/* * Copyright (C) 2014 Felix Fietkau <nbd@openwrt.org> * Copyright (C) 2015 Jakub Kicinski <kubakici@wp.pl> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 * as published by the Free Software Foundation * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include "mt7601u.h" #include "trace.h" #include <linux/etherdevice.h> static void mt76_mac_process_tx_rate(struct ieee80211_tx_rate *txrate, u16 rate) { u8 idx = MT76_GET(MT_TXWI_RATE_MCS, rate); txrate->idx = 0; txrate->flags = 0; txrate->count = 1; switch (MT76_GET(MT_TXWI_RATE_PHY_MODE, rate)) { case MT_PHY_TYPE_OFDM: txrate->idx = idx + 4; return; case MT_PHY_TYPE_CCK: if (idx >= 8) idx -= 8; txrate->idx = idx; return; case MT_PHY_TYPE_HT_GF: txrate->flags |= IEEE80211_TX_RC_GREEN_FIELD; /* fall through */ case MT_PHY_TYPE_HT: txrate->flags |= IEEE80211_TX_RC_MCS; txrate->idx = idx; break; default: WARN_ON(1); return; } if (MT76_GET(MT_TXWI_RATE_BW, rate) == MT_PHY_BW_40) txrate->flags |= IEEE80211_TX_RC_40_MHZ_WIDTH; if (rate & MT_TXWI_RATE_SGI) txrate->flags |= IEEE80211_TX_RC_SHORT_GI; } static void mt76_mac_fill_tx_status(struct mt7601u_dev *dev, struct ieee80211_tx_info *info, struct mt76_tx_status *st) { struct ieee80211_tx_rate *rate = info->status.rates; int cur_idx, last_rate; int i; last_rate = min_t(int, st->retry, IEEE80211_TX_MAX_RATES - 1); mt76_mac_process_tx_rate(&rate[last_rate], st->rate); if (last_rate < IEEE80211_TX_MAX_RATES - 1) rate[last_rate + 1].idx = -1; cur_idx = rate[last_rate].idx + st->retry; for (i = 0; i <= last_rate; i++) { rate[i].flags = rate[last_rate].flags; rate[i].idx = max_t(int, 0, cur_idx - i); rate[i].count = 1; } if (last_rate > 0) rate[last_rate - 1].count = st->retry + 1 - last_rate; info->status.ampdu_len = 1; info->status.ampdu_ack_len = st->success; if (st->is_probe) info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE; if (st->aggr) info->flags |= IEEE80211_TX_CTL_AMPDU | IEEE80211_TX_STAT_AMPDU; if (!st->ack_req) info->flags |= IEEE80211_TX_CTL_NO_ACK; else if (st->success) info->flags |= IEEE80211_TX_STAT_ACK; } u16 mt76_mac_tx_rate_val(struct mt7601u_dev *dev, const struct ieee80211_tx_rate *rate, u8 *nss_val) { u16 rateval; u8 phy, rate_idx; u8 nss = 1; u8 bw = 0; if (rate->flags & IEEE80211_TX_RC_MCS) { rate_idx = rate->idx; nss = 1 + (rate->idx >> 3); phy = MT_PHY_TYPE_HT; if (rate->flags & IEEE80211_TX_RC_GREEN_FIELD) phy = MT_PHY_TYPE_HT_GF; if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) bw = 1; } else { const struct ieee80211_rate *r; int band = dev->chandef.chan->band; u16 val; r = &dev->hw->wiphy->bands[band]->bitrates[rate->idx]; if (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) val = r->hw_value_short; else val = r->hw_value; phy = val >> 8; rate_idx = val & 0xff; bw = 0; } rateval = MT76_SET(MT_RXWI_RATE_MCS, rate_idx); rateval |= MT76_SET(MT_RXWI_RATE_PHY, phy); rateval |= MT76_SET(MT_RXWI_RATE_BW, bw); if (rate->flags & IEEE80211_TX_RC_SHORT_GI) rateval |= MT_RXWI_RATE_SGI; *nss_val = nss; return rateval; } void mt76_mac_wcid_set_rate(struct mt7601u_dev *dev, struct mt76_wcid *wcid, const struct ieee80211_tx_rate *rate) { unsigned long flags; spin_lock_irqsave(&dev->lock, flags); wcid->tx_rate = mt76_mac_tx_rate_val(dev, rate, &wcid->tx_rate_nss); wcid->tx_rate_set = true; spin_unlock_irqrestore(&dev->lock, flags); } struct mt76_tx_status mt7601u_mac_fetch_tx_status(struct mt7601u_dev *dev) { struct mt76_tx_status stat = {}; u32 val; val = mt7601u_rr(dev, MT_TX_STAT_FIFO); stat.valid = !!(val & MT_TX_STAT_FIFO_VALID); stat.success = !!(val & MT_TX_STAT_FIFO_SUCCESS); stat.aggr = !!(val & MT_TX_STAT_FIFO_AGGR); stat.ack_req = !!(val & MT_TX_STAT_FIFO_ACKREQ); stat.pktid = MT76_GET(MT_TX_STAT_FIFO_PID_TYPE, val); stat.wcid = MT76_GET(MT_TX_STAT_FIFO_WCID, val); stat.rate = MT76_GET(MT_TX_STAT_FIFO_RATE, val); return stat; } void mt76_send_tx_status(struct mt7601u_dev *dev, struct mt76_tx_status *stat) { struct ieee80211_tx_info info = {}; struct ieee80211_sta *sta = NULL; struct mt76_wcid *wcid = NULL; void *msta; rcu_read_lock(); if (stat->wcid < ARRAY_SIZE(dev->wcid)) wcid = rcu_dereference(dev->wcid[stat->wcid]); if (wcid) { msta = container_of(wcid, struct mt76_sta, wcid); sta = container_of(msta, struct ieee80211_sta, drv_priv); } mt76_mac_fill_tx_status(dev, &info, stat); spin_lock_bh(&dev->mac_lock); ieee80211_tx_status_noskb(dev->hw, sta, &info); spin_unlock_bh(&dev->mac_lock); rcu_read_unlock(); } void mt7601u_mac_set_protection(struct mt7601u_dev *dev, bool legacy_prot, int ht_mode) { int mode = ht_mode & IEEE80211_HT_OP_MODE_PROTECTION; bool non_gf = !!(ht_mode & IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT); u32 prot[6]; bool ht_rts[4] = {}; int i; prot[0] = MT_PROT_NAV_SHORT | MT_PROT_TXOP_ALLOW_ALL | MT_PROT_RTS_THR_EN; prot[1] = prot[0]; if (legacy_prot) prot[1] |= MT_PROT_CTRL_CTS2SELF; prot[2] = prot[4] = MT_PROT_NAV_SHORT | MT_PROT_TXOP_ALLOW_BW20; prot[3] = prot[5] = MT_PROT_NAV_SHORT | MT_PROT_TXOP_ALLOW_ALL; if (legacy_prot) { prot[2] |= MT_PROT_RATE_CCK_11; prot[3] |= MT_PROT_RATE_CCK_11; prot[4] |= MT_PROT_RATE_CCK_11; prot[5] |= MT_PROT_RATE_CCK_11; } else { prot[2] |= MT_PROT_RATE_OFDM_24; prot[3] |= MT_PROT_RATE_DUP_OFDM_24; prot[4] |= MT_PROT_RATE_OFDM_24; prot[5] |= MT_PROT_RATE_DUP_OFDM_24; } switch (mode) { case IEEE80211_HT_OP_MODE_PROTECTION_NONE: break; case IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER: ht_rts[0] = ht_rts[1] = ht_rts[2] = ht_rts[3] = true; break; case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ: ht_rts[1] = ht_rts[3] = true; break; case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED: ht_rts[0] = ht_rts[1] = ht_rts[2] = ht_rts[3] = true; break; } if (non_gf) ht_rts[2] = ht_rts[3] = true; for (i = 0; i < 4; i++) if (ht_rts[i]) prot[i + 2] |= MT_PROT_CTRL_RTS_CTS; for (i = 0; i < 6; i++) mt7601u_wr(dev, MT_CCK_PROT_CFG + i * 4, prot[i]); } void mt7601u_mac_set_short_preamble(struct mt7601u_dev *dev, bool short_preamb) { if (short_preamb) mt76_set(dev, MT_AUTO_RSP_CFG, MT_AUTO_RSP_PREAMB_SHORT); else mt76_clear(dev, MT_AUTO_RSP_CFG, MT_AUTO_RSP_PREAMB_SHORT); } void mt7601u_mac_config_tsf(struct mt7601u_dev *dev, bool enable, int interval) { u32 val = mt7601u_rr(dev, MT_BEACON_TIME_CFG); val &= ~(MT_BEACON_TIME_CFG_TIMER_EN | MT_BEACON_TIME_CFG_SYNC_MODE | MT_BEACON_TIME_CFG_TBTT_EN); if (!enable) { mt7601u_wr(dev, MT_BEACON_TIME_CFG, val); return; } val &= ~MT_BEACON_TIME_CFG_INTVAL; val |= MT76_SET(MT_BEACON_TIME_CFG_INTVAL, interval << 4) | MT_BEACON_TIME_CFG_TIMER_EN | MT_BEACON_TIME_CFG_SYNC_MODE | MT_BEACON_TIME_CFG_TBTT_EN; } static void mt7601u_check_mac_err(struct mt7601u_dev *dev) { u32 val = mt7601u_rr(dev, 0x10f4); if (!(val & BIT(29)) || !(val & (BIT(7) | BIT(5)))) return; dev_err(dev->dev, "Error: MAC specific condition occurred\n"); mt76_set(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_RESET_CSR); udelay(10); mt76_clear(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_RESET_CSR); } void mt7601u_mac_work(struct work_struct *work) { struct mt7601u_dev *dev = container_of(work, struct mt7601u_dev, mac_work.work); struct { u32 addr_base; u32 span; u64 *stat_base; } spans[] = { { MT_RX_STA_CNT0, 3, dev->stats.rx_stat }, { MT_TX_STA_CNT0, 3, dev->stats.tx_stat }, { MT_TX_AGG_STAT, 1, dev->stats.aggr_stat }, { MT_MPDU_DENSITY_CNT, 1, dev->stats.zero_len_del }, { MT_TX_AGG_CNT_BASE0, 8, &dev->stats.aggr_n[0] }, { MT_TX_AGG_CNT_BASE1, 8, &dev->stats.aggr_n[16] }, }; u32 sum, n; int i, j, k; /* Note: using MCU_RANDOM_READ is actually slower then reading all the * registers by hand. MCU takes ca. 20ms to complete read of 24 * registers while reading them one by one will takes roughly * 24*200us =~ 5ms. */ k = 0; n = 0; sum = 0; for (i = 0; i < ARRAY_SIZE(spans); i++) for (j = 0; j < spans[i].span; j++) { u32 val = mt7601u_rr(dev, spans[i].addr_base + j * 4); spans[i].stat_base[j * 2] += val & 0xffff; spans[i].stat_base[j * 2 + 1] += val >> 16; /* Calculate average AMPDU length */ if (spans[i].addr_base != MT_TX_AGG_CNT_BASE0 && spans[i].addr_base != MT_TX_AGG_CNT_BASE1) continue; n += (val >> 16) + (val & 0xffff); sum += (val & 0xffff) * (1 + k * 2) + (val >> 16) * (2 + k * 2); k++; } atomic_set(&dev->avg_ampdu_len, n ? DIV_ROUND_CLOSEST(sum, n) : 1); mt7601u_check_mac_err(dev); ieee80211_queue_delayed_work(dev->hw, &dev->mac_work, 10 * HZ); } void mt7601u_mac_wcid_setup(struct mt7601u_dev *dev, u8 idx, u8 vif_idx, u8 *mac) { u8 zmac[ETH_ALEN] = {}; u32 attr; attr = MT76_SET(MT_WCID_ATTR_BSS_IDX, vif_idx & 7) | MT76_SET(MT_WCID_ATTR_BSS_IDX_EXT, !!(vif_idx & 8)); mt76_wr(dev, MT_WCID_ATTR(idx), attr); if (mac) memcpy(zmac, mac, sizeof(zmac)); mt7601u_addr_wr(dev, MT_WCID_ADDR(idx), zmac); } void mt7601u_mac_set_ampdu_factor(struct mt7601u_dev *dev) { struct ieee80211_sta *sta; struct mt76_wcid *wcid; void *msta; u8 min_factor = 3; int i; rcu_read_lock(); for (i = 0; i < ARRAY_SIZE(dev->wcid); i++) { wcid = rcu_dereference(dev->wcid[i]); if (!wcid) continue; msta = container_of(wcid, struct mt76_sta, wcid); sta = container_of(msta, struct ieee80211_sta, drv_priv); min_factor = min(min_factor, sta->ht_cap.ampdu_factor); } rcu_read_unlock(); mt7601u_wr(dev, MT_MAX_LEN_CFG, 0xa0fff | MT76_SET(MT_MAX_LEN_CFG_AMPDU, min_factor)); } static void mt76_mac_process_rate(struct ieee80211_rx_status *status, u16 rate) { u8 idx = MT76_GET(MT_RXWI_RATE_MCS, rate); switch (MT76_GET(MT_RXWI_RATE_PHY, rate)) { case MT_PHY_TYPE_OFDM: if (WARN_ON(idx >= 8)) idx = 0; idx += 4; status->rate_idx = idx; return; case MT_PHY_TYPE_CCK: if (idx >= 8) { idx -= 8; status->flag |= RX_FLAG_SHORTPRE; } if (WARN_ON(idx >= 4)) idx = 0; status->rate_idx = idx; return; case MT_PHY_TYPE_HT_GF: status->flag |= RX_FLAG_HT_GF; /* fall through */ case MT_PHY_TYPE_HT: status->flag |= RX_FLAG_HT; status->rate_idx = idx; break; default: WARN_ON(1); return; } if (rate & MT_RXWI_RATE_SGI) status->flag |= RX_FLAG_SHORT_GI; if (rate & MT_RXWI_RATE_STBC) status->flag |= 1 << RX_FLAG_STBC_SHIFT; if (rate & MT_RXWI_RATE_BW) status->flag |= RX_FLAG_40MHZ; } static void mt7601u_rx_monitor_beacon(struct mt7601u_dev *dev, struct mt7601u_rxwi *rxwi, u16 rate, int rssi) { dev->bcn_freq_off = rxwi->freq_off; dev->bcn_phy_mode = MT76_GET(MT_RXWI_RATE_PHY, rate); dev->avg_rssi = (dev->avg_rssi * 15) / 16 + (rssi << 8); } static int mt7601u_rx_is_our_beacon(struct mt7601u_dev *dev, u8 *data) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data; return ieee80211_is_beacon(hdr->frame_control) && ether_addr_equal(hdr->addr2, dev->ap_bssid); } u32 mt76_mac_process_rx(struct mt7601u_dev *dev, struct sk_buff *skb, u8 *data, void *rxi) { struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); struct mt7601u_rxwi *rxwi = rxi; u32 len, ctl = le32_to_cpu(rxwi->ctl); u16 rate = le16_to_cpu(rxwi->rate); int rssi; len = MT76_GET(MT_RXWI_CTL_MPDU_LEN, ctl); if (len < 10) return 0; if (rxwi->rxinfo & cpu_to_le32(MT_RXINFO_DECRYPT)) { status->flag |= RX_FLAG_DECRYPTED; status->flag |= RX_FLAG_IV_STRIPPED | RX_FLAG_MMIC_STRIPPED; } status->chains = BIT(0); rssi = mt7601u_phy_get_rssi(dev, rxwi, rate); status->chain_signal[0] = status->signal = rssi; status->freq = dev->chandef.chan->center_freq; status->band = dev->chandef.chan->band; mt76_mac_process_rate(status, rate); spin_lock_bh(&dev->con_mon_lock); if (mt7601u_rx_is_our_beacon(dev, data)) mt7601u_rx_monitor_beacon(dev, rxwi, rate, rssi); else if (rxwi->rxinfo & cpu_to_le32(MT_RXINFO_U2M)) dev->avg_rssi = (dev->avg_rssi * 15) / 16 + (rssi << 8); spin_unlock_bh(&dev->con_mon_lock); return len; } static enum mt76_cipher_type mt76_mac_get_key_info(struct ieee80211_key_conf *key, u8 *key_data) { memset(key_data, 0, 32); if (!key) return MT_CIPHER_NONE; if (key->keylen > 32) return MT_CIPHER_NONE; memcpy(key_data, key->key, key->keylen); switch (key->cipher) { case WLAN_CIPHER_SUITE_WEP40: return MT_CIPHER_WEP40; case WLAN_CIPHER_SUITE_WEP104: return MT_CIPHER_WEP104; case WLAN_CIPHER_SUITE_TKIP: return MT_CIPHER_TKIP; case WLAN_CIPHER_SUITE_CCMP: return MT_CIPHER_AES_CCMP; default: return MT_CIPHER_NONE; } } int mt76_mac_wcid_set_key(struct mt7601u_dev *dev, u8 idx, struct ieee80211_key_conf *key) { enum mt76_cipher_type cipher; u8 key_data[32]; u8 iv_data[8]; u32 val; cipher = mt76_mac_get_key_info(key, key_data); if (cipher == MT_CIPHER_NONE && key) return -EINVAL; trace_set_key(dev, idx); mt7601u_wr_copy(dev, MT_WCID_KEY(idx), key_data, sizeof(key_data)); memset(iv_data, 0, sizeof(iv_data)); if (key) { iv_data[3] = key->keyidx << 6; if (cipher >= MT_CIPHER_TKIP) { /* Note: start with 1 to comply with spec, * (see comment on common/cmm_wpa.c:4291). */ iv_data[0] |= 1; iv_data[3] |= 0x20; } } mt7601u_wr_copy(dev, MT_WCID_IV(idx), iv_data, sizeof(iv_data)); val = mt7601u_rr(dev, MT_WCID_ATTR(idx)); val &= ~MT_WCID_ATTR_PKEY_MODE & ~MT_WCID_ATTR_PKEY_MODE_EXT; val |= MT76_SET(MT_WCID_ATTR_PKEY_MODE, cipher & 7) | MT76_SET(MT_WCID_ATTR_PKEY_MODE_EXT, cipher >> 3); val &= ~MT_WCID_ATTR_PAIRWISE; val |= MT_WCID_ATTR_PAIRWISE * !!(key && key->flags & IEEE80211_KEY_FLAG_PAIRWISE); mt7601u_wr(dev, MT_WCID_ATTR(idx), val); return 0; } int mt76_mac_shared_key_setup(struct mt7601u_dev *dev, u8 vif_idx, u8 key_idx, struct ieee80211_key_conf *key) { enum mt76_cipher_type cipher; u8 key_data[32]; u32 val; cipher = mt76_mac_get_key_info(key, key_data); if (cipher == MT_CIPHER_NONE && key) return -EINVAL; trace_set_shared_key(dev, vif_idx, key_idx); mt7601u_wr_copy(dev, MT_SKEY(vif_idx, key_idx), key_data, sizeof(key_data)); val = mt76_rr(dev, MT_SKEY_MODE(vif_idx)); val &= ~(MT_SKEY_MODE_MASK << MT_SKEY_MODE_SHIFT(vif_idx, key_idx)); val |= cipher << MT_SKEY_MODE_SHIFT(vif_idx, key_idx); mt76_wr(dev, MT_SKEY_MODE(vif_idx), val); return 0; }