/* Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com> <http://rt2x00.serialmonkey.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, see <http://www.gnu.org/licenses/>. */ /* Module: rt2500usb Abstract: rt2500usb device specific routines. Supported chipsets: RT2570. */ #include <linux/delay.h> #include <linux/etherdevice.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/usb.h> #include "rt2x00.h" #include "rt2x00usb.h" #include "rt2500usb.h" /* * Allow hardware encryption to be disabled. */ static bool modparam_nohwcrypt; module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO); MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption."); /* * Register access. * All access to the CSR registers will go through the methods * rt2500usb_register_read and rt2500usb_register_write. * BBP and RF register require indirect register access, * and use the CSR registers BBPCSR and RFCSR to achieve this. * These indirect registers work with busy bits, * and we will try maximal REGISTER_USB_BUSY_COUNT times to access * the register while taking a REGISTER_BUSY_DELAY us delay * between each attampt. When the busy bit is still set at that time, * the access attempt is considered to have failed, * and we will print an error. * If the csr_mutex is already held then the _lock variants must * be used instead. */ static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev, const unsigned int offset, u16 *value) { __le16 reg; rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ, USB_VENDOR_REQUEST_IN, offset, ®, sizeof(reg)); *value = le16_to_cpu(reg); } static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev, const unsigned int offset, u16 *value) { __le16 reg; rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ, USB_VENDOR_REQUEST_IN, offset, ®, sizeof(reg), REGISTER_TIMEOUT); *value = le16_to_cpu(reg); } static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev, const unsigned int offset, void *value, const u16 length) { rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ, USB_VENDOR_REQUEST_IN, offset, value, length); } static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev, const unsigned int offset, u16 value) { __le16 reg = cpu_to_le16(value); rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE, USB_VENDOR_REQUEST_OUT, offset, ®, sizeof(reg)); } static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev, const unsigned int offset, u16 value) { __le16 reg = cpu_to_le16(value); rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE, USB_VENDOR_REQUEST_OUT, offset, ®, sizeof(reg), REGISTER_TIMEOUT); } static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev, const unsigned int offset, void *value, const u16 length) { rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE, USB_VENDOR_REQUEST_OUT, offset, value, length); } static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev, const unsigned int offset, struct rt2x00_field16 field, u16 *reg) { unsigned int i; for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) { rt2500usb_register_read_lock(rt2x00dev, offset, reg); if (!rt2x00_get_field16(*reg, field)) return 1; udelay(REGISTER_BUSY_DELAY); } rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n", offset, *reg); *reg = ~0; return 0; } #define WAIT_FOR_BBP(__dev, __reg) \ rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg)) #define WAIT_FOR_RF(__dev, __reg) \ rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg)) static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev, const unsigned int word, const u8 value) { u16 reg; mutex_lock(&rt2x00dev->csr_mutex); /* * Wait until the BBP becomes available, afterwards we * can safely write the new data into the register. */ if (WAIT_FOR_BBP(rt2x00dev, ®)) { reg = 0; rt2x00_set_field16(®, PHY_CSR7_DATA, value); rt2x00_set_field16(®, PHY_CSR7_REG_ID, word); rt2x00_set_field16(®, PHY_CSR7_READ_CONTROL, 0); rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg); } mutex_unlock(&rt2x00dev->csr_mutex); } static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev, const unsigned int word, u8 *value) { u16 reg; mutex_lock(&rt2x00dev->csr_mutex); /* * Wait until the BBP becomes available, afterwards we * can safely write the read request into the register. * After the data has been written, we wait until hardware * returns the correct value, if at any time the register * doesn't become available in time, reg will be 0xffffffff * which means we return 0xff to the caller. */ if (WAIT_FOR_BBP(rt2x00dev, ®)) { reg = 0; rt2x00_set_field16(®, PHY_CSR7_REG_ID, word); rt2x00_set_field16(®, PHY_CSR7_READ_CONTROL, 1); rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg); if (WAIT_FOR_BBP(rt2x00dev, ®)) rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, ®); } *value = rt2x00_get_field16(reg, PHY_CSR7_DATA); mutex_unlock(&rt2x00dev->csr_mutex); } static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev, const unsigned int word, const u32 value) { u16 reg; mutex_lock(&rt2x00dev->csr_mutex); /* * Wait until the RF becomes available, afterwards we * can safely write the new data into the register. */ if (WAIT_FOR_RF(rt2x00dev, ®)) { reg = 0; rt2x00_set_field16(®, PHY_CSR9_RF_VALUE, value); rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg); reg = 0; rt2x00_set_field16(®, PHY_CSR10_RF_VALUE, value >> 16); rt2x00_set_field16(®, PHY_CSR10_RF_NUMBER_OF_BITS, 20); rt2x00_set_field16(®, PHY_CSR10_RF_IF_SELECT, 0); rt2x00_set_field16(®, PHY_CSR10_RF_BUSY, 1); rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg); rt2x00_rf_write(rt2x00dev, word, value); } mutex_unlock(&rt2x00dev->csr_mutex); } #ifdef CONFIG_RT2X00_LIB_DEBUGFS static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev, const unsigned int offset, u32 *value) { rt2500usb_register_read(rt2x00dev, offset, (u16 *)value); } static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev, const unsigned int offset, u32 value) { rt2500usb_register_write(rt2x00dev, offset, value); } static const struct rt2x00debug rt2500usb_rt2x00debug = { .owner = THIS_MODULE, .csr = { .read = _rt2500usb_register_read, .write = _rt2500usb_register_write, .flags = RT2X00DEBUGFS_OFFSET, .word_base = CSR_REG_BASE, .word_size = sizeof(u16), .word_count = CSR_REG_SIZE / sizeof(u16), }, .eeprom = { .read = rt2x00_eeprom_read, .write = rt2x00_eeprom_write, .word_base = EEPROM_BASE, .word_size = sizeof(u16), .word_count = EEPROM_SIZE / sizeof(u16), }, .bbp = { .read = rt2500usb_bbp_read, .write = rt2500usb_bbp_write, .word_base = BBP_BASE, .word_size = sizeof(u8), .word_count = BBP_SIZE / sizeof(u8), }, .rf = { .read = rt2x00_rf_read, .write = rt2500usb_rf_write, .word_base = RF_BASE, .word_size = sizeof(u32), .word_count = RF_SIZE / sizeof(u32), }, }; #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev) { u16 reg; rt2500usb_register_read(rt2x00dev, MAC_CSR19, ®); return rt2x00_get_field16(reg, MAC_CSR19_VAL7); } #ifdef CONFIG_RT2X00_LIB_LEDS static void rt2500usb_brightness_set(struct led_classdev *led_cdev, enum led_brightness brightness) { struct rt2x00_led *led = container_of(led_cdev, struct rt2x00_led, led_dev); unsigned int enabled = brightness != LED_OFF; u16 reg; rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, ®); if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) rt2x00_set_field16(®, MAC_CSR20_LINK, enabled); else if (led->type == LED_TYPE_ACTIVITY) rt2x00_set_field16(®, MAC_CSR20_ACTIVITY, enabled); rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg); } static int rt2500usb_blink_set(struct led_classdev *led_cdev, unsigned long *delay_on, unsigned long *delay_off) { struct rt2x00_led *led = container_of(led_cdev, struct rt2x00_led, led_dev); u16 reg; rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, ®); rt2x00_set_field16(®, MAC_CSR21_ON_PERIOD, *delay_on); rt2x00_set_field16(®, MAC_CSR21_OFF_PERIOD, *delay_off); rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg); return 0; } static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev, struct rt2x00_led *led, enum led_type type) { led->rt2x00dev = rt2x00dev; led->type = type; led->led_dev.brightness_set = rt2500usb_brightness_set; led->led_dev.blink_set = rt2500usb_blink_set; led->flags = LED_INITIALIZED; } #endif /* CONFIG_RT2X00_LIB_LEDS */ /* * Configuration handlers. */ /* * rt2500usb does not differentiate between shared and pairwise * keys, so we should use the same function for both key types. */ static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_crypto *crypto, struct ieee80211_key_conf *key) { u32 mask; u16 reg; enum cipher curr_cipher; if (crypto->cmd == SET_KEY) { /* * Disallow to set WEP key other than with index 0, * it is known that not work at least on some hardware. * SW crypto will be used in that case. */ if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 || key->cipher == WLAN_CIPHER_SUITE_WEP104) && key->keyidx != 0) return -EOPNOTSUPP; /* * Pairwise key will always be entry 0, but this * could collide with a shared key on the same * position... */ mask = TXRX_CSR0_KEY_ID.bit_mask; rt2500usb_register_read(rt2x00dev, TXRX_CSR0, ®); curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM); reg &= mask; if (reg && reg == mask) return -ENOSPC; reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID); key->hw_key_idx += reg ? ffz(reg) : 0; /* * Hardware requires that all keys use the same cipher * (e.g. TKIP-only, AES-only, but not TKIP+AES). * If this is not the first key, compare the cipher with the * first one and fall back to SW crypto if not the same. */ if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher) return -EOPNOTSUPP; rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx), crypto->key, sizeof(crypto->key)); /* * The driver does not support the IV/EIV generation * in hardware. However it demands the data to be provided * both separately as well as inside the frame. * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib * to ensure rt2x00lib will not strip the data from the * frame after the copy, now we must tell mac80211 * to generate the IV/EIV data. */ key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC; } /* * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate * a particular key is valid. */ rt2500usb_register_read(rt2x00dev, TXRX_CSR0, ®); rt2x00_set_field16(®, TXRX_CSR0_ALGORITHM, crypto->cipher); rt2x00_set_field16(®, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER); mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID); if (crypto->cmd == SET_KEY) mask |= 1 << key->hw_key_idx; else if (crypto->cmd == DISABLE_KEY) mask &= ~(1 << key->hw_key_idx); rt2x00_set_field16(®, TXRX_CSR0_KEY_ID, mask); rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg); return 0; } static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev, const unsigned int filter_flags) { u16 reg; /* * Start configuration steps. * Note that the version error will always be dropped * and broadcast frames will always be accepted since * there is no filter for it at this time. */ rt2500usb_register_read(rt2x00dev, TXRX_CSR2, ®); rt2x00_set_field16(®, TXRX_CSR2_DROP_CRC, !(filter_flags & FIF_FCSFAIL)); rt2x00_set_field16(®, TXRX_CSR2_DROP_PHYSICAL, !(filter_flags & FIF_PLCPFAIL)); rt2x00_set_field16(®, TXRX_CSR2_DROP_CONTROL, !(filter_flags & FIF_CONTROL)); rt2x00_set_field16(®, TXRX_CSR2_DROP_NOT_TO_ME, 1); rt2x00_set_field16(®, TXRX_CSR2_DROP_TODS, !rt2x00dev->intf_ap_count); rt2x00_set_field16(®, TXRX_CSR2_DROP_VERSION_ERROR, 1); rt2x00_set_field16(®, TXRX_CSR2_DROP_MULTICAST, !(filter_flags & FIF_ALLMULTI)); rt2x00_set_field16(®, TXRX_CSR2_DROP_BROADCAST, 0); rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg); } static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev, struct rt2x00_intf *intf, struct rt2x00intf_conf *conf, const unsigned int flags) { unsigned int bcn_preload; u16 reg; if (flags & CONFIG_UPDATE_TYPE) { /* * Enable beacon config */ bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20); rt2500usb_register_read(rt2x00dev, TXRX_CSR20, ®); rt2x00_set_field16(®, TXRX_CSR20_OFFSET, bcn_preload >> 6); rt2x00_set_field16(®, TXRX_CSR20_BCN_EXPECT_WINDOW, 2 * (conf->type != NL80211_IFTYPE_STATION)); rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg); /* * Enable synchronisation. */ rt2500usb_register_read(rt2x00dev, TXRX_CSR18, ®); rt2x00_set_field16(®, TXRX_CSR18_OFFSET, 0); rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg); rt2500usb_register_read(rt2x00dev, TXRX_CSR19, ®); rt2x00_set_field16(®, TXRX_CSR19_TSF_SYNC, conf->sync); rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); } if (flags & CONFIG_UPDATE_MAC) rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac, (3 * sizeof(__le16))); if (flags & CONFIG_UPDATE_BSSID) rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid, (3 * sizeof(__le16))); } static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_erp *erp, u32 changed) { u16 reg; if (changed & BSS_CHANGED_ERP_PREAMBLE) { rt2500usb_register_read(rt2x00dev, TXRX_CSR10, ®); rt2x00_set_field16(®, TXRX_CSR10_AUTORESPOND_PREAMBLE, !!erp->short_preamble); rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg); } if (changed & BSS_CHANGED_BASIC_RATES) rt2500usb_register_write(rt2x00dev, TXRX_CSR11, erp->basic_rates); if (changed & BSS_CHANGED_BEACON_INT) { rt2500usb_register_read(rt2x00dev, TXRX_CSR18, ®); rt2x00_set_field16(®, TXRX_CSR18_INTERVAL, erp->beacon_int * 4); rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg); } if (changed & BSS_CHANGED_ERP_SLOT) { rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time); rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs); rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs); } } static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant) { u8 r2; u8 r14; u16 csr5; u16 csr6; /* * We should never come here because rt2x00lib is supposed * to catch this and send us the correct antenna explicitely. */ BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY || ant->tx == ANTENNA_SW_DIVERSITY); rt2500usb_bbp_read(rt2x00dev, 2, &r2); rt2500usb_bbp_read(rt2x00dev, 14, &r14); rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5); rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6); /* * Configure the TX antenna. */ switch (ant->tx) { case ANTENNA_HW_DIVERSITY: rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1); rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1); rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1); break; case ANTENNA_A: rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0); rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0); rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0); break; case ANTENNA_B: default: rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2); rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2); rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2); break; } /* * Configure the RX antenna. */ switch (ant->rx) { case ANTENNA_HW_DIVERSITY: rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1); break; case ANTENNA_A: rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0); break; case ANTENNA_B: default: rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2); break; } /* * RT2525E and RT5222 need to flip TX I/Q */ if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) { rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1); rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1); rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1); /* * RT2525E does not need RX I/Q Flip. */ if (rt2x00_rf(rt2x00dev, RF2525E)) rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0); } else { rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0); rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0); } rt2500usb_bbp_write(rt2x00dev, 2, r2); rt2500usb_bbp_write(rt2x00dev, 14, r14); rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5); rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6); } static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev, struct rf_channel *rf, const int txpower) { /* * Set TXpower. */ rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); /* * For RT2525E we should first set the channel to half band higher. */ if (rt2x00_rf(rt2x00dev, RF2525E)) { static const u32 vals[] = { 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2, 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba, 0x000008ba, 0x000008be, 0x000008b7, 0x00000902, 0x00000902, 0x00000906 }; rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]); if (rf->rf4) rt2500usb_rf_write(rt2x00dev, 4, rf->rf4); } rt2500usb_rf_write(rt2x00dev, 1, rf->rf1); rt2500usb_rf_write(rt2x00dev, 2, rf->rf2); rt2500usb_rf_write(rt2x00dev, 3, rf->rf3); if (rf->rf4) rt2500usb_rf_write(rt2x00dev, 4, rf->rf4); } static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev, const int txpower) { u32 rf3; rt2x00_rf_read(rt2x00dev, 3, &rf3); rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); rt2500usb_rf_write(rt2x00dev, 3, rf3); } static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_conf *libconf) { enum dev_state state = (libconf->conf->flags & IEEE80211_CONF_PS) ? STATE_SLEEP : STATE_AWAKE; u16 reg; if (state == STATE_SLEEP) { rt2500usb_register_read(rt2x00dev, MAC_CSR18, ®); rt2x00_set_field16(®, MAC_CSR18_DELAY_AFTER_BEACON, rt2x00dev->beacon_int - 20); rt2x00_set_field16(®, MAC_CSR18_BEACONS_BEFORE_WAKEUP, libconf->conf->listen_interval - 1); /* We must first disable autowake before it can be enabled */ rt2x00_set_field16(®, MAC_CSR18_AUTO_WAKE, 0); rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg); rt2x00_set_field16(®, MAC_CSR18_AUTO_WAKE, 1); rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg); } else { rt2500usb_register_read(rt2x00dev, MAC_CSR18, ®); rt2x00_set_field16(®, MAC_CSR18_AUTO_WAKE, 0); rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg); } rt2x00dev->ops->lib->set_device_state(rt2x00dev, state); } static void rt2500usb_config(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_conf *libconf, const unsigned int flags) { if (flags & IEEE80211_CONF_CHANGE_CHANNEL) rt2500usb_config_channel(rt2x00dev, &libconf->rf, libconf->conf->power_level); if ((flags & IEEE80211_CONF_CHANGE_POWER) && !(flags & IEEE80211_CONF_CHANGE_CHANNEL)) rt2500usb_config_txpower(rt2x00dev, libconf->conf->power_level); if (flags & IEEE80211_CONF_CHANGE_PS) rt2500usb_config_ps(rt2x00dev, libconf); } /* * Link tuning */ static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev, struct link_qual *qual) { u16 reg; /* * Update FCS error count from register. */ rt2500usb_register_read(rt2x00dev, STA_CSR0, ®); qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR); /* * Update False CCA count from register. */ rt2500usb_register_read(rt2x00dev, STA_CSR3, ®); qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR); } static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual) { u16 eeprom; u16 value; rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom); value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW); rt2500usb_bbp_write(rt2x00dev, 24, value); rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom); value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW); rt2500usb_bbp_write(rt2x00dev, 25, value); rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom); value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW); rt2500usb_bbp_write(rt2x00dev, 61, value); rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom); value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER); rt2500usb_bbp_write(rt2x00dev, 17, value); qual->vgc_level = value; } /* * Queue handlers. */ static void rt2500usb_start_queue(struct data_queue *queue) { struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; u16 reg; switch (queue->qid) { case QID_RX: rt2500usb_register_read(rt2x00dev, TXRX_CSR2, ®); rt2x00_set_field16(®, TXRX_CSR2_DISABLE_RX, 0); rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg); break; case QID_BEACON: rt2500usb_register_read(rt2x00dev, TXRX_CSR19, ®); rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 1); rt2x00_set_field16(®, TXRX_CSR19_TBCN, 1); rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 1); rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); break; default: break; } } static void rt2500usb_stop_queue(struct data_queue *queue) { struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; u16 reg; switch (queue->qid) { case QID_RX: rt2500usb_register_read(rt2x00dev, TXRX_CSR2, ®); rt2x00_set_field16(®, TXRX_CSR2_DISABLE_RX, 1); rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg); break; case QID_BEACON: rt2500usb_register_read(rt2x00dev, TXRX_CSR19, ®); rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 0); rt2x00_set_field16(®, TXRX_CSR19_TBCN, 0); rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 0); rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); break; default: break; } } /* * Initialization functions. */ static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev) { u16 reg; rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001, USB_MODE_TEST, REGISTER_TIMEOUT); rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308, 0x00f0, REGISTER_TIMEOUT); rt2500usb_register_read(rt2x00dev, TXRX_CSR2, ®); rt2x00_set_field16(®, TXRX_CSR2_DISABLE_RX, 1); rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg); rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111); rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11); rt2500usb_register_read(rt2x00dev, MAC_CSR1, ®); rt2x00_set_field16(®, MAC_CSR1_SOFT_RESET, 1); rt2x00_set_field16(®, MAC_CSR1_BBP_RESET, 1); rt2x00_set_field16(®, MAC_CSR1_HOST_READY, 0); rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg); rt2500usb_register_read(rt2x00dev, MAC_CSR1, ®); rt2x00_set_field16(®, MAC_CSR1_SOFT_RESET, 0); rt2x00_set_field16(®, MAC_CSR1_BBP_RESET, 0); rt2x00_set_field16(®, MAC_CSR1_HOST_READY, 0); rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg); rt2500usb_register_read(rt2x00dev, TXRX_CSR5, ®); rt2x00_set_field16(®, TXRX_CSR5_BBP_ID0, 13); rt2x00_set_field16(®, TXRX_CSR5_BBP_ID0_VALID, 1); rt2x00_set_field16(®, TXRX_CSR5_BBP_ID1, 12); rt2x00_set_field16(®, TXRX_CSR5_BBP_ID1_VALID, 1); rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg); rt2500usb_register_read(rt2x00dev, TXRX_CSR6, ®); rt2x00_set_field16(®, TXRX_CSR6_BBP_ID0, 10); rt2x00_set_field16(®, TXRX_CSR6_BBP_ID0_VALID, 1); rt2x00_set_field16(®, TXRX_CSR6_BBP_ID1, 11); rt2x00_set_field16(®, TXRX_CSR6_BBP_ID1_VALID, 1); rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg); rt2500usb_register_read(rt2x00dev, TXRX_CSR7, ®); rt2x00_set_field16(®, TXRX_CSR7_BBP_ID0, 7); rt2x00_set_field16(®, TXRX_CSR7_BBP_ID0_VALID, 1); rt2x00_set_field16(®, TXRX_CSR7_BBP_ID1, 6); rt2x00_set_field16(®, TXRX_CSR7_BBP_ID1_VALID, 1); rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg); rt2500usb_register_read(rt2x00dev, TXRX_CSR8, ®); rt2x00_set_field16(®, TXRX_CSR8_BBP_ID0, 5); rt2x00_set_field16(®, TXRX_CSR8_BBP_ID0_VALID, 1); rt2x00_set_field16(®, TXRX_CSR8_BBP_ID1, 0); rt2x00_set_field16(®, TXRX_CSR8_BBP_ID1_VALID, 0); rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg); rt2500usb_register_read(rt2x00dev, TXRX_CSR19, ®); rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 0); rt2x00_set_field16(®, TXRX_CSR19_TSF_SYNC, 0); rt2x00_set_field16(®, TXRX_CSR19_TBCN, 0); rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 0); rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f); rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d); if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) return -EBUSY; rt2500usb_register_read(rt2x00dev, MAC_CSR1, ®); rt2x00_set_field16(®, MAC_CSR1_SOFT_RESET, 0); rt2x00_set_field16(®, MAC_CSR1_BBP_RESET, 0); rt2x00_set_field16(®, MAC_CSR1_HOST_READY, 1); rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg); if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) { rt2500usb_register_read(rt2x00dev, PHY_CSR2, ®); rt2x00_set_field16(®, PHY_CSR2_LNA, 0); } else { reg = 0; rt2x00_set_field16(®, PHY_CSR2_LNA, 1); rt2x00_set_field16(®, PHY_CSR2_LNA_MODE, 3); } rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg); rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002); rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053); rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee); rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000); rt2500usb_register_read(rt2x00dev, MAC_CSR8, ®); rt2x00_set_field16(®, MAC_CSR8_MAX_FRAME_UNIT, rt2x00dev->rx->data_size); rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg); rt2500usb_register_read(rt2x00dev, TXRX_CSR0, ®); rt2x00_set_field16(®, TXRX_CSR0_ALGORITHM, CIPHER_NONE); rt2x00_set_field16(®, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER); rt2x00_set_field16(®, TXRX_CSR0_KEY_ID, 0); rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg); rt2500usb_register_read(rt2x00dev, MAC_CSR18, ®); rt2x00_set_field16(®, MAC_CSR18_DELAY_AFTER_BEACON, 90); rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg); rt2500usb_register_read(rt2x00dev, PHY_CSR4, ®); rt2x00_set_field16(®, PHY_CSR4_LOW_RF_LE, 1); rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg); rt2500usb_register_read(rt2x00dev, TXRX_CSR1, ®); rt2x00_set_field16(®, TXRX_CSR1_AUTO_SEQUENCE, 1); rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg); return 0; } static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) { unsigned int i; u8 value; for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) { rt2500usb_bbp_read(rt2x00dev, 0, &value); if ((value != 0xff) && (value != 0x00)) return 0; udelay(REGISTER_BUSY_DELAY); } rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n"); return -EACCES; } static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev) { unsigned int i; u16 eeprom; u8 value; u8 reg_id; if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev))) return -EACCES; rt2500usb_bbp_write(rt2x00dev, 3, 0x02); rt2500usb_bbp_write(rt2x00dev, 4, 0x19); rt2500usb_bbp_write(rt2x00dev, 14, 0x1c); rt2500usb_bbp_write(rt2x00dev, 15, 0x30); rt2500usb_bbp_write(rt2x00dev, 16, 0xac); rt2500usb_bbp_write(rt2x00dev, 18, 0x18); rt2500usb_bbp_write(rt2x00dev, 19, 0xff); rt2500usb_bbp_write(rt2x00dev, 20, 0x1e); rt2500usb_bbp_write(rt2x00dev, 21, 0x08); rt2500usb_bbp_write(rt2x00dev, 22, 0x08); rt2500usb_bbp_write(rt2x00dev, 23, 0x08); rt2500usb_bbp_write(rt2x00dev, 24, 0x80); rt2500usb_bbp_write(rt2x00dev, 25, 0x50); rt2500usb_bbp_write(rt2x00dev, 26, 0x08); rt2500usb_bbp_write(rt2x00dev, 27, 0x23); rt2500usb_bbp_write(rt2x00dev, 30, 0x10); rt2500usb_bbp_write(rt2x00dev, 31, 0x2b); rt2500usb_bbp_write(rt2x00dev, 32, 0xb9); rt2500usb_bbp_write(rt2x00dev, 34, 0x12); rt2500usb_bbp_write(rt2x00dev, 35, 0x50); rt2500usb_bbp_write(rt2x00dev, 39, 0xc4); rt2500usb_bbp_write(rt2x00dev, 40, 0x02); rt2500usb_bbp_write(rt2x00dev, 41, 0x60); rt2500usb_bbp_write(rt2x00dev, 53, 0x10); rt2500usb_bbp_write(rt2x00dev, 54, 0x18); rt2500usb_bbp_write(rt2x00dev, 56, 0x08); rt2500usb_bbp_write(rt2x00dev, 57, 0x10); rt2500usb_bbp_write(rt2x00dev, 58, 0x08); rt2500usb_bbp_write(rt2x00dev, 61, 0x60); rt2500usb_bbp_write(rt2x00dev, 62, 0x10); rt2500usb_bbp_write(rt2x00dev, 75, 0xff); for (i = 0; i < EEPROM_BBP_SIZE; i++) { rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom); if (eeprom != 0xffff && eeprom != 0x0000) { reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); rt2500usb_bbp_write(rt2x00dev, reg_id, value); } } return 0; } /* * Device state switch handlers. */ static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev) { /* * Initialize all registers. */ if (unlikely(rt2500usb_init_registers(rt2x00dev) || rt2500usb_init_bbp(rt2x00dev))) return -EIO; return 0; } static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev) { rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121); rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121); /* * Disable synchronisation. */ rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0); rt2x00usb_disable_radio(rt2x00dev); } static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state) { u16 reg; u16 reg2; unsigned int i; char put_to_sleep; char bbp_state; char rf_state; put_to_sleep = (state != STATE_AWAKE); reg = 0; rt2x00_set_field16(®, MAC_CSR17_BBP_DESIRE_STATE, state); rt2x00_set_field16(®, MAC_CSR17_RF_DESIRE_STATE, state); rt2x00_set_field16(®, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep); rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg); rt2x00_set_field16(®, MAC_CSR17_SET_STATE, 1); rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg); /* * Device is not guaranteed to be in the requested state yet. * We must wait until the register indicates that the * device has entered the correct state. */ for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) { rt2500usb_register_read(rt2x00dev, MAC_CSR17, ®2); bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE); rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE); if (bbp_state == state && rf_state == state) return 0; rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg); msleep(30); } return -EBUSY; } static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev, enum dev_state state) { int retval = 0; switch (state) { case STATE_RADIO_ON: retval = rt2500usb_enable_radio(rt2x00dev); break; case STATE_RADIO_OFF: rt2500usb_disable_radio(rt2x00dev); break; case STATE_RADIO_IRQ_ON: case STATE_RADIO_IRQ_OFF: /* No support, but no error either */ break; case STATE_DEEP_SLEEP: case STATE_SLEEP: case STATE_STANDBY: case STATE_AWAKE: retval = rt2500usb_set_state(rt2x00dev, state); break; default: retval = -ENOTSUPP; break; } if (unlikely(retval)) rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n", state, retval); return retval; } /* * TX descriptor initialization */ static void rt2500usb_write_tx_desc(struct queue_entry *entry, struct txentry_desc *txdesc) { struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); __le32 *txd = (__le32 *) entry->skb->data; u32 word; /* * Start writing the descriptor words. */ rt2x00_desc_read(txd, 0, &word); rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit); rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W0_ACK, test_bit(ENTRY_TXD_ACK, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W0_OFDM, (txdesc->rate_mode == RATE_MODE_OFDM)); rt2x00_set_field32(&word, TXD_W0_NEW_SEQ, test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs); rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length); rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher); rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx); rt2x00_desc_write(txd, 0, word); rt2x00_desc_read(txd, 1, &word); rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset); rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs); rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min); rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max); rt2x00_desc_write(txd, 1, word); rt2x00_desc_read(txd, 2, &word); rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal); rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service); rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->u.plcp.length_low); rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->u.plcp.length_high); rt2x00_desc_write(txd, 2, word); if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) { _rt2x00_desc_write(txd, 3, skbdesc->iv[0]); _rt2x00_desc_write(txd, 4, skbdesc->iv[1]); } /* * Register descriptor details in skb frame descriptor. */ skbdesc->flags |= SKBDESC_DESC_IN_SKB; skbdesc->desc = txd; skbdesc->desc_len = TXD_DESC_SIZE; } /* * TX data initialization */ static void rt2500usb_beacondone(struct urb *urb); static void rt2500usb_write_beacon(struct queue_entry *entry, struct txentry_desc *txdesc) { struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev); struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data; int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint); int length; u16 reg, reg0; /* * Disable beaconing while we are reloading the beacon data, * otherwise we might be sending out invalid data. */ rt2500usb_register_read(rt2x00dev, TXRX_CSR19, ®); rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 0); rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); /* * Add space for the descriptor in front of the skb. */ skb_push(entry->skb, TXD_DESC_SIZE); memset(entry->skb->data, 0, TXD_DESC_SIZE); /* * Write the TX descriptor for the beacon. */ rt2500usb_write_tx_desc(entry, txdesc); /* * Dump beacon to userspace through debugfs. */ rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb); /* * USB devices cannot blindly pass the skb->len as the * length of the data to usb_fill_bulk_urb. Pass the skb * to the driver to determine what the length should be. */ length = rt2x00dev->ops->lib->get_tx_data_len(entry); usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe, entry->skb->data, length, rt2500usb_beacondone, entry); /* * Second we need to create the guardian byte. * We only need a single byte, so lets recycle * the 'flags' field we are not using for beacons. */ bcn_priv->guardian_data = 0; usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe, &bcn_priv->guardian_data, 1, rt2500usb_beacondone, entry); /* * Send out the guardian byte. */ usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC); /* * Enable beaconing again. */ rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 1); rt2x00_set_field16(®, TXRX_CSR19_TBCN, 1); reg0 = reg; rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 1); /* * Beacon generation will fail initially. * To prevent this we need to change the TXRX_CSR19 * register several times (reg0 is the same as reg * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0 * and 1 in reg). */ rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0); rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0); rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); } static int rt2500usb_get_tx_data_len(struct queue_entry *entry) { int length; /* * The length _must_ be a multiple of 2, * but it must _not_ be a multiple of the USB packet size. */ length = roundup(entry->skb->len, 2); length += (2 * !(length % entry->queue->usb_maxpacket)); return length; } /* * RX control handlers */ static void rt2500usb_fill_rxdone(struct queue_entry *entry, struct rxdone_entry_desc *rxdesc) { struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; struct queue_entry_priv_usb *entry_priv = entry->priv_data; struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); __le32 *rxd = (__le32 *)(entry->skb->data + (entry_priv->urb->actual_length - entry->queue->desc_size)); u32 word0; u32 word1; /* * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of * frame data in rt2x00usb. */ memcpy(skbdesc->desc, rxd, skbdesc->desc_len); rxd = (__le32 *)skbdesc->desc; /* * It is now safe to read the descriptor on all architectures. */ rt2x00_desc_read(rxd, 0, &word0); rt2x00_desc_read(rxd, 1, &word1); if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR)) rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR)) rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC; rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER); if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR)) rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY; if (rxdesc->cipher != CIPHER_NONE) { _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]); _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]); rxdesc->dev_flags |= RXDONE_CRYPTO_IV; /* ICV is located at the end of frame */ rxdesc->flags |= RX_FLAG_MMIC_STRIPPED; if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) rxdesc->flags |= RX_FLAG_DECRYPTED; else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) rxdesc->flags |= RX_FLAG_MMIC_ERROR; } /* * Obtain the status about this packet. * When frame was received with an OFDM bitrate, * the signal is the PLCP value. If it was received with * a CCK bitrate the signal is the rate in 100kbit/s. */ rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL); rxdesc->rssi = rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset; rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); if (rt2x00_get_field32(word0, RXD_W0_OFDM)) rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP; else rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE; if (rt2x00_get_field32(word0, RXD_W0_MY_BSS)) rxdesc->dev_flags |= RXDONE_MY_BSS; /* * Adjust the skb memory window to the frame boundaries. */ skb_trim(entry->skb, rxdesc->size); } /* * Interrupt functions. */ static void rt2500usb_beacondone(struct urb *urb) { struct queue_entry *entry = (struct queue_entry *)urb->context; struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data; if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags)) return; /* * Check if this was the guardian beacon, * if that was the case we need to send the real beacon now. * Otherwise we should free the sk_buffer, the device * should be doing the rest of the work now. */ if (bcn_priv->guardian_urb == urb) { usb_submit_urb(bcn_priv->urb, GFP_ATOMIC); } else if (bcn_priv->urb == urb) { dev_kfree_skb(entry->skb); entry->skb = NULL; } } /* * Device probe functions. */ static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev) { u16 word; u8 *mac; u8 bbp; rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE); /* * Start validation of the data that has been read. */ mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); if (!is_valid_ether_addr(mac)) { eth_random_addr(mac); rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac); } rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2); rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, ANTENNA_SW_DIVERSITY); rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, ANTENNA_SW_DIVERSITY); rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE, LED_MODE_DEFAULT); rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0); rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0); rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522); rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0); rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0); rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI, DEFAULT_RSSI_OFFSET); rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word); rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n", word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45); rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word); rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word); } /* * Switch lower vgc bound to current BBP R17 value, * lower the value a bit for better quality. */ rt2500usb_bbp_read(rt2x00dev, 17, &bbp); bbp -= 6; rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40); rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp); rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word); rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word); } else { rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp); rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48); rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41); rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word); rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40); rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80); rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word); rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40); rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50); rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word); rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60); rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d); rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word); rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word); } return 0; } static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev) { u16 reg; u16 value; u16 eeprom; /* * Read EEPROM word for configuration. */ rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); /* * Identify RF chipset. */ value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); rt2500usb_register_read(rt2x00dev, MAC_CSR0, ®); rt2x00_set_chip(rt2x00dev, RT2570, value, reg); if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) { rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n"); return -ENODEV; } if (!rt2x00_rf(rt2x00dev, RF2522) && !rt2x00_rf(rt2x00dev, RF2523) && !rt2x00_rf(rt2x00dev, RF2524) && !rt2x00_rf(rt2x00dev, RF2525) && !rt2x00_rf(rt2x00dev, RF2525E) && !rt2x00_rf(rt2x00dev, RF5222)) { rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n"); return -ENODEV; } /* * Identify default antenna configuration. */ rt2x00dev->default_ant.tx = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT); rt2x00dev->default_ant.rx = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT); /* * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead. * I am not 100% sure about this, but the legacy drivers do not * indicate antenna swapping in software is required when * diversity is enabled. */ if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY) rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY; if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY) rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY; /* * Store led mode, for correct led behaviour. */ #ifdef CONFIG_RT2X00_LIB_LEDS value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE); rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); if (value == LED_MODE_TXRX_ACTIVITY || value == LED_MODE_DEFAULT || value == LED_MODE_ASUS) rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual, LED_TYPE_ACTIVITY); #endif /* CONFIG_RT2X00_LIB_LEDS */ /* * Detect if this device has an hardware controlled radio. */ if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags); /* * Read the RSSI <-> dBm offset information. */ rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom); rt2x00dev->rssi_offset = rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI); return 0; } /* * RF value list for RF2522 * Supports: 2.4 GHz */ static const struct rf_channel rf_vals_bg_2522[] = { { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 }, { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 }, { 3, 0x00002050, 0x000c2002, 0x00000101, 0 }, { 4, 0x00002050, 0x000c2016, 0x00000101, 0 }, { 5, 0x00002050, 0x000c202a, 0x00000101, 0 }, { 6, 0x00002050, 0x000c203e, 0x00000101, 0 }, { 7, 0x00002050, 0x000c2052, 0x00000101, 0 }, { 8, 0x00002050, 0x000c2066, 0x00000101, 0 }, { 9, 0x00002050, 0x000c207a, 0x00000101, 0 }, { 10, 0x00002050, 0x000c208e, 0x00000101, 0 }, { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 }, { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 }, { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 }, { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 }, }; /* * RF value list for RF2523 * Supports: 2.4 GHz */ static const struct rf_channel rf_vals_bg_2523[] = { { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b }, { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b }, { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b }, { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b }, { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b }, { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b }, { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b }, { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b }, { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b }, { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b }, { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b }, { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b }, { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b }, { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 }, }; /* * RF value list for RF2524 * Supports: 2.4 GHz */ static const struct rf_channel rf_vals_bg_2524[] = { { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b }, { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b }, { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b }, { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b }, { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b }, { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b }, { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b }, { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b }, { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b }, { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b }, { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b }, { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b }, { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b }, { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 }, }; /* * RF value list for RF2525 * Supports: 2.4 GHz */ static const struct rf_channel rf_vals_bg_2525[] = { { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b }, { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b }, { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b }, { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b }, { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b }, { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b }, { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b }, { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b }, { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b }, { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b }, { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b }, { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b }, { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b }, { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 }, }; /* * RF value list for RF2525e * Supports: 2.4 GHz */ static const struct rf_channel rf_vals_bg_2525e[] = { { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b }, { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 }, { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b }, { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 }, { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b }, { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 }, { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b }, { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 }, { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b }, { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 }, { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b }, { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 }, { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b }, { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 }, }; /* * RF value list for RF5222 * Supports: 2.4 GHz & 5.2 GHz */ static const struct rf_channel rf_vals_5222[] = { { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b }, { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b }, { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b }, { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b }, { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b }, { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b }, { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b }, { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b }, { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b }, { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b }, { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b }, { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b }, { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b }, { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b }, /* 802.11 UNI / HyperLan 2 */ { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f }, { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f }, { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f }, { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f }, { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f }, { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f }, { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f }, { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f }, /* 802.11 HyperLan 2 */ { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f }, { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f }, { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f }, { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f }, { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f }, { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f }, { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f }, { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f }, { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f }, { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f }, /* 802.11 UNII */ { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f }, { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 }, { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 }, { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 }, { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 }, }; static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev) { struct hw_mode_spec *spec = &rt2x00dev->spec; struct channel_info *info; char *tx_power; unsigned int i; /* * Initialize all hw fields. * * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are * capable of sending the buffered frames out after the DTIM * transmission using rt2x00lib_beacondone. This will send out * multicast and broadcast traffic immediately instead of buffering it * infinitly and thus dropping it after some time. */ ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK); ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS); ieee80211_hw_set(rt2x00dev->hw, RX_INCLUDES_FCS); ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM); /* * Disable powersaving as default. */ rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT; SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0)); /* * Initialize hw_mode information. */ spec->supported_bands = SUPPORT_BAND_2GHZ; spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; if (rt2x00_rf(rt2x00dev, RF2522)) { spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522); spec->channels = rf_vals_bg_2522; } else if (rt2x00_rf(rt2x00dev, RF2523)) { spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523); spec->channels = rf_vals_bg_2523; } else if (rt2x00_rf(rt2x00dev, RF2524)) { spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524); spec->channels = rf_vals_bg_2524; } else if (rt2x00_rf(rt2x00dev, RF2525)) { spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525); spec->channels = rf_vals_bg_2525; } else if (rt2x00_rf(rt2x00dev, RF2525E)) { spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e); spec->channels = rf_vals_bg_2525e; } else if (rt2x00_rf(rt2x00dev, RF5222)) { spec->supported_bands |= SUPPORT_BAND_5GHZ; spec->num_channels = ARRAY_SIZE(rf_vals_5222); spec->channels = rf_vals_5222; } /* * Create channel information array */ info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; spec->channels_info = info; tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START); for (i = 0; i < 14; i++) { info[i].max_power = MAX_TXPOWER; info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]); } if (spec->num_channels > 14) { for (i = 14; i < spec->num_channels; i++) { info[i].max_power = MAX_TXPOWER; info[i].default_power1 = DEFAULT_TXPOWER; } } return 0; } static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev) { int retval; u16 reg; /* * Allocate eeprom data. */ retval = rt2500usb_validate_eeprom(rt2x00dev); if (retval) return retval; retval = rt2500usb_init_eeprom(rt2x00dev); if (retval) return retval; /* * Enable rfkill polling by setting GPIO direction of the * rfkill switch GPIO pin correctly. */ rt2500usb_register_read(rt2x00dev, MAC_CSR19, ®); rt2x00_set_field16(®, MAC_CSR19_DIR0, 0); rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg); /* * Initialize hw specifications. */ retval = rt2500usb_probe_hw_mode(rt2x00dev); if (retval) return retval; /* * This device requires the atim queue */ __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags); __set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags); if (!modparam_nohwcrypt) { __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags); __set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags); } __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags); __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags); /* * Set the rssi offset. */ rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; return 0; } static const struct ieee80211_ops rt2500usb_mac80211_ops = { .tx = rt2x00mac_tx, .start = rt2x00mac_start, .stop = rt2x00mac_stop, .add_interface = rt2x00mac_add_interface, .remove_interface = rt2x00mac_remove_interface, .config = rt2x00mac_config, .configure_filter = rt2x00mac_configure_filter, .set_tim = rt2x00mac_set_tim, .set_key = rt2x00mac_set_key, .sw_scan_start = rt2x00mac_sw_scan_start, .sw_scan_complete = rt2x00mac_sw_scan_complete, .get_stats = rt2x00mac_get_stats, .bss_info_changed = rt2x00mac_bss_info_changed, .conf_tx = rt2x00mac_conf_tx, .rfkill_poll = rt2x00mac_rfkill_poll, .flush = rt2x00mac_flush, .set_antenna = rt2x00mac_set_antenna, .get_antenna = rt2x00mac_get_antenna, .get_ringparam = rt2x00mac_get_ringparam, .tx_frames_pending = rt2x00mac_tx_frames_pending, }; static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = { .probe_hw = rt2500usb_probe_hw, .initialize = rt2x00usb_initialize, .uninitialize = rt2x00usb_uninitialize, .clear_entry = rt2x00usb_clear_entry, .set_device_state = rt2500usb_set_device_state, .rfkill_poll = rt2500usb_rfkill_poll, .link_stats = rt2500usb_link_stats, .reset_tuner = rt2500usb_reset_tuner, .watchdog = rt2x00usb_watchdog, .start_queue = rt2500usb_start_queue, .kick_queue = rt2x00usb_kick_queue, .stop_queue = rt2500usb_stop_queue, .flush_queue = rt2x00usb_flush_queue, .write_tx_desc = rt2500usb_write_tx_desc, .write_beacon = rt2500usb_write_beacon, .get_tx_data_len = rt2500usb_get_tx_data_len, .fill_rxdone = rt2500usb_fill_rxdone, .config_shared_key = rt2500usb_config_key, .config_pairwise_key = rt2500usb_config_key, .config_filter = rt2500usb_config_filter, .config_intf = rt2500usb_config_intf, .config_erp = rt2500usb_config_erp, .config_ant = rt2500usb_config_ant, .config = rt2500usb_config, }; static void rt2500usb_queue_init(struct data_queue *queue) { switch (queue->qid) { case QID_RX: queue->limit = 32; queue->data_size = DATA_FRAME_SIZE; queue->desc_size = RXD_DESC_SIZE; queue->priv_size = sizeof(struct queue_entry_priv_usb); break; case QID_AC_VO: case QID_AC_VI: case QID_AC_BE: case QID_AC_BK: queue->limit = 32; queue->data_size = DATA_FRAME_SIZE; queue->desc_size = TXD_DESC_SIZE; queue->priv_size = sizeof(struct queue_entry_priv_usb); break; case QID_BEACON: queue->limit = 1; queue->data_size = MGMT_FRAME_SIZE; queue->desc_size = TXD_DESC_SIZE; queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn); break; case QID_ATIM: queue->limit = 8; queue->data_size = DATA_FRAME_SIZE; queue->desc_size = TXD_DESC_SIZE; queue->priv_size = sizeof(struct queue_entry_priv_usb); break; default: BUG(); break; } } static const struct rt2x00_ops rt2500usb_ops = { .name = KBUILD_MODNAME, .max_ap_intf = 1, .eeprom_size = EEPROM_SIZE, .rf_size = RF_SIZE, .tx_queues = NUM_TX_QUEUES, .queue_init = rt2500usb_queue_init, .lib = &rt2500usb_rt2x00_ops, .hw = &rt2500usb_mac80211_ops, #ifdef CONFIG_RT2X00_LIB_DEBUGFS .debugfs = &rt2500usb_rt2x00debug, #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ }; /* * rt2500usb module information. */ static struct usb_device_id rt2500usb_device_table[] = { /* ASUS */ { USB_DEVICE(0x0b05, 0x1706) }, { USB_DEVICE(0x0b05, 0x1707) }, /* Belkin */ { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050A ver. 2.x */ { USB_DEVICE(0x050d, 0x7051) }, /* Cisco Systems */ { USB_DEVICE(0x13b1, 0x000d) }, { USB_DEVICE(0x13b1, 0x0011) }, { USB_DEVICE(0x13b1, 0x001a) }, /* Conceptronic */ { USB_DEVICE(0x14b2, 0x3c02) }, /* D-LINK */ { USB_DEVICE(0x2001, 0x3c00) }, /* Gigabyte */ { USB_DEVICE(0x1044, 0x8001) }, { USB_DEVICE(0x1044, 0x8007) }, /* Hercules */ { USB_DEVICE(0x06f8, 0xe000) }, /* Melco */ { USB_DEVICE(0x0411, 0x005e) }, { USB_DEVICE(0x0411, 0x0066) }, { USB_DEVICE(0x0411, 0x0067) }, { USB_DEVICE(0x0411, 0x008b) }, { USB_DEVICE(0x0411, 0x0097) }, /* MSI */ { USB_DEVICE(0x0db0, 0x6861) }, { USB_DEVICE(0x0db0, 0x6865) }, { USB_DEVICE(0x0db0, 0x6869) }, /* Ralink */ { USB_DEVICE(0x148f, 0x1706) }, { USB_DEVICE(0x148f, 0x2570) }, { USB_DEVICE(0x148f, 0x9020) }, /* Sagem */ { USB_DEVICE(0x079b, 0x004b) }, /* Siemens */ { USB_DEVICE(0x0681, 0x3c06) }, /* SMC */ { USB_DEVICE(0x0707, 0xee13) }, /* Spairon */ { USB_DEVICE(0x114b, 0x0110) }, /* SURECOM */ { USB_DEVICE(0x0769, 0x11f3) }, /* Trust */ { USB_DEVICE(0x0eb0, 0x9020) }, /* VTech */ { USB_DEVICE(0x0f88, 0x3012) }, /* Zinwell */ { USB_DEVICE(0x5a57, 0x0260) }, { 0, } }; MODULE_AUTHOR(DRV_PROJECT); MODULE_VERSION(DRV_VERSION); MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver."); MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards"); MODULE_DEVICE_TABLE(usb, rt2500usb_device_table); MODULE_LICENSE("GPL"); static int rt2500usb_probe(struct usb_interface *usb_intf, const struct usb_device_id *id) { return rt2x00usb_probe(usb_intf, &rt2500usb_ops); } static struct usb_driver rt2500usb_driver = { .name = KBUILD_MODNAME, .id_table = rt2500usb_device_table, .probe = rt2500usb_probe, .disconnect = rt2x00usb_disconnect, .suspend = rt2x00usb_suspend, .resume = rt2x00usb_resume, .reset_resume = rt2x00usb_resume, .disable_hub_initiated_lpm = 1, }; module_usb_driver(rt2500usb_driver);