OK 0x02 #define HFI1_PROCESS_RECV_OK 0x04 #define HFI1_PROCESS_SEND_OK 0x08 #define HFI1_PROCESS_NEXT_SEND_OK 0x10 #define HFI1_FLUSH_SEND 0x20 #define HFI1_FLUSH_RECV 0x40 #define HFI1_PROCESS_OR_FLUSH_SEND \ (HFI1_PROCESS_SEND_OK | HFI1_FLUSH_SEND) /* IB Performance Manager status values */ #define IB_PMA_SAMPLE_STATUS_DONE 0x00 #define IB_PMA_SAMPLE_STATUS_STARTED 0x01 #define IB_PMA_SAMPLE_STATUS_RUNNING 0x02 /* Mandatory IB performance counter select values. */ #define IB_PMA_PORT_XMIT_DATA cpu_to_be16(0x0001) #define IB_PMA_PORT_RCV_DATA cpu_to_be16(0x0002) #define IB_PMA_PORT_XMIT_PKTS cpu_to_be16(0x0003) #define IB_PMA_PORT_RCV_PKTS cpu_to_be16(0x0004) #define IB_PMA_PORT_XMIT_WAIT cpu_to_be16(0x0005) #define HFI1_VENDOR_IPG cpu_to_be16(0xFFA0) #define IB_BTH_REQ_ACK (1 << 31) #define IB_BTH_SOLICITED (1 << 23) #define IB_BTH_MIG_REQ (1 << 22) #define IB_GRH_VERSION 6 #define IB_GRH_VERSION_MASK 0xF #define IB_GRH_VERSION_SHIFT 28 #define IB_GRH_TCLASS_MASK 0xFF #define IB_GRH_TCLASS_SHIFT 20 #define IB_GRH_FLOW_MASK 0xFFFFF #define IB_GRH_FLOW_SHIFT 0 #define IB_GRH_NEXT_HDR 0x1B #define IB_DEFAULT_GID_PREFIX cpu_to_be64(0xfe80000000000000ULL) /* flags passed by hfi1_ib_rcv() */ enum { HFI1_HAS_GRH = (1 << 0), }; struct ib_reth { __be64 vaddr; __be32 rkey; __be32 length; } __packed; struct ib_atomic_eth { __be32 vaddr[2]; /* unaligned so access as 2 32-bit words */ __be32 rkey; __be64 swap_data; __be64 compare_data; } __packed; union ib_ehdrs { struct { __be32 deth[2]; __be32 imm_data; } ud; struct { struct ib_reth reth; __be32 imm_data; } rc; struct { __be32 aeth; __be32 atomic_ack_eth[2]; } at; __be32 imm_data; __be32 aeth; struct ib_atomic_eth atomic_eth; } __packed; struct hfi1_other_headers { __be32 bth[3]; union ib_ehdrs u; } __packed; /* * Note that UD packets with a GRH header are 8+40+12+8 = 68 bytes * long (72 w/ imm_data). Only the first 56 bytes of the IB header * will be in the eager header buffer. The remaining 12 or 16 bytes * are in the data buffer. */ struct hfi1_ib_header { __be16 lrh[4]; union { struct { struct ib_grh grh; struct hfi1_other_headers oth; } l; struct hfi1_other_headers oth; } u; } __packed; struct ahg_ib_header { struct sdma_engine *sde; u32 ahgdesc[2]; u16 tx_flags; u8 ahgcount; u8 ahgidx; struct hfi1_ib_header ibh; }; struct hfi1_pio_header { __le64 pbc; struct hfi1_ib_header hdr; } __packed; /* * used for force cacheline alignment for AHG */ struct tx_pio_header { struct hfi1_pio_header phdr; } ____cacheline_aligned; /* * There is one struct hfi1_mcast for each multicast GID. * All attached QPs are then stored as a list of * struct hfi1_mcast_qp. */ struct hfi1_mcast_qp { struct list_head list; struct hfi1_qp *qp; }; struct hfi1_mcast { struct rb_node rb_node; union ib_gid mgid; struct list_head qp_list; wait_queue_head_t wait; atomic_t refcount; int n_attached; }; /* Protection domain */ struct hfi1_pd { struct ib_pd ibpd; int user; /* non-zero if created from user space */ }; /* Address Handle */ struct hfi1_ah { struct ib_ah ibah; struct ib_ah_attr attr; atomic_t refcount; }; /* * This structure is used by hfi1_mmap() to validate an offset * when an mmap() request is made. The vm_area_struct then uses * this as its vm_private_data. */ struct hfi1_mmap_info { struct list_head pending_mmaps; struct ib_ucontext *context; void *obj; __u64 offset; struct kref ref; unsigned size; }; /* * This structure is used to contain the head pointer, tail pointer, * and completion queue entries as a single memory allocation so * it can be mmap'ed into user space. */ struct hfi1_cq_wc { u32 head; /* index of next entry to fill */ u32 tail; /* index of next ib_poll_cq() entry */ union { /* these are actually size ibcq.cqe + 1 */ struct ib_uverbs_wc uqueue[0]; struct ib_wc kqueue[0]; }; }; /* * The completion queue structure. */ struct hfi1_cq { struct ib_cq ibcq; struct kthread_work comptask; struct hfi1_devdata *dd; spinlock_t lock; /* protect changes in this struct */ u8 notify; u8 triggered; struct hfi1_cq_wc *queue; struct hfi1_mmap_info *ip; }; /* * A segment is a linear region of low physical memory. * Used by the verbs layer. */ struct hfi1_seg { void *vaddr; size_t length; }; /* The number of hfi1_segs that fit in a page. */ #define HFI1_SEGSZ (PAGE_SIZE / sizeof(struct hfi1_seg)) struct hfi1_segarray { struct hfi1_seg segs[HFI1_SEGSZ]; }; struct hfi1_mregion { struct ib_pd *pd; /* shares refcnt of ibmr.pd */ u64 user_base; /* User's address for this region */ u64 iova; /* IB start address of this region */ size_t length; u32 lkey; u32 offset; /* offset (bytes) to start of region */ int access_flags; u32 max_segs; /* number of hfi1_segs in all the arrays */ u32 mapsz; /* size of the map array */ u8 page_shift; /* 0 - non unform/non powerof2 sizes */ u8 lkey_published; /* in global table */ struct completion comp; /* complete when refcount goes to zero */ atomic_t refcount; struct hfi1_segarray *map[0]; /* the segments */ }; /* * These keep track of the copy progress within a memory region. * Used by the verbs layer. */ struct hfi1_sge { struct hfi1_mregion *mr; void *vaddr; /* kernel virtual address of segment */ u32 sge_length; /* length of the SGE */ u32 length; /* remaining length of the segment */ u16 m; /* current index: mr->map[m] */ u16 n; /* current index: mr->map[m]->segs[n] */ }; /* Memory region */ struct hfi1_mr { struct ib_mr ibmr; struct ib_umem *umem; struct hfi1_mregion mr; /* must be last */ }; /* * Send work request queue entry. * The size of the sg_list is determined when the QP is created and stored * in qp->s_max_sge. */ struct hfi1_swqe { union { struct ib_send_wr wr; /* don't use wr.sg_list */ struct ib_rdma_wr rdma_wr; struct ib_atomic_wr atomic_wr; struct ib_ud_wr ud_wr; }; u32 psn; /* first packet sequence number */ u32 lpsn; /* last packet sequence number */ u32 ssn; /* send sequence number */ u32 length; /* total length of data in sg_list */ struct hfi1_sge sg_list[0]; }; /* * Receive work request queue entry. * The size of the sg_list is determined when the QP (or SRQ) is created * and stored in qp->r_rq.max_sge (or srq->rq.max_sge). */ struct hfi1_rwqe { u64 wr_id; u8 num_sge; struct ib_sge sg_list[0]; }; /* * This structure is used to contain the head pointer, tail pointer, * and receive work queue entries as a single memory allocation so * it can be mmap'ed into user space. * Note that the wq array elements are variable size so you can't * just index into the array to get the N'th element; * use get_rwqe_ptr() instead. */ struct hfi1_rwq { u32 head; /* new work requests posted to the head */ u32 tail; /* receives pull requests from here. */ struct hfi1_rwqe wq[0]; }; struct hfi1_rq { struct hfi1_rwq *wq; u32 size; /* size of RWQE array */ u8 max_sge; /* protect changes in this struct */ spinlock_t lock ____cacheline_aligned_in_smp; }; struct hfi1_srq { struct ib_srq ibsrq; struct hfi1_rq rq; struct hfi1_mmap_info *ip; /* send signal when number of RWQEs < limit */ u32 limit; }; struct hfi1_sge_state { struct hfi1_sge *sg_list; /* next SGE to be used if any */ struct hfi1_sge sge; /* progress state for the current SGE */ u32 total_len; u8 num_sge; }; /* * This structure holds the information that the send tasklet needs * to send a RDMA read response or atomic operation. */ struct hfi1_ack_entry { u8 opcode; u8 sent; u32 psn; u32 lpsn; union { struct hfi1_sge rdma_sge; u64 atomic_data; }; }; /* * Variables prefixed with s_ are for the requester (sender). * Variables prefixed with r_ are for the responder (receiver). * Variables prefixed with ack_ are for responder replies. * * Common variables are protected by both r_rq.lock and s_lock in that order * which only happens in modify_qp() or changing the QP 'state'. */ struct hfi1_qp { struct ib_qp ibqp; /* read mostly fields above and below */ struct ib_ah_attr remote_ah_attr; struct ib_ah_attr alt_ah_attr; struct hfi1_qp __rcu *next; /* link list for QPN hash table */ struct hfi1_swqe *s_wq; /* send work queue */ struct hfi1_mmap_info *ip; struct ahg_ib_header *s_hdr; /* next packet header to send */ u8 s_sc; /* SC[0..4] for next packet */ unsigned long timeout_jiffies; /* computed from timeout */ enum ib_mtu path_mtu; int srate_mbps; /* s_srate (below) converted to Mbit/s */ u32 remote_qpn; u32 pmtu; /* decoded from path_mtu */ u32 qkey; /* QKEY for this QP (for UD or RD) */ u32 s_size; /* send work queue size */ u32 s_rnr_timeout; /* number of milliseconds for RNR timeout */ u32 s_ahgpsn; /* set to the psn in the copy of the header */ u8 state; /* QP state */ u8 allowed_ops; /* high order bits of allowed opcodes */ u8 qp_access_flags; u8 alt_timeout; /* Alternate path timeout for this QP */ u8 timeout; /* Timeout for this QP */ u8 s_srate; u8 s_mig_state; u8 port_num; u8 s_pkey_index; /* PKEY index to use */ u8 s_alt_pkey_index; /* Alternate path PKEY index to use */ u8 r_max_rd_atomic; /* max number of RDMA read/atomic to receive */ u8 s_max_rd_atomic; /* max number of RDMA read/atomic to send */ u8 s_retry_cnt; /* number of times to retry */ u8 s_rnr_retry_cnt; u8 r_min_rnr_timer; /* retry timeout value for RNR NAKs */ u8 s_max_sge; /* size of s_wq->sg_list */ u8 s_draining; /* start of read/write fields */ atomic_t refcount ____cacheline_aligned_in_smp; wait_queue_head_t wait; struct hfi1_ack_entry s_ack_queue[HFI1_MAX_RDMA_ATOMIC + 1] ____cacheline_aligned_in_smp; struct hfi1_sge_state s_rdma_read_sge; spinlock_t r_lock ____cacheline_aligned_in_smp; /* used for APM */ unsigned long r_aflags; u64 r_wr_id; /* ID for current receive WQE */ u32 r_ack_psn; /* PSN for next ACK or atomic ACK */ u32 r_len; /* total length of r_sge */ u32 r_rcv_len; /* receive data len processed */ u32 r_psn; /* expected rcv packet sequence number */ u32 r_msn; /* message sequence number */ u8 r_state; /* opcode of last packet received */ u8 r_flags; u8 r_head_ack_queue; /* index into s_ack_queue[] */ struct list_head rspwait; /* link for waiting to respond */ struct hfi1_sge_state r_sge; /* current receive data */ struct hfi1_rq r_rq; /* receive work queue */ spinlock_t s_lock ____cacheline_aligned_in_smp; struct hfi1_sge_state *s_cur_sge; u32 s_flags; struct hfi1_swqe *s_wqe; struct hfi1_sge_state s_sge; /* current send request data */ struct hfi1_mregion *s_rdma_mr; struct sdma_engine *s_sde; /* current sde */ u32 s_cur_size; /* size of send packet in bytes */ u32 s_len; /* total length of s_sge */ u32 s_rdma_read_len; /* total length of s_rdma_read_sge */ u32 s_next_psn; /* PSN for next request */ u32 s_last_psn; /* last response PSN processed */ u32 s_sending_psn; /* lowest PSN that is being sent */ u32 s_sending_hpsn; /* highest PSN that is being sent */ u32 s_psn; /* current packet sequence number */ u32 s_ack_rdma_psn; /* PSN for sending RDMA read responses */ u32 s_ack_psn; /* PSN for acking sends and RDMA writes */ u32 s_head; /* new entries added here */ u32 s_tail; /* next entry to process */ u32 s_cur; /* current work queue entry */ u32 s_acked; /* last un-ACK'ed entry */ u32 s_last; /* last completed entry */ u32 s_ssn; /* SSN of tail entry */ u32 s_lsn; /* limit sequence number (credit) */ u16 s_hdrwords; /* size of s_hdr in 32 bit words */ u16 s_rdma_ack_cnt; s8 s_ahgidx; u8 s_state; /* opcode of last packet sent */ u8 s_ack_state; /* opcode of packet to ACK */ u8 s_nak_state; /* non-zero if NAK is pending */ u8 r_nak_state; /* non-zero if NAK is pending */ u8 s_retry; /* requester retry counter */ u8 s_rnr_retry; /* requester RNR retry counter */ u8 s_num_rd_atomic; /* number of RDMA read/atomic pending */ u8 s_tail_ack_queue; /* index into s_ack_queue[] */ struct hfi1_sge_state s_ack_rdma_sge; struct timer_list s_timer; struct iowait s_iowait; struct hfi1_sge r_sg_list[0] /* verified SGEs */ ____cacheline_aligned_in_smp; }; /* * Atomic bit definitions for r_aflags. */ #define HFI1_R_WRID_VALID 0 #define HFI1_R_REWIND_SGE 1 /* * Bit definitions for r_flags. */ #define HFI1_R_REUSE_SGE 0x01 #define HFI1_R_RDMAR_SEQ 0x02 #define HFI1_R_RSP_NAK 0x04 #define HFI1_R_RSP_SEND 0x08 #define HFI1_R_COMM_EST 0x10 /* * Bit definitions for s_flags. * * HFI1_S_SIGNAL_REQ_WR - set if QP send WRs contain completion signaled * HFI1_S_BUSY - send tasklet is processing the QP * HFI1_S_TIMER - the RC retry timer is active * HFI1_S_ACK_PENDING - an ACK is waiting to be sent after RDMA read/atomics * HFI1_S_WAIT_FENCE - waiting for all prior RDMA read or atomic SWQEs * before processing the next SWQE * HFI1_S_WAIT_RDMAR - waiting for a RDMA read or atomic SWQE to complete * before processing the next SWQE * HFI1_S_WAIT_RNR - waiting for RNR timeout * HFI1_S_WAIT_SSN_CREDIT - waiting for RC credits to process next SWQE * HFI1_S_WAIT_DMA - waiting for send DMA queue to drain before generating * next send completion entry not via send DMA * HFI1_S_WAIT_PIO - waiting for a send buffer to be available * HFI1_S_WAIT_TX - waiting for a struct verbs_txreq to be available * HFI1_S_WAIT_DMA_DESC - waiting for DMA descriptors to be available * HFI1_S_WAIT_KMEM - waiting for kernel memory to be available * HFI1_S_WAIT_PSN - waiting for a packet to exit the send DMA queue * HFI1_S_WAIT_ACK - waiting for an ACK packet before sending more requests * HFI1_S_SEND_ONE - send one packet, request ACK, then wait for ACK * HFI1_S_ECN - a BECN was queued to the send engine */ #define HFI1_S_SIGNAL_REQ_WR 0x0001 #define HFI1_S_BUSY 0x0002 #define HFI1_S_TIMER 0x0004 #define HFI1_S_RESP_PENDING 0x0008 #define HFI1_S_ACK_PENDING 0x0010 #define HFI1_S_WAIT_FENCE 0x0020 #define HFI1_S_WAIT_RDMAR 0x0040 #define HFI1_S_WAIT_RNR 0x0080 #define HFI1_S_WAIT_SSN_CREDIT 0x0100 #define HFI1_S_WAIT_DMA 0x0200 #define HFI1_S_WAIT_PIO 0x0400 #define HFI1_S_WAIT_TX 0x0800 #define HFI1_S_WAIT_DMA_DESC 0x1000 #define HFI1_S_WAIT_KMEM 0x2000 #define HFI1_S_WAIT_PSN 0x4000 #define HFI1_S_WAIT_ACK 0x8000 #define HFI1_S_SEND_ONE 0x10000 #define HFI1_S_UNLIMITED_CREDIT 0x20000 #define HFI1_S_AHG_VALID 0x40000 #define HFI1_S_AHG_CLEAR 0x80000 #define HFI1_S_ECN 0x100000 /* * Wait flags that would prevent any packet type from being sent. */ #define HFI1_S_ANY_WAIT_IO (HFI1_S_WAIT_PIO | HFI1_S_WAIT_TX | \ HFI1_S_WAIT_DMA_DESC | HFI1_S_WAIT_KMEM) /* * Wait flags that would prevent send work requests from making progress. */ #define HFI1_S_ANY_WAIT_SEND (HFI1_S_WAIT_FENCE | HFI1_S_WAIT_RDMAR | \ HFI1_S_WAIT_RNR | HFI1_S_WAIT_SSN_CREDIT | HFI1_S_WAIT_DMA | \ HFI1_S_WAIT_PSN | HFI1_S_WAIT_ACK) #define HFI1_S_ANY_WAIT (HFI1_S_ANY_WAIT_IO | HFI1_S_ANY_WAIT_SEND) #define HFI1_PSN_CREDIT 16 /* * Since struct hfi1_swqe is not a fixed size, we can't simply index into * struct hfi1_qp.s_wq. This function does the array index computation. */ static inline struct hfi1_swqe *get_swqe_ptr(struct hfi1_qp *qp, unsigned n) { return (struct hfi1_swqe *)((char *)qp->s_wq + (sizeof(struct hfi1_swqe) + qp->s_max_sge * sizeof(struct hfi1_sge)) * n); } /* * Since struct hfi1_rwqe is not a fixed size, we can't simply index into * struct hfi1_rwq.wq. This function does the array index computation. */ static inline struct hfi1_rwqe *get_rwqe_ptr(struct hfi1_rq *rq, unsigned n) { return (struct hfi1_rwqe *) ((char *) rq->wq->wq + (sizeof(struct hfi1_rwqe) + rq->max_sge * sizeof(struct ib_sge)) * n); } #define MAX_LKEY_TABLE_BITS 23 struct hfi1_lkey_table { spinlock_t lock; /* protect changes in this struct */ u32 next; /* next unused index (speeds search) */ u32 gen; /* generation count */ u32 max; /* size of the table */ struct hfi1_mregion __rcu **table; }; struct hfi1_opcode_stats { u64 n_packets; /* number of packets */ u64 n_bytes; /* total number of bytes */ }; struct hfi1_opcode_stats_perctx { struct hfi1_opcode_stats stats[256]; }; static inline void inc_opstats( u32 tlen, struct hfi1_opcode_stats *stats) { #ifdef CONFIG_DEBUG_FS stats->n_bytes += tlen; stats->n_packets++; #endif } struct hfi1_ibport { struct hfi1_qp __rcu *qp[2]; struct ib_mad_agent *send_agent; /* agent for SMI (traps) */ struct hfi1_ah *sm_ah; struct hfi1_ah *smi_ah; struct rb_root mcast_tree; spinlock_t lock; /* protect changes in this struct */ /* non-zero when timer is set */ unsigned long mkey_lease_timeout; unsigned long trap_timeout; __be64 gid_prefix; /* in network order */ __be64 mkey; __be64 guids[HFI1_GUIDS_PER_PORT - 1]; /* writable GUIDs */ u64 tid; /* TID for traps */ u64 n_rc_resends; u64 n_seq_naks; u64 n_rdma_seq; u64 n_rnr_naks; u64 n_other_naks; u64 n_loop_pkts; u64 n_pkt_drops; u64 n_vl15_dropped; u64 n_rc_timeouts; u64 n_dmawait; u64 n_unaligned; u64 n_rc_dupreq; u64 n_rc_seqnak; /* Hot-path per CPU counters to avoid cacheline trading to update */ u64 z_rc_acks; u64 z_rc_qacks; u64 z_rc_delayed_comp; u64 __percpu *rc_acks; u64 __percpu *rc_qacks; u64 __percpu *rc_delayed_comp; u32 port_cap_flags; u32 pma_sample_start; u32 pma_sample_interval; __be16 pma_counter_select[5]; u16 pma_tag; u16 pkey_violations; u16 qkey_violations; u16 mkey_violations; u16 mkey_lease_period; u16 sm_lid; u16 repress_traps; u8 sm_sl; u8 mkeyprot; u8 subnet_timeout; u8 vl_high_limit; /* the first 16 entries are sl_to_vl for !OPA */ u8 sl_to_sc[32]; u8 sc_to_sl[32]; }; struct hfi1_qp_ibdev; struct hfi1_ibdev { struct ib_device ibdev; struct list_head pending_mmaps; spinlock_t mmap_offset_lock; /* protect mmap_offset */ u32 mmap_offset; struct hfi1_mregion __rcu *dma_mr; struct hfi1_qp_ibdev *qp_dev; /* QP numbers are shared by all IB ports */ struct hfi1_lkey_table lk_table; /* protect wait lists */ seqlock_t iowait_lock; struct list_head txwait; /* list for wait verbs_txreq */ struct list_head memwait; /* list for wait kernel memory */ struct list_head txreq_free; struct kmem_cache *verbs_txreq_cache; struct timer_list mem_timer; /* other waiters */ spinlock_t pending_lock; u64 n_piowait; u64 n_txwait; u64 n_kmem_wait; u64 n_send_schedule; u32 n_pds_allocated; /* number of PDs allocated for device */ spinlock_t n_pds_lock; u32 n_ahs_allocated; /* number of AHs allocated for device */ spinlock_t n_ahs_lock; u32 n_cqs_allocated; /* number of CQs allocated for device */ spinlock_t n_cqs_lock; u32 n_qps_allocated; /* number of QPs allocated for device */ spinlock_t n_qps_lock; u32 n_srqs_allocated; /* number of SRQs allocated for device */ spinlock_t n_srqs_lock; u32 n_mcast_grps_allocated; /* number of mcast groups allocated */ spinlock_t n_mcast_grps_lock; #ifdef CONFIG_DEBUG_FS /* per HFI debugfs */ struct dentry *hfi1_ibdev_dbg; /* per HFI symlinks to above */ struct dentry *hfi1_ibdev_link; #endif }; struct hfi1_verbs_counters { u64 symbol_error_counter; u64 link_error_recovery_counter; u64 link_downed_counter; u64 port_rcv_errors; u64 port_rcv_remphys_errors; u64 port_xmit_discards; u64 port_xmit_data; u64 port_rcv_data; u64 port_xmit_packets; u64 port_rcv_packets; u32 local_link_integrity_errors; u32 excessive_buffer_overrun_errors; u32 vl15_dropped; }; static inline struct hfi1_mr *to_imr(struct ib_mr *ibmr) { return container_of(ibmr, struct hfi1_mr, ibmr); } static inline struct hfi1_pd *to_ipd(struct ib_pd *ibpd) { return container_of(ibpd, struct hfi1_pd, ibpd); } static inline struct hfi1_ah *to_iah(struct ib_ah *ibah) { return container_of(ibah, struct hfi1_ah, ibah); } static inline struct hfi1_cq *to_icq(struct ib_cq *ibcq) { return container_of(ibcq, struct hfi1_cq, ibcq); } static inline struct hfi1_srq *to_isrq(struct ib_srq *ibsrq) { return container_of(ibsrq, struct hfi1_srq, ibsrq); } static inline struct hfi1_qp *to_iqp(struct ib_qp *ibqp) { return container_of(ibqp, struct hfi1_qp, ibqp); } static inline struct hfi1_ibdev *to_idev(struct ib_device *ibdev) { return container_of(ibdev, struct hfi1_ibdev, ibdev); } /* * Send if not busy or waiting for I/O and either * a RC response is pending or we can process send work requests. */ static inline int hfi1_send_ok(struct hfi1_qp *qp) { return !(qp->s_flags & (HFI1_S_BUSY | HFI1_S_ANY_WAIT_IO)) && (qp->s_hdrwords || (qp->s_flags & HFI1_S_RESP_PENDING) || !(qp->s_flags & HFI1_S_ANY_WAIT_SEND)); } /* * This must be called with s_lock held. */ void hfi1_schedule_send(struct hfi1_qp *qp); void hfi1_bad_pqkey(struct hfi1_ibport *ibp, __be16 trap_num, u32 key, u32 sl, u32 qp1, u32 qp2, __be16 lid1, __be16 lid2); void hfi1_cap_mask_chg(struct hfi1_ibport *ibp); void hfi1_sys_guid_chg(struct hfi1_ibport *ibp); void hfi1_node_desc_chg(struct hfi1_ibport *ibp); int hfi1_process_mad(struct ib_device *ibdev, int mad_flags, u8 port, const struct ib_wc *in_wc, const struct ib_grh *in_grh, const struct ib_mad_hdr *in_mad, size_t in_mad_size, struct ib_mad_hdr *out_mad, size_t *out_mad_size, u16 *out_mad_pkey_index); int hfi1_create_agents(struct hfi1_ibdev *dev); void hfi1_free_agents(struct hfi1_ibdev *dev); /* * The PSN_MASK and PSN_SHIFT allow for * 1) comparing two PSNs * 2) returning the PSN with any upper bits masked * 3) returning the difference between to PSNs * * The number of significant bits in the PSN must * necessarily be at least one bit less than * the container holding the PSN. */ #ifndef CONFIG_HFI1_VERBS_31BIT_PSN #define PSN_MASK 0xFFFFFF #define PSN_SHIFT 8 #else #define PSN_MASK 0x7FFFFFFF #define PSN_SHIFT 1 #endif #define PSN_MODIFY_MASK 0xFFFFFF /* Number of bits to pay attention to in the opcode for checking qp type */ #define OPCODE_QP_MASK 0xE0 /* * Compare the lower 24 bits of the msn values. * Returns an integer <, ==, or > than zero. */ static inline int cmp_msn(u32 a, u32 b) { return (((int) a) - ((int) b)) << 8; } /* * Compare two PSNs * Returns an integer <, ==, or > than zero. */ static inline int cmp_psn(u32 a, u32 b) { return (((int) a) - ((int) b)) << PSN_SHIFT; } /* * Return masked PSN */ static inline u32 mask_psn(u32 a) { return a & PSN_MASK; } /* * Return delta between two PSNs */ static inline u32 delta_psn(u32 a, u32 b) { return (((int)a - (int)b) << PSN_SHIFT) >> PSN_SHIFT; } struct hfi1_mcast *hfi1_mcast_find(struct hfi1_ibport *ibp, union ib_gid *mgid); int hfi1_multicast_attach(struct ib_qp *ibqp, union ib_gid *gid, u16 lid); int hfi1_multicast_detach(struct ib_qp *ibqp, union ib_gid *gid, u16 lid); int hfi1_mcast_tree_empty(struct hfi1_ibport *ibp); struct verbs_txreq; void hfi1_put_txreq(struct verbs_txreq *tx); int hfi1_verbs_send(struct hfi1_qp *qp, struct ahg_ib_header *ahdr, u32 hdrwords, struct hfi1_sge_state *ss, u32 len); void hfi1_copy_sge(struct hfi1_sge_state *ss, void *data, u32 length, int release); void hfi1_skip_sge(struct hfi1_sge_state *ss, u32 length, int release); void hfi1_cnp_rcv(struct hfi1_packet *packet); void hfi1_uc_rcv(struct hfi1_packet *packet); void hfi1_rc_rcv(struct hfi1_packet *packet); void hfi1_rc_hdrerr( struct hfi1_ctxtdata *rcd, struct hfi1_ib_header *hdr, u32 rcv_flags, struct hfi1_qp *qp); u8 ah_to_sc(struct ib_device *ibdev, struct ib_ah_attr *ah_attr); int hfi1_check_ah(struct ib_device *ibdev, struct ib_ah_attr *ah_attr); struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u16 dlid); void hfi1_rc_rnr_retry(unsigned long arg); void hfi1_rc_send_complete(struct hfi1_qp *qp, struct hfi1_ib_header *hdr); void hfi1_rc_error(struct hfi1_qp *qp, enum ib_wc_status err); void hfi1_ud_rcv(struct hfi1_packet *packet); int hfi1_lookup_pkey_idx(struct hfi1_ibport *ibp, u16 pkey); int hfi1_alloc_lkey(struct hfi1_mregion *mr, int dma_region); void hfi1_free_lkey(struct hfi1_mregion *mr); int hfi1_lkey_ok(struct hfi1_lkey_table *rkt, struct hfi1_pd *pd, struct hfi1_sge *isge, struct ib_sge *sge, int acc); int hfi1_rkey_ok(struct hfi1_qp *qp, struct hfi1_sge *sge, u32 len, u64 vaddr, u32 rkey, int acc); int hfi1_post_srq_receive(struct ib_srq *ibsrq, struct ib_recv_wr *wr, struct ib_recv_wr **bad_wr); struct ib_srq *hfi1_create_srq(struct ib_pd *ibpd, struct ib_srq_init_attr *srq_init_attr, struct ib_udata *udata); int hfi1_modify_srq(struct ib_srq *ibsrq, struct ib_srq_attr *attr, enum ib_srq_attr_mask attr_mask, struct ib_udata *udata); int hfi1_query_srq(struct ib_srq *ibsrq, struct ib_srq_attr *attr); int hfi1_destroy_srq(struct ib_srq *ibsrq); int hfi1_cq_init(struct hfi1_devdata *dd); void hfi1_cq_exit(struct hfi1_devdata *dd); void hfi1_cq_enter(struct hfi1_cq *cq, struct ib_wc *entry, int sig); int hfi1_poll_cq(struct ib_cq *ibcq, int num_entries, struct ib_wc *entry); struct ib_cq *hfi1_create_cq( struct ib_device *ibdev, const struct ib_cq_init_attr *attr, struct ib_ucontext *context, struct ib_udata *udata); int hfi1_destroy_cq(struct ib_cq *ibcq); int hfi1_req_notify_cq( struct ib_cq *ibcq, enum ib_cq_notify_flags notify_flags); int hfi1_resize_cq(struct ib_cq *ibcq, int cqe, struct ib_udata *udata); struct ib_mr *hfi1_get_dma_mr(struct ib_pd *pd, int acc); struct ib_mr *hfi1_reg_phys_mr(struct ib_pd *pd, struct ib_phys_buf *buffer_list, int num_phys_buf, int acc, u64 *iova_start); struct ib_mr *hfi1_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, u64 virt_addr, int mr_access_flags, struct ib_udata *udata); int hfi1_dereg_mr(struct ib_mr *ibmr); struct ib_mr *hfi1_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, u32 max_entries); struct ib_fmr *hfi1_alloc_fmr(struct ib_pd *pd, int mr_access_flags, struct ib_fmr_attr *fmr_attr); int hfi1_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list, int list_len, u64 iova); int hfi1_unmap_fmr(struct list_head *fmr_list); int hfi1_dealloc_fmr(struct ib_fmr *ibfmr); static inline void hfi1_get_mr(struct hfi1_mregion *mr) { atomic_inc(&mr->refcount); } static inline void hfi1_put_mr(struct hfi1_mregion *mr) { if (unlikely(atomic_dec_and_test(&mr->refcount))) complete(&mr->comp); } static inline void hfi1_put_ss(struct hfi1_sge_state *ss) { while (ss->num_sge) { hfi1_put_mr(ss->sge.mr); if (--ss->num_sge) ss->sge = *ss->sg_list++; } } void hfi1_release_mmap_info(struct kref *ref); struct hfi1_mmap_info *hfi1_create_mmap_info(struct hfi1_ibdev *dev, u32 size, struct ib_ucontext *context, void *obj); void hfi1_update_mmap_info(struct hfi1_ibdev *dev, struct hfi1_mmap_info *ip, u32 size, void *obj); int hfi1_mmap(struct ib_ucontext *context, struct vm_area_struct *vma); int hfi1_get_rwqe(struct hfi1_qp *qp, int wr_id_only); void hfi1_migrate_qp(struct hfi1_qp *qp); int hfi1_ruc_check_hdr(struct hfi1_ibport *ibp, struct hfi1_ib_header *hdr, int has_grh, struct hfi1_qp *qp, u32 bth0); u32 hfi1_make_grh(struct hfi1_ibport *ibp, struct ib_grh *hdr, struct ib_global_route *grh, u32 hwords, u32 nwords); void hfi1_make_ruc_header(struct hfi1_qp *qp, struct hfi1_other_headers *ohdr, u32 bth0, u32 bth2, int middle); void hfi1_do_send(struct work_struct *work); void hfi1_send_complete(struct hfi1_qp *qp, struct hfi1_swqe *wqe, enum ib_wc_status status); void hfi1_send_rc_ack(struct hfi1_ctxtdata *, struct hfi1_qp *qp, int is_fecn); int hfi1_make_rc_req(struct hfi1_qp *qp); int hfi1_make_uc_req(struct hfi1_qp *qp); int hfi1_make_ud_req(struct hfi1_qp *qp); int hfi1_register_ib_device(struct hfi1_devdata *); void hfi1_unregister_ib_device(struct hfi1_devdata *); void hfi1_ib_rcv(struct hfi1_packet *packet); unsigned hfi1_get_npkeys(struct hfi1_devdata *); int hfi1_verbs_send_dma(struct hfi1_qp *qp, struct ahg_ib_header *hdr, u32 hdrwords, struct hfi1_sge_state *ss, u32 len, u32 plen, u32 dwords, u64 pbc); int hfi1_verbs_send_pio(struct hfi1_qp *qp, struct ahg_ib_header *hdr, u32 hdrwords, struct hfi1_sge_state *ss, u32 len, u32 plen, u32 dwords, u64 pbc); struct send_context *qp_to_send_context(struct hfi1_qp *qp, u8 sc5); extern const enum ib_wc_opcode ib_hfi1_wc_opcode[]; extern const u8 hdr_len_by_opcode[]; extern const int ib_hfi1_state_ops[]; extern __be64 ib_hfi1_sys_image_guid; /* in network order */ extern unsigned int hfi1_lkey_table_size; extern unsigned int hfi1_max_cqes; extern unsigned int hfi1_max_cqs; extern unsigned int hfi1_max_qp_wrs; extern unsigned int hfi1_max_qps; extern unsigned int hfi1_max_sges; extern unsigned int hfi1_max_mcast_grps; extern unsigned int hfi1_max_mcast_qp_attached; extern unsigned int hfi1_max_srqs; extern unsigned int hfi1_max_srq_sges; extern unsigned int hfi1_max_srq_wrs; extern const u32 ib_hfi1_rnr_table[]; extern struct ib_dma_mapping_ops hfi1_dma_mapping_ops; #endif /* HFI1_VERBS_H */