/* Broadcom B43 wireless driver Transmission (TX/RX) related functions. Copyright (C) 2005 Martin Langer <martin-langer@gmx.de> Copyright (C) 2005 Stefano Brivio <stefano.brivio@polimi.it> Copyright (C) 2005, 2006 Michael Buesch <m@bues.ch> Copyright (C) 2005 Danny van Dyk <kugelfang@gentoo.org> Copyright (C) 2005 Andreas Jaggi <andreas.jaggi@waterwave.ch> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING. If not, write to the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "xmit.h" #include "phy_common.h" #include "dma.h" #include "pio.h" static const struct b43_tx_legacy_rate_phy_ctl_entry b43_tx_legacy_rate_phy_ctl[] = { { B43_CCK_RATE_1MB, 0x0, 0x0 }, { B43_CCK_RATE_2MB, 0x0, 0x1 }, { B43_CCK_RATE_5MB, 0x0, 0x2 }, { B43_CCK_RATE_11MB, 0x0, 0x3 }, { B43_OFDM_RATE_6MB, B43_TXH_PHY1_CRATE_1_2, B43_TXH_PHY1_MODUL_BPSK }, { B43_OFDM_RATE_9MB, B43_TXH_PHY1_CRATE_3_4, B43_TXH_PHY1_MODUL_BPSK }, { B43_OFDM_RATE_12MB, B43_TXH_PHY1_CRATE_1_2, B43_TXH_PHY1_MODUL_QPSK }, { B43_OFDM_RATE_18MB, B43_TXH_PHY1_CRATE_3_4, B43_TXH_PHY1_MODUL_QPSK }, { B43_OFDM_RATE_24MB, B43_TXH_PHY1_CRATE_1_2, B43_TXH_PHY1_MODUL_QAM16 }, { B43_OFDM_RATE_36MB, B43_TXH_PHY1_CRATE_3_4, B43_TXH_PHY1_MODUL_QAM16 }, { B43_OFDM_RATE_48MB, B43_TXH_PHY1_CRATE_2_3, B43_TXH_PHY1_MODUL_QAM64 }, { B43_OFDM_RATE_54MB, B43_TXH_PHY1_CRATE_3_4, B43_TXH_PHY1_MODUL_QAM64 }, }; static const struct b43_tx_legacy_rate_phy_ctl_entry * b43_tx_legacy_rate_phy_ctl_ent(u8 bitrate) { const struct b43_tx_legacy_rate_phy_ctl_entry *e; unsigned int i; for (i = 0; i < ARRAY_SIZE(b43_tx_legacy_rate_phy_ctl); i++) { e = &(b43_tx_legacy_rate_phy_ctl[i]); if (e->bitrate == bitrate) return e; } B43_WARN_ON(1); return NULL; } /* Extract the bitrate index out of a CCK PLCP header. */ static int b43_plcp_get_bitrate_idx_cck(struct b43_plcp_hdr6 *plcp) { switch (plcp->raw[0]) { case 0x0A: return 0; case 0x14: return 1; case 0x37: return 2; case 0x6E: return 3; } return -1; } /* Extract the bitrate index out of an OFDM PLCP header. */ static int b43_plcp_get_bitrate_idx_ofdm(struct b43_plcp_hdr6 *plcp, bool ghz5) { /* For 2 GHz band first OFDM rate is at index 4, see main.c */ int base = ghz5 ? 0 : 4; switch (plcp->raw[0] & 0xF) { case 0xB: return base + 0; case 0xF: return base + 1; case 0xA: return base + 2; case 0xE: return base + 3; case 0x9: return base + 4; case 0xD: return base + 5; case 0x8: return base + 6; case 0xC: return base + 7; } return -1; } u8 b43_plcp_get_ratecode_cck(const u8 bitrate) { switch (bitrate) { case B43_CCK_RATE_1MB: return 0x0A; case B43_CCK_RATE_2MB: return 0x14; case B43_CCK_RATE_5MB: return 0x37; case B43_CCK_RATE_11MB: return 0x6E; } B43_WARN_ON(1); return 0; } u8 b43_plcp_get_ratecode_ofdm(const u8 bitrate) { switch (bitrate) { case B43_OFDM_RATE_6MB: return 0xB; case B43_OFDM_RATE_9MB: return 0xF; case B43_OFDM_RATE_12MB: return 0xA; case B43_OFDM_RATE_18MB: return 0xE; case B43_OFDM_RATE_24MB: return 0x9; case B43_OFDM_RATE_36MB: return 0xD; case B43_OFDM_RATE_48MB: return 0x8; case B43_OFDM_RATE_54MB: return 0xC; } B43_WARN_ON(1); return 0; } void b43_generate_plcp_hdr(struct b43_plcp_hdr4 *plcp, const u16 octets, const u8 bitrate) { __u8 *raw = plcp->raw; if (b43_is_ofdm_rate(bitrate)) { u32 d; d = b43_plcp_get_ratecode_ofdm(bitrate); B43_WARN_ON(octets & 0xF000); d |= (octets << 5); plcp->data = cpu_to_le32(d); } else { u32 plen; plen = octets * 16 / bitrate; if ((octets * 16 % bitrate) > 0) { plen++; if ((bitrate == B43_CCK_RATE_11MB) && ((octets * 8 % 11) < 4)) { raw[1] = 0x84; } else raw[1] = 0x04; } else raw[1] = 0x04; plcp->data |= cpu_to_le32(plen << 16); raw[0] = b43_plcp_get_ratecode_cck(bitrate); } } /* TODO: verify if needed for SSLPN or LCN */ static u16 b43_generate_tx_phy_ctl1(struct b43_wldev *dev, u8 bitrate) { const struct b43_phy *phy = &dev->phy; const struct b43_tx_legacy_rate_phy_ctl_entry *e; u16 control = 0; u16 bw; if (phy->type == B43_PHYTYPE_LP) bw = B43_TXH_PHY1_BW_20; else /* FIXME */ bw = B43_TXH_PHY1_BW_20; if (0) { /* FIXME: MIMO */ } else if (b43_is_cck_rate(bitrate) && phy->type != B43_PHYTYPE_LP) { control = bw; } else { control = bw; e = b43_tx_legacy_rate_phy_ctl_ent(bitrate); if (e) { control |= e->coding_rate; control |= e->modulation; } control |= B43_TXH_PHY1_MODE_SISO; } return control; } static u8 b43_calc_fallback_rate(u8 bitrate) { switch (bitrate) { case B43_CCK_RATE_1MB: return B43_CCK_RATE_1MB; case B43_CCK_RATE_2MB: return B43_CCK_RATE_1MB; case B43_CCK_RATE_5MB: return B43_CCK_RATE_2MB; case B43_CCK_RATE_11MB: return B43_CCK_RATE_5MB; case B43_OFDM_RATE_6MB: return B43_CCK_RATE_5MB; case B43_OFDM_RATE_9MB: return B43_OFDM_RATE_6MB; case B43_OFDM_RATE_12MB: return B43_OFDM_RATE_9MB; case B43_OFDM_RATE_18MB: return B43_OFDM_RATE_12MB; case B43_OFDM_RATE_24MB: return B43_OFDM_RATE_18MB; case B43_OFDM_RATE_36MB: return B43_OFDM_RATE_24MB; case B43_OFDM_RATE_48MB: return B43_OFDM_RATE_36MB; case B43_OFDM_RATE_54MB: return B43_OFDM_RATE_48MB; } B43_WARN_ON(1); return 0; } /* Generate a TX data header. */ int b43_generate_txhdr(struct b43_wldev *dev, u8 *_txhdr, struct sk_buff *skb_frag, struct ieee80211_tx_info *info, u16 cookie) { const unsigned char *fragment_data = skb_frag->data; unsigned int fragment_len = skb_frag->len; struct b43_txhdr *txhdr = (struct b43_txhdr *)_txhdr; const struct b43_phy *phy = &dev->phy; const struct ieee80211_hdr *wlhdr = (const struct ieee80211_hdr *)fragment_data; int use_encryption = !!info->control.hw_key; __le16 fctl = wlhdr->frame_control; struct ieee80211_rate *fbrate; u8 rate, rate_fb; int rate_ofdm, rate_fb_ofdm; unsigned int plcp_fragment_len; u32 mac_ctl = 0; u16 phy_ctl = 0; bool fill_phy_ctl1 = (phy->type == B43_PHYTYPE_LP || phy->type == B43_PHYTYPE_N || phy->type == B43_PHYTYPE_HT); u8 extra_ft = 0; struct ieee80211_rate *txrate; struct ieee80211_tx_rate *rates; memset(txhdr, 0, sizeof(*txhdr)); txrate = ieee80211_get_tx_rate(dev->wl->hw, info); rate = txrate ? txrate->hw_value : B43_CCK_RATE_1MB; rate_ofdm = b43_is_ofdm_rate(rate); fbrate = ieee80211_get_alt_retry_rate(dev->wl->hw, info, 0) ? : txrate; rate_fb = fbrate->hw_value; rate_fb_ofdm = b43_is_ofdm_rate(rate_fb); if (rate_ofdm) txhdr->phy_rate = b43_plcp_get_ratecode_ofdm(rate); else txhdr->phy_rate = b43_plcp_get_ratecode_cck(rate); txhdr->mac_frame_ctl = wlhdr->frame_control; memcpy(txhdr->tx_receiver, wlhdr->addr1, ETH_ALEN); /* Calculate duration for fallback rate */ if ((rate_fb == rate) || (wlhdr->duration_id & cpu_to_le16(0x8000)) || (wlhdr->duration_id == cpu_to_le16(0))) { /* If the fallback rate equals the normal rate or the * dur_id field contains an AID, CFP magic or 0, * use the original dur_id field. */ txhdr->dur_fb = wlhdr->duration_id; } else { txhdr->dur_fb = ieee80211_generic_frame_duration( dev->wl->hw, info->control.vif, info->band, fragment_len, fbrate); } plcp_fragment_len = fragment_len + FCS_LEN; if (use_encryption) { u8 key_idx = info->control.hw_key->hw_key_idx; struct b43_key *key; int wlhdr_len; size_t iv_len; B43_WARN_ON(key_idx >= ARRAY_SIZE(dev->key)); key = &(dev->key[key_idx]); if (unlikely(!key->keyconf)) { /* This key is invalid. This might only happen * in a short timeframe after machine resume before * we were able to reconfigure keys. * Drop this packet completely. Do not transmit it * unencrypted to avoid leaking information. */ return -ENOKEY; } /* Hardware appends ICV. */ plcp_fragment_len += info->control.hw_key->icv_len; key_idx = b43_kidx_to_fw(dev, key_idx); mac_ctl |= (key_idx << B43_TXH_MAC_KEYIDX_SHIFT) & B43_TXH_MAC_KEYIDX; mac_ctl |= (key->algorithm << B43_TXH_MAC_KEYALG_SHIFT) & B43_TXH_MAC_KEYALG; wlhdr_len = ieee80211_hdrlen(fctl); if (key->algorithm == B43_SEC_ALGO_TKIP) { u16 phase1key[5]; int i; /* we give the phase1key and iv16 here, the key is stored in * shm. With that the hardware can do phase 2 and encryption. */ ieee80211_get_tkip_p1k(info->control.hw_key, skb_frag, phase1key); /* phase1key is in host endian. Copy to little-endian txhdr->iv. */ for (i = 0; i < 5; i++) { txhdr->iv[i * 2 + 0] = phase1key[i]; txhdr->iv[i * 2 + 1] = phase1key[i] >> 8; } /* iv16 */ memcpy(txhdr->iv + 10, ((u8 *) wlhdr) + wlhdr_len, 3); } else { iv_len = min_t(size_t, info->control.hw_key->iv_len, ARRAY_SIZE(txhdr->iv)); memcpy(txhdr->iv, ((u8 *) wlhdr) + wlhdr_len, iv_len); } } switch (dev->fw.hdr_format) { case B43_FW_HDR_598: b43_generate_plcp_hdr((struct b43_plcp_hdr4 *)(&txhdr->format_598.plcp), plcp_fragment_len, rate); break; case B43_FW_HDR_351: b43_generate_plcp_hdr((struct b43_plcp_hdr4 *)(&txhdr->format_351.plcp), plcp_fragment_len, rate); break; case B43_FW_HDR_410: b43_generate_plcp_hdr((struct b43_plcp_hdr4 *)(&txhdr->format_410.plcp), plcp_fragment_len, rate); break; } b43_generate_plcp_hdr((struct b43_plcp_hdr4 *)(&txhdr->plcp_fb), plcp_fragment_len, rate_fb); /* Extra Frame Types */ if (rate_fb_ofdm) extra_ft |= B43_TXH_EFT_FB_OFDM; else extra_ft |= B43_TXH_EFT_FB_CCK; /* Set channel radio code. Note that the micrcode ORs 0x100 to * this value before comparing it to the value in SHM, if this * is a 5Ghz packet. */ txhdr->chan_radio_code = phy->channel; /* PHY TX Control word */ if (rate_ofdm) phy_ctl |= B43_TXH_PHY_ENC_OFDM; else phy_ctl |= B43_TXH_PHY_ENC_CCK; if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) phy_ctl |= B43_TXH_PHY_SHORTPRMBL; switch (b43_ieee80211_antenna_sanitize(dev, 0)) { case 0: /* Default */ phy_ctl |= B43_TXH_PHY_ANT01AUTO; break; case 1: /* Antenna 0 */ phy_ctl |= B43_TXH_PHY_ANT0; break; case 2: /* Antenna 1 */ phy_ctl |= B43_TXH_PHY_ANT1; break; case 3: /* Antenna 2 */ phy_ctl |= B43_TXH_PHY_ANT2; break; case 4: /* Antenna 3 */ phy_ctl |= B43_TXH_PHY_ANT3; break; default: B43_WARN_ON(1); } rates = info->control.rates; /* MAC control */ if (!(info->flags & IEEE80211_TX_CTL_NO_ACK)) mac_ctl |= B43_TXH_MAC_ACK; /* use hardware sequence counter as the non-TID counter */ if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) mac_ctl |= B43_TXH_MAC_HWSEQ; if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) mac_ctl |= B43_TXH_MAC_STMSDU; if (!phy->gmode) mac_ctl |= B43_TXH_MAC_5GHZ; /* Overwrite rates[0].count to make the retry calculation * in the tx status easier. need the actual retry limit to * detect whether the fallback rate was used. */ if ((rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) || (rates[0].count <= dev->wl->hw->conf.long_frame_max_tx_count)) { rates[0].count = dev->wl->hw->conf.long_frame_max_tx_count; mac_ctl |= B43_TXH_MAC_LONGFRAME; } else { rates[0].count = dev->wl->hw->conf.short_frame_max_tx_count; } /* Generate the RTS or CTS-to-self frame */ if ((rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) || (rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)) { unsigned int len; struct ieee80211_hdr *uninitialized_var(hdr); int rts_rate, rts_rate_fb; int rts_rate_ofdm, rts_rate_fb_ofdm; struct b43_plcp_hdr6 *uninitialized_var(plcp); struct ieee80211_rate *rts_cts_rate; rts_cts_rate = ieee80211_get_rts_cts_rate(dev->wl->hw, info); rts_rate = rts_cts_rate ? rts_cts_rate->hw_value : B43_CCK_RATE_1MB; rts_rate_ofdm = b43_is_ofdm_rate(rts_rate); rts_rate_fb = b43_calc_fallback_rate(rts_rate); rts_rate_fb_ofdm = b43_is_ofdm_rate(rts_rate_fb); if (rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { struct ieee80211_cts *uninitialized_var(cts); switch (dev->fw.hdr_format) { case B43_FW_HDR_598: cts = (struct ieee80211_cts *) (txhdr->format_598.rts_frame); break; case B43_FW_HDR_351: cts = (struct ieee80211_cts *) (txhdr->format_351.rts_frame); break; case B43_FW_HDR_410: cts = (struct ieee80211_cts *) (txhdr->format_410.rts_frame); break; } ieee80211_ctstoself_get(dev->wl->hw, info->control.vif, fragment_data, fragment_len, info, cts); mac_ctl |= B43_TXH_MAC_SENDCTS; len = sizeof(struct ieee80211_cts); } else { struct ieee80211_rts *uninitialized_var(rts); switch (dev->fw.hdr_format) { case B43_FW_HDR_598: rts = (struct ieee80211_rts *) (txhdr->format_598.rts_frame); break; case B43_FW_HDR_351: rts = (struct ieee80211_rts *) (txhdr->format_351.rts_frame); break; case B43_FW_HDR_410: rts = (struct ieee80211_rts *) (txhdr->format_410.rts_frame); break; } ieee80211_rts_get(dev->wl->hw, info->control.vif, fragment_data, fragment_len, info, rts); mac_ctl |= B43_TXH_MAC_SENDRTS; len = sizeof(struct ieee80211_rts); } len += FCS_LEN; /* Generate the PLCP headers for the RTS/CTS frame */ switch (dev->fw.hdr_format) { case B43_FW_HDR_598: plcp = &txhdr->format_598.rts_plcp; break; case B43_FW_HDR_351: plcp = &txhdr->format_351.rts_plcp; break; case B43_FW_HDR_410: plcp = &txhdr->format_410.rts_plcp; break; } b43_generate_plcp_hdr((struct b43_plcp_hdr4 *)plcp, len, rts_rate); plcp = &txhdr->rts_plcp_fb; b43_generate_plcp_hdr((struct b43_plcp_hdr4 *)plcp, len, rts_rate_fb); switch (dev->fw.hdr_format) { case B43_FW_HDR_598: hdr = (struct ieee80211_hdr *) (&txhdr->format_598.rts_frame); break; case B43_FW_HDR_351: hdr = (struct ieee80211_hdr *) (&txhdr->format_351.rts_frame); break; case B43_FW_HDR_410: hdr = (struct ieee80211_hdr *) (&txhdr->format_410.rts_frame); break; } txhdr->rts_dur_fb = hdr->duration_id; if (rts_rate_ofdm) { extra_ft |= B43_TXH_EFT_RTS_OFDM; txhdr->phy_rate_rts = b43_plcp_get_ratecode_ofdm(rts_rate); } else { extra_ft |= B43_TXH_EFT_RTS_CCK; txhdr->phy_rate_rts = b43_plcp_get_ratecode_cck(rts_rate); } if (rts_rate_fb_ofdm) extra_ft |= B43_TXH_EFT_RTSFB_OFDM; else extra_ft |= B43_TXH_EFT_RTSFB_CCK; if (rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS && fill_phy_ctl1) { txhdr->phy_ctl1_rts = cpu_to_le16( b43_generate_tx_phy_ctl1(dev, rts_rate)); txhdr->phy_ctl1_rts_fb = cpu_to_le16( b43_generate_tx_phy_ctl1(dev, rts_rate_fb)); } } /* Magic cookie */ switch (dev->fw.hdr_format) { case B43_FW_HDR_598: txhdr->format_598.cookie = cpu_to_le16(cookie); break; case B43_FW_HDR_351: txhdr->format_351.cookie = cpu_to_le16(cookie); break; case B43_FW_HDR_410: txhdr->format_410.cookie = cpu_to_le16(cookie); break; } if (fill_phy_ctl1) { txhdr->phy_ctl1 = cpu_to_le16(b43_generate_tx_phy_ctl1(dev, rate)); txhdr->phy_ctl1_fb = cpu_to_le16(b43_generate_tx_phy_ctl1(dev, rate_fb)); } /* Apply the bitfields */ txhdr->mac_ctl = cpu_to_le32(mac_ctl); txhdr->phy_ctl = cpu_to_le16(phy_ctl); txhdr->extra_ft = extra_ft; return 0; } static s8 b43_rssi_postprocess(struct b43_wldev *dev, u8 in_rssi, int ofdm, int adjust_2053, int adjust_2050) { struct b43_phy *phy = &dev->phy; struct b43_phy_g *gphy = phy->g; s32 tmp; switch (phy->radio_ver) { case 0x2050: if (ofdm) { tmp = in_rssi; if (tmp > 127) tmp -= 256; tmp *= 73; tmp /= 64; if (adjust_2050) tmp += 25; else tmp -= 3; } else { if (dev->dev->bus_sprom-> boardflags_lo & B43_BFL_RSSI) { if (in_rssi > 63) in_rssi = 63; B43_WARN_ON(phy->type != B43_PHYTYPE_G); tmp = gphy->nrssi_lt[in_rssi]; tmp = 31 - tmp; tmp *= -131; tmp /= 128; tmp -= 57; } else { tmp = in_rssi; tmp = 31 - tmp; tmp *= -149; tmp /= 128; tmp -= 68; } if (phy->type == B43_PHYTYPE_G && adjust_2050) tmp += 25; } break; case 0x2060: if (in_rssi > 127) tmp = in_rssi - 256; else tmp = in_rssi; break; default: tmp = in_rssi; tmp -= 11; tmp *= 103; tmp /= 64; if (adjust_2053) tmp -= 109; else tmp -= 83; } return (s8) tmp; } //TODO #if 0 static s8 b43_rssinoise_postprocess(struct b43_wldev *dev, u8 in_rssi) { struct b43_phy *phy = &dev->phy; s8 ret; if (phy->type == B43_PHYTYPE_A) { //TODO: Incomplete specs. ret = 0; } else ret = b43_rssi_postprocess(dev, in_rssi, 0, 1, 1); return ret; } #endif void b43_rx(struct b43_wldev *dev, struct sk_buff *skb, const void *_rxhdr) { struct ieee80211_rx_status status; struct b43_plcp_hdr6 *plcp; struct ieee80211_hdr *wlhdr; const struct b43_rxhdr_fw4 *rxhdr = _rxhdr; __le16 fctl; u16 phystat0, phystat3; u16 uninitialized_var(chanstat), uninitialized_var(mactime); u32 uninitialized_var(macstat); u16 chanid; u16 phytype; int padding, rate_idx; memset(&status, 0, sizeof(status)); /* Get metadata about the frame from the header. */ phystat0 = le16_to_cpu(rxhdr->phy_status0); phystat3 = le16_to_cpu(rxhdr->phy_status3); switch (dev->fw.hdr_format) { case B43_FW_HDR_598: macstat = le32_to_cpu(rxhdr->format_598.mac_status); mactime = le16_to_cpu(rxhdr->format_598.mac_time); chanstat = le16_to_cpu(rxhdr->format_598.channel); break; case B43_FW_HDR_410: case B43_FW_HDR_351: macstat = le32_to_cpu(rxhdr->format_351.mac_status); mactime = le16_to_cpu(rxhdr->format_351.mac_time); chanstat = le16_to_cpu(rxhdr->format_351.channel); break; } phytype = chanstat & B43_RX_CHAN_PHYTYPE; if (unlikely(macstat & B43_RX_MAC_FCSERR)) { dev->wl->ieee_stats.dot11FCSErrorCount++; status.flag |= RX_FLAG_FAILED_FCS_CRC; } if (unlikely(phystat0 & (B43_RX_PHYST0_PLCPHCF | B43_RX_PHYST0_PLCPFV))) status.flag |= RX_FLAG_FAILED_PLCP_CRC; if (phystat0 & B43_RX_PHYST0_SHORTPRMBL) status.flag |= RX_FLAG_SHORTPRE; if (macstat & B43_RX_MAC_DECERR) { /* Decryption with the given key failed. * Drop the packet. We also won't be able to decrypt it with * the key in software. */ goto drop; } /* Skip PLCP and padding */ padding = (macstat & B43_RX_MAC_PADDING) ? 2 : 0; if (unlikely(skb->len < (sizeof(struct b43_plcp_hdr6) + padding))) { b43dbg(dev->wl, "RX: Packet size underrun (1)\n"); goto drop; } plcp = (struct b43_plcp_hdr6 *)(skb->data + padding); skb_pull(skb, sizeof(struct b43_plcp_hdr6) + padding); /* The skb contains the Wireless Header + payload data now */ if (unlikely(skb->len < (2 + 2 + 6 /*minimum hdr */ + FCS_LEN))) { b43dbg(dev->wl, "RX: Packet size underrun (2)\n"); goto drop; } wlhdr = (struct ieee80211_hdr *)(skb->data); fctl = wlhdr->frame_control; if (macstat & B43_RX_MAC_DEC) { unsigned int keyidx; int wlhdr_len; keyidx = ((macstat & B43_RX_MAC_KEYIDX) >> B43_RX_MAC_KEYIDX_SHIFT); /* We must adjust the key index here. We want the "physical" * key index, but the ucode passed it slightly different. */ keyidx = b43_kidx_to_raw(dev, keyidx); B43_WARN_ON(keyidx >= ARRAY_SIZE(dev->key)); if (dev->key[keyidx].algorithm != B43_SEC_ALGO_NONE) { wlhdr_len = ieee80211_hdrlen(fctl); if (unlikely(skb->len < (wlhdr_len + 3))) { b43dbg(dev->wl, "RX: Packet size underrun (3)\n"); goto drop; } status.flag |= RX_FLAG_DECRYPTED; } } /* Link quality statistics */ switch (chanstat & B43_RX_CHAN_PHYTYPE) { case B43_PHYTYPE_HT: /* TODO: is max the right choice? */ status.signal = max_t(__s8, max(rxhdr->phy_ht_power0, rxhdr->phy_ht_power1), rxhdr->phy_ht_power2); break; case B43_PHYTYPE_N: /* Broadcom has code for min and avg, but always uses max */ if (rxhdr->power0 == 16 || rxhdr->power0 == 32) status.signal = max(rxhdr->power1, rxhdr->power2); else status.signal = max(rxhdr->power0, rxhdr->power1); break; case B43_PHYTYPE_A: case B43_PHYTYPE_B: case B43_PHYTYPE_G: case B43_PHYTYPE_LP: status.signal = b43_rssi_postprocess(dev, rxhdr->jssi, (phystat0 & B43_RX_PHYST0_OFDM), (phystat0 & B43_RX_PHYST0_GAINCTL), (phystat3 & B43_RX_PHYST3_TRSTATE)); break; } if (phystat0 & B43_RX_PHYST0_OFDM) rate_idx = b43_plcp_get_bitrate_idx_ofdm(plcp, !!(chanstat & B43_RX_CHAN_5GHZ)); else rate_idx = b43_plcp_get_bitrate_idx_cck(plcp); if (unlikely(rate_idx == -1)) { /* PLCP seems to be corrupted. * Drop the frame, if we are not interested in corrupted frames. */ if (!(dev->wl->filter_flags & FIF_PLCPFAIL)) goto drop; } status.rate_idx = rate_idx; status.antenna = !!(phystat0 & B43_RX_PHYST0_ANT); /* * All frames on monitor interfaces and beacons always need a full * 64-bit timestamp. Monitor interfaces need it for diagnostic * purposes and beacons for IBSS merging. * This code assumes we get to process the packet within 16 bits * of timestamp, i.e. about 65 milliseconds after the PHY received * the first symbol. */ if (ieee80211_is_beacon(fctl) || dev->wl->radiotap_enabled) { u16 low_mactime_now; b43_tsf_read(dev, &status.mactime); low_mactime_now = status.mactime; status.mactime = status.mactime & ~0xFFFFULL; status.mactime += mactime; if (low_mactime_now <= mactime) status.mactime -= 0x10000; status.flag |= RX_FLAG_MACTIME_START; } chanid = (chanstat & B43_RX_CHAN_ID) >> B43_RX_CHAN_ID_SHIFT; switch (chanstat & B43_RX_CHAN_PHYTYPE) { case B43_PHYTYPE_A: status.band = IEEE80211_BAND_5GHZ; B43_WARN_ON(1); /* FIXME: We don't really know which value the "chanid" contains. * So the following assignment might be wrong. */ status.freq = ieee80211_channel_to_frequency(chanid, status.band); break; case B43_PHYTYPE_G: status.band = IEEE80211_BAND_2GHZ; /* Somewhere between 478.104 and 508.1084 firmware for G-PHY * has been modified to be compatible with N-PHY and others. */ if (dev->fw.rev >= 508) status.freq = ieee80211_channel_to_frequency(chanid, status.band); else status.freq = chanid + 2400; break; case B43_PHYTYPE_N: case B43_PHYTYPE_LP: case B43_PHYTYPE_HT: /* chanid is the SHM channel cookie. Which is the plain * channel number in b43. */ if (chanstat & B43_RX_CHAN_5GHZ) status.band = IEEE80211_BAND_5GHZ; else status.band = IEEE80211_BAND_2GHZ; status.freq = ieee80211_channel_to_frequency(chanid, status.band); break; default: B43_WARN_ON(1); goto drop; } memcpy(IEEE80211_SKB_RXCB(skb), &status, sizeof(status)); ieee80211_rx_ni(dev->wl->hw, skb); #if B43_DEBUG dev->rx_count++; #endif return; drop: dev_kfree_skb_any(skb); } void b43_handle_txstatus(struct b43_wldev *dev, const struct b43_txstatus *status) { b43_debugfs_log_txstat(dev, status); if (status->intermediate) return; if (status->for_ampdu) return; if (!status->acked) dev->wl->ieee_stats.dot11ACKFailureCount++; if (status->rts_count) { if (status->rts_count == 0xF) //FIXME dev->wl->ieee_stats.dot11RTSFailureCount++; else dev->wl->ieee_stats.dot11RTSSuccessCount++; } if (b43_using_pio_transfers(dev)) b43_pio_handle_txstatus(dev, status); else b43_dma_handle_txstatus(dev, status); b43_phy_txpower_check(dev, 0); } /* Fill out the mac80211 TXstatus report based on the b43-specific * txstatus report data. This returns a boolean whether the frame was * successfully transmitted. */ bool b43_fill_txstatus_report(struct b43_wldev *dev, struct ieee80211_tx_info *report, const struct b43_txstatus *status) { bool frame_success = true; int retry_limit; /* preserve the confiured retry limit before clearing the status * The xmit function has overwritten the rc's value with the actual * retry limit done by the hardware */ retry_limit = report->status.rates[0].count; ieee80211_tx_info_clear_status(report); if (status->acked) { /* The frame was ACKed. */ report->flags |= IEEE80211_TX_STAT_ACK; } else { /* The frame was not ACKed... */ if (!(report->flags & IEEE80211_TX_CTL_NO_ACK)) { /* ...but we expected an ACK. */ frame_success = false; } } if (status->frame_count == 0) { /* The frame was not transmitted at all. */ report->status.rates[0].count = 0; } else if (status->rts_count > dev->wl->hw->conf.short_frame_max_tx_count) { /* * If the short retries (RTS, not data frame) have exceeded * the limit, the hw will not have tried the selected rate, * but will have used the fallback rate instead. * Don't let the rate control count attempts for the selected * rate in this case, otherwise the statistics will be off. */ report->status.rates[0].count = 0; report->status.rates[1].count = status->frame_count; } else { if (status->frame_count > retry_limit) { report->status.rates[0].count = retry_limit; report->status.rates[1].count = status->frame_count - retry_limit; } else { report->status.rates[0].count = status->frame_count; report->status.rates[1].idx = -1; } } return frame_success; } /* Stop any TX operation on the device (suspend the hardware queues) */ void b43_tx_suspend(struct b43_wldev *dev) { if (b43_using_pio_transfers(dev)) b43_pio_tx_suspend(dev); else b43_dma_tx_suspend(dev); } /* Resume any TX operation on the device (resume the hardware queues) */ void b43_tx_resume(struct b43_wldev *dev) { if (b43_using_pio_transfers(dev)) b43_pio_tx_resume(dev); else b43_dma_tx_resume(dev); }