/* * Atheros CARL9170 driver * * 802.11 xmit & status routines * * Copyright 2008, Johannes Berg <johannes@sipsolutions.net> * Copyright 2009, 2010, Christian Lamparter <chunkeey@googlemail.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, see * http://www.gnu.org/licenses/. * * This file incorporates work covered by the following copyright and * permission notice: * Copyright (c) 2007-2008 Atheros Communications, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include <linux/slab.h> #include <linux/module.h> #include <linux/etherdevice.h> #include <net/mac80211.h> #include "carl9170.h" #include "hw.h" #include "cmd.h" static inline unsigned int __carl9170_get_queue(struct ar9170 *ar, unsigned int queue) { if (unlikely(modparam_noht)) { return queue; } else { /* * This is just another workaround, until * someone figures out how to get QoS and * AMPDU to play nicely together. */ return 2; /* AC_BE */ } } static inline unsigned int carl9170_get_queue(struct ar9170 *ar, struct sk_buff *skb) { return __carl9170_get_queue(ar, skb_get_queue_mapping(skb)); } static bool is_mem_full(struct ar9170 *ar) { return (DIV_ROUND_UP(IEEE80211_MAX_FRAME_LEN, ar->fw.mem_block_size) > atomic_read(&ar->mem_free_blocks)); } static void carl9170_tx_accounting(struct ar9170 *ar, struct sk_buff *skb) { int queue, i; bool mem_full; atomic_inc(&ar->tx_total_queued); queue = skb_get_queue_mapping(skb); spin_lock_bh(&ar->tx_stats_lock); /* * The driver has to accept the frame, regardless if the queue is * full to the brim, or not. We have to do the queuing internally, * since mac80211 assumes that a driver which can operate with * aggregated frames does not reject frames for this reason. */ ar->tx_stats[queue].len++; ar->tx_stats[queue].count++; mem_full = is_mem_full(ar); for (i = 0; i < ar->hw->queues; i++) { if (mem_full || ar->tx_stats[i].len >= ar->tx_stats[i].limit) { ieee80211_stop_queue(ar->hw, i); ar->queue_stop_timeout[i] = jiffies; } } spin_unlock_bh(&ar->tx_stats_lock); } /* needs rcu_read_lock */ static struct ieee80211_sta *__carl9170_get_tx_sta(struct ar9170 *ar, struct sk_buff *skb) { struct _carl9170_tx_superframe *super = (void *) skb->data; struct ieee80211_hdr *hdr = (void *) super->frame_data; struct ieee80211_vif *vif; unsigned int vif_id; vif_id = (super->s.misc & CARL9170_TX_SUPER_MISC_VIF_ID) >> CARL9170_TX_SUPER_MISC_VIF_ID_S; if (WARN_ON_ONCE(vif_id >= AR9170_MAX_VIRTUAL_MAC)) return NULL; vif = rcu_dereference(ar->vif_priv[vif_id].vif); if (unlikely(!vif)) return NULL; /* * Normally we should use wrappers like ieee80211_get_DA to get * the correct peer ieee80211_sta. * * But there is a problem with indirect traffic (broadcasts, or * data which is designated for other stations) in station mode. * The frame will be directed to the AP for distribution and not * to the actual destination. */ return ieee80211_find_sta(vif, hdr->addr1); } static void carl9170_tx_ps_unblock(struct ar9170 *ar, struct sk_buff *skb) { struct ieee80211_sta *sta; struct carl9170_sta_info *sta_info; rcu_read_lock(); sta = __carl9170_get_tx_sta(ar, skb); if (unlikely(!sta)) goto out_rcu; sta_info = (struct carl9170_sta_info *) sta->drv_priv; if (atomic_dec_return(&sta_info->pending_frames) == 0) ieee80211_sta_block_awake(ar->hw, sta, false); out_rcu: rcu_read_unlock(); } static void carl9170_tx_accounting_free(struct ar9170 *ar, struct sk_buff *skb) { int queue; queue = skb_get_queue_mapping(skb); spin_lock_bh(&ar->tx_stats_lock); ar->tx_stats[queue].len--; if (!is_mem_full(ar)) { unsigned int i; for (i = 0; i < ar->hw->queues; i++) { if (ar->tx_stats[i].len >= CARL9170_NUM_TX_LIMIT_SOFT) continue; if (ieee80211_queue_stopped(ar->hw, i)) { unsigned long tmp; tmp = jiffies - ar->queue_stop_timeout[i]; if (tmp > ar->max_queue_stop_timeout[i]) ar->max_queue_stop_timeout[i] = tmp; } ieee80211_wake_queue(ar->hw, i); } } spin_unlock_bh(&ar->tx_stats_lock); if (atomic_dec_and_test(&ar->tx_total_queued)) complete(&ar->tx_flush); } static int carl9170_alloc_dev_space(struct ar9170 *ar, struct sk_buff *skb) { struct _carl9170_tx_superframe *super = (void *) skb->data; unsigned int chunks; int cookie = -1; atomic_inc(&ar->mem_allocs); chunks = DIV_ROUND_UP(skb->len, ar->fw.mem_block_size); if (unlikely(atomic_sub_return(chunks, &ar->mem_free_blocks) < 0)) { atomic_add(chunks, &ar->mem_free_blocks); return -ENOSPC; } spin_lock_bh(&ar->mem_lock); cookie = bitmap_find_free_region(ar->mem_bitmap, ar->fw.mem_blocks, 0); spin_unlock_bh(&ar->mem_lock); if (unlikely(cookie < 0)) { atomic_add(chunks, &ar->mem_free_blocks); return -ENOSPC; } super = (void *) skb->data; /* * Cookie #0 serves two special purposes: * 1. The firmware might use it generate BlockACK frames * in responds of an incoming BlockAckReqs. * * 2. Prevent double-free bugs. */ super->s.cookie = (u8) cookie + 1; return 0; } static void carl9170_release_dev_space(struct ar9170 *ar, struct sk_buff *skb) { struct _carl9170_tx_superframe *super = (void *) skb->data; int cookie; /* make a local copy of the cookie */ cookie = super->s.cookie; /* invalidate cookie */ super->s.cookie = 0; /* * Do a out-of-bounds check on the cookie: * * * cookie "0" is reserved and won't be assigned to any * out-going frame. Internally however, it is used to * mark no longer/un-accounted frames and serves as a * cheap way of preventing frames from being freed * twice by _accident_. NB: There is a tiny race... * * * obviously, cookie number is limited by the amount * of available memory blocks, so the number can * never execeed the mem_blocks count. */ if (unlikely(WARN_ON_ONCE(cookie == 0) || WARN_ON_ONCE(cookie > ar->fw.mem_blocks))) return; atomic_add(DIV_ROUND_UP(skb->len, ar->fw.mem_block_size), &ar->mem_free_blocks); spin_lock_bh(&ar->mem_lock); bitmap_release_region(ar->mem_bitmap, cookie - 1, 0); spin_unlock_bh(&ar->mem_lock); } /* Called from any context */ static void carl9170_tx_release(struct kref *ref) { struct ar9170 *ar; struct carl9170_tx_info *arinfo; struct ieee80211_tx_info *txinfo; struct sk_buff *skb; arinfo = container_of(ref, struct carl9170_tx_info, ref); txinfo = container_of((void *) arinfo, struct ieee80211_tx_info, rate_driver_data); skb = container_of((void *) txinfo, struct sk_buff, cb); ar = arinfo->ar; if (WARN_ON_ONCE(!ar)) return; BUILD_BUG_ON( offsetof(struct ieee80211_tx_info, status.ack_signal) != 20); memset(&txinfo->status.ack_signal, 0, sizeof(struct ieee80211_tx_info) - offsetof(struct ieee80211_tx_info, status.ack_signal)); if (atomic_read(&ar->tx_total_queued)) ar->tx_schedule = true; if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) { if (!atomic_read(&ar->tx_ampdu_upload)) ar->tx_ampdu_schedule = true; if (txinfo->flags & IEEE80211_TX_STAT_AMPDU) { struct _carl9170_tx_superframe *super; super = (void *)skb->data; txinfo->status.ampdu_len = super->s.rix; txinfo->status.ampdu_ack_len = super->s.cnt; } else if ((txinfo->flags & IEEE80211_TX_STAT_ACK) && !(txinfo->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)) { /* * drop redundant tx_status reports: * * 1. ampdu_ack_len of the final tx_status does * include the feedback of this particular frame. * * 2. tx_status_irqsafe only queues up to 128 * tx feedback reports and discards the rest. * * 3. minstrel_ht is picky, it only accepts * reports of frames with the TX_STATUS_AMPDU flag. * * 4. mac80211 is not particularly interested in * feedback either [CTL_REQ_TX_STATUS not set] */ ieee80211_free_txskb(ar->hw, skb); return; } else { /* * Either the frame transmission has failed or * mac80211 requested tx status. */ } } skb_pull(skb, sizeof(struct _carl9170_tx_superframe)); ieee80211_tx_status_irqsafe(ar->hw, skb); } void carl9170_tx_get_skb(struct sk_buff *skb) { struct carl9170_tx_info *arinfo = (void *) (IEEE80211_SKB_CB(skb))->rate_driver_data; kref_get(&arinfo->ref); } int carl9170_tx_put_skb(struct sk_buff *skb) { struct carl9170_tx_info *arinfo = (void *) (IEEE80211_SKB_CB(skb))->rate_driver_data; return kref_put(&arinfo->ref, carl9170_tx_release); } /* Caller must hold the tid_info->lock & rcu_read_lock */ static void carl9170_tx_shift_bm(struct ar9170 *ar, struct carl9170_sta_tid *tid_info, u16 seq) { u16 off; off = SEQ_DIFF(seq, tid_info->bsn); if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS)) return; /* * Sanity check. For each MPDU we set the bit in bitmap and * clear it once we received the tx_status. * But if the bit is already cleared then we've been bitten * by a bug. */ WARN_ON_ONCE(!test_and_clear_bit(off, tid_info->bitmap)); off = SEQ_DIFF(tid_info->snx, tid_info->bsn); if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS)) return; if (!bitmap_empty(tid_info->bitmap, off)) off = find_first_bit(tid_info->bitmap, off); tid_info->bsn += off; tid_info->bsn &= 0x0fff; bitmap_shift_right(tid_info->bitmap, tid_info->bitmap, off, CARL9170_BAW_BITS); } static void carl9170_tx_status_process_ampdu(struct ar9170 *ar, struct sk_buff *skb, struct ieee80211_tx_info *txinfo) { struct _carl9170_tx_superframe *super = (void *) skb->data; struct ieee80211_hdr *hdr = (void *) super->frame_data; struct ieee80211_sta *sta; struct carl9170_sta_info *sta_info; struct carl9170_sta_tid *tid_info; u8 tid; if (!(txinfo->flags & IEEE80211_TX_CTL_AMPDU) || txinfo->flags & IEEE80211_TX_CTL_INJECTED) return; rcu_read_lock(); sta = __carl9170_get_tx_sta(ar, skb); if (unlikely(!sta)) goto out_rcu; tid = get_tid_h(hdr); sta_info = (void *) sta->drv_priv; tid_info = rcu_dereference(sta_info->agg[tid]); if (!tid_info) goto out_rcu; spin_lock_bh(&tid_info->lock); if (likely(tid_info->state >= CARL9170_TID_STATE_IDLE)) carl9170_tx_shift_bm(ar, tid_info, get_seq_h(hdr)); if (sta_info->stats[tid].clear) { sta_info->stats[tid].clear = false; sta_info->stats[tid].req = false; sta_info->stats[tid].ampdu_len = 0; sta_info->stats[tid].ampdu_ack_len = 0; } sta_info->stats[tid].ampdu_len++; if (txinfo->status.rates[0].count == 1) sta_info->stats[tid].ampdu_ack_len++; if (!(txinfo->flags & IEEE80211_TX_STAT_ACK)) sta_info->stats[tid].req = true; if (super->f.mac_control & cpu_to_le16(AR9170_TX_MAC_IMM_BA)) { super->s.rix = sta_info->stats[tid].ampdu_len; super->s.cnt = sta_info->stats[tid].ampdu_ack_len; txinfo->flags |= IEEE80211_TX_STAT_AMPDU; if (sta_info->stats[tid].req) txinfo->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK; sta_info->stats[tid].clear = true; } spin_unlock_bh(&tid_info->lock); out_rcu: rcu_read_unlock(); } static void carl9170_tx_bar_status(struct ar9170 *ar, struct sk_buff *skb, struct ieee80211_tx_info *tx_info) { struct _carl9170_tx_superframe *super = (void *) skb->data; struct ieee80211_bar *bar = (void *) super->frame_data; /* * Unlike all other frames, the status report for BARs does * not directly come from the hardware as it is incapable of * matching a BA to a previously send BAR. * Instead the RX-path will scan for incoming BAs and set the * IEEE80211_TX_STAT_ACK if it sees one that was likely * caused by a BAR from us. */ if (unlikely(ieee80211_is_back_req(bar->frame_control)) && !(tx_info->flags & IEEE80211_TX_STAT_ACK)) { struct carl9170_bar_list_entry *entry; int queue = skb_get_queue_mapping(skb); rcu_read_lock(); list_for_each_entry_rcu(entry, &ar->bar_list[queue], list) { if (entry->skb == skb) { spin_lock_bh(&ar->bar_list_lock[queue]); list_del_rcu(&entry->list); spin_unlock_bh(&ar->bar_list_lock[queue]); kfree_rcu(entry, head); goto out; } } WARN(1, "bar not found in %d - ra:%pM ta:%pM c:%x ssn:%x\n", queue, bar->ra, bar->ta, bar->control, bar->start_seq_num); out: rcu_read_unlock(); } } void carl9170_tx_status(struct ar9170 *ar, struct sk_buff *skb, const bool success) { struct ieee80211_tx_info *txinfo; carl9170_tx_accounting_free(ar, skb); txinfo = IEEE80211_SKB_CB(skb); carl9170_tx_bar_status(ar, skb, txinfo); if (success) txinfo->flags |= IEEE80211_TX_STAT_ACK; else ar->tx_ack_failures++; if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) carl9170_tx_status_process_ampdu(ar, skb, txinfo); carl9170_tx_ps_unblock(ar, skb); carl9170_tx_put_skb(skb); } /* This function may be called form any context */ void carl9170_tx_callback(struct ar9170 *ar, struct sk_buff *skb) { struct ieee80211_tx_info *txinfo = IEEE80211_SKB_CB(skb); atomic_dec(&ar->tx_total_pending); if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) atomic_dec(&ar->tx_ampdu_upload); if (carl9170_tx_put_skb(skb)) tasklet_hi_schedule(&ar->usb_tasklet); } static struct sk_buff *carl9170_get_queued_skb(struct ar9170 *ar, u8 cookie, struct sk_buff_head *queue) { struct sk_buff *skb; spin_lock_bh(&queue->lock); skb_queue_walk(queue, skb) { struct _carl9170_tx_superframe *txc = (void *) skb->data; if (txc->s.cookie != cookie) continue; __skb_unlink(skb, queue); spin_unlock_bh(&queue->lock); carl9170_release_dev_space(ar, skb); return skb; } spin_unlock_bh(&queue->lock); return NULL; } static void carl9170_tx_fill_rateinfo(struct ar9170 *ar, unsigned int rix, unsigned int tries, struct ieee80211_tx_info *txinfo) { unsigned int i; for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { if (txinfo->status.rates[i].idx < 0) break; if (i == rix) { txinfo->status.rates[i].count = tries; i++; break; } } for (; i < IEEE80211_TX_MAX_RATES; i++) { txinfo->status.rates[i].idx = -1; txinfo->status.rates[i].count = 0; } } static void carl9170_check_queue_stop_timeout(struct ar9170 *ar) { int i; struct sk_buff *skb; struct ieee80211_tx_info *txinfo; struct carl9170_tx_info *arinfo; bool restart = false; for (i = 0; i < ar->hw->queues; i++) { spin_lock_bh(&ar->tx_status[i].lock); skb = skb_peek(&ar->tx_status[i]); if (!skb) goto next; txinfo = IEEE80211_SKB_CB(skb); arinfo = (void *) txinfo->rate_driver_data; if (time_is_before_jiffies(arinfo->timeout + msecs_to_jiffies(CARL9170_QUEUE_STUCK_TIMEOUT)) == true) restart = true; next: spin_unlock_bh(&ar->tx_status[i].lock); } if (restart) { /* * At least one queue has been stuck for long enough. * Give the device a kick and hope it gets back to * work. * * possible reasons may include: * - frames got lost/corrupted (bad connection to the device) * - stalled rx processing/usb controller hiccups * - firmware errors/bugs * - every bug you can think of. * - all bugs you can't... * - ... */ carl9170_restart(ar, CARL9170_RR_STUCK_TX); } } static void carl9170_tx_ampdu_timeout(struct ar9170 *ar) { struct carl9170_sta_tid *iter; struct sk_buff *skb; struct ieee80211_tx_info *txinfo; struct carl9170_tx_info *arinfo; struct ieee80211_sta *sta; rcu_read_lock(); list_for_each_entry_rcu(iter, &ar->tx_ampdu_list, list) { if (iter->state < CARL9170_TID_STATE_IDLE) continue; spin_lock_bh(&iter->lock); skb = skb_peek(&iter->queue); if (!skb) goto unlock; txinfo = IEEE80211_SKB_CB(skb); arinfo = (void *)txinfo->rate_driver_data; if (time_is_after_jiffies(arinfo->timeout + msecs_to_jiffies(CARL9170_QUEUE_TIMEOUT))) goto unlock; sta = iter->sta; if (WARN_ON(!sta)) goto unlock; ieee80211_stop_tx_ba_session(sta, iter->tid); unlock: spin_unlock_bh(&iter->lock); } rcu_read_unlock(); } void carl9170_tx_janitor(struct work_struct *work) { struct ar9170 *ar = container_of(work, struct ar9170, tx_janitor.work); if (!IS_STARTED(ar)) return; ar->tx_janitor_last_run = jiffies; carl9170_check_queue_stop_timeout(ar); carl9170_tx_ampdu_timeout(ar); if (!atomic_read(&ar->tx_total_queued)) return; ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor, msecs_to_jiffies(CARL9170_TX_TIMEOUT)); } static void __carl9170_tx_process_status(struct ar9170 *ar, const uint8_t cookie, const uint8_t info) { struct sk_buff *skb; struct ieee80211_tx_info *txinfo; unsigned int r, t, q; bool success = true; q = ar9170_qmap[info & CARL9170_TX_STATUS_QUEUE]; skb = carl9170_get_queued_skb(ar, cookie, &ar->tx_status[q]); if (!skb) { /* * We have lost the race to another thread. */ return ; } txinfo = IEEE80211_SKB_CB(skb); if (!(info & CARL9170_TX_STATUS_SUCCESS)) success = false; r = (info & CARL9170_TX_STATUS_RIX) >> CARL9170_TX_STATUS_RIX_S; t = (info & CARL9170_TX_STATUS_TRIES) >> CARL9170_TX_STATUS_TRIES_S; carl9170_tx_fill_rateinfo(ar, r, t, txinfo); carl9170_tx_status(ar, skb, success); } void carl9170_tx_process_status(struct ar9170 *ar, const struct carl9170_rsp *cmd) { unsigned int i; for (i = 0; i < cmd->hdr.ext; i++) { if (WARN_ON(i > ((cmd->hdr.len / 2) + 1))) { print_hex_dump_bytes("UU:", DUMP_PREFIX_NONE, (void *) cmd, cmd->hdr.len + 4); break; } __carl9170_tx_process_status(ar, cmd->_tx_status[i].cookie, cmd->_tx_status[i].info); } } static void carl9170_tx_rate_tpc_chains(struct ar9170 *ar, struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate, unsigned int *phyrate, unsigned int *tpc, unsigned int *chains) { struct ieee80211_rate *rate = NULL; u8 *txpower; unsigned int idx; idx = txrate->idx; *tpc = 0; *phyrate = 0; if (txrate->flags & IEEE80211_TX_RC_MCS) { if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) { /* +1 dBm for HT40 */ *tpc += 2; if (info->band == IEEE80211_BAND_2GHZ) txpower = ar->power_2G_ht40; else txpower = ar->power_5G_ht40; } else { if (info->band == IEEE80211_BAND_2GHZ) txpower = ar->power_2G_ht20; else txpower = ar->power_5G_ht20; } *phyrate = txrate->idx; *tpc += txpower[idx & 7]; } else { if (info->band == IEEE80211_BAND_2GHZ) { if (idx < 4) txpower = ar->power_2G_cck; else txpower = ar->power_2G_ofdm; } else { txpower = ar->power_5G_leg; idx += 4; } rate = &__carl9170_ratetable[idx]; *tpc += txpower[(rate->hw_value & 0x30) >> 4]; *phyrate = rate->hw_value & 0xf; } if (ar->eeprom.tx_mask == 1) { *chains = AR9170_TX_PHY_TXCHAIN_1; } else { if (!(txrate->flags & IEEE80211_TX_RC_MCS) && rate && rate->bitrate >= 360) *chains = AR9170_TX_PHY_TXCHAIN_1; else *chains = AR9170_TX_PHY_TXCHAIN_2; } *tpc = min_t(unsigned int, *tpc, ar->hw->conf.power_level * 2); } static __le32 carl9170_tx_physet(struct ar9170 *ar, struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate) { unsigned int power = 0, chains = 0, phyrate = 0; __le32 tmp; tmp = cpu_to_le32(0); if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ << AR9170_TX_PHY_BW_S); /* this works because 40 MHz is 2 and dup is 3 */ if (txrate->flags & IEEE80211_TX_RC_DUP_DATA) tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ_DUP << AR9170_TX_PHY_BW_S); if (txrate->flags & IEEE80211_TX_RC_SHORT_GI) tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_GI); if (txrate->flags & IEEE80211_TX_RC_MCS) { SET_VAL(AR9170_TX_PHY_MCS, phyrate, txrate->idx); /* heavy clip control */ tmp |= cpu_to_le32((txrate->idx & 0x7) << AR9170_TX_PHY_TX_HEAVY_CLIP_S); tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_HT); /* * green field preamble does not work. * * if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD) * tmp |= cpu_to_le32(AR9170_TX_PHY_GREENFIELD); */ } else { if (info->band == IEEE80211_BAND_2GHZ) { if (txrate->idx <= AR9170_TX_PHY_RATE_CCK_11M) tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_CCK); else tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM); } else { tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM); } /* * short preamble seems to be broken too. * * if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) * tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_PREAMBLE); */ } carl9170_tx_rate_tpc_chains(ar, info, txrate, &phyrate, &power, &chains); tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_MCS, phyrate)); tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TX_PWR, power)); tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TXCHAIN, chains)); return tmp; } static bool carl9170_tx_rts_check(struct ar9170 *ar, struct ieee80211_tx_rate *rate, bool ampdu, bool multi) { switch (ar->erp_mode) { case CARL9170_ERP_AUTO: if (ampdu) break; case CARL9170_ERP_MAC80211: if (!(rate->flags & IEEE80211_TX_RC_USE_RTS_CTS)) break; case CARL9170_ERP_RTS: if (likely(!multi)) return true; default: break; } return false; } static bool carl9170_tx_cts_check(struct ar9170 *ar, struct ieee80211_tx_rate *rate) { switch (ar->erp_mode) { case CARL9170_ERP_AUTO: case CARL9170_ERP_MAC80211: if (!(rate->flags & IEEE80211_TX_RC_USE_CTS_PROTECT)) break; case CARL9170_ERP_CTS: return true; default: break; } return false; } static void carl9170_tx_get_rates(struct ar9170 *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct sk_buff *skb) { struct ieee80211_tx_info *info; BUILD_BUG_ON(IEEE80211_TX_MAX_RATES < CARL9170_TX_MAX_RATES); BUILD_BUG_ON(IEEE80211_TX_MAX_RATES > IEEE80211_TX_RATE_TABLE_SIZE); info = IEEE80211_SKB_CB(skb); ieee80211_get_tx_rates(vif, sta, skb, info->control.rates, IEEE80211_TX_MAX_RATES); } static void carl9170_tx_apply_rateset(struct ar9170 *ar, struct ieee80211_tx_info *sinfo, struct sk_buff *skb) { struct ieee80211_tx_rate *txrate; struct ieee80211_tx_info *info; struct _carl9170_tx_superframe *txc = (void *) skb->data; int i; bool ampdu; bool no_ack; info = IEEE80211_SKB_CB(skb); ampdu = !!(info->flags & IEEE80211_TX_CTL_AMPDU); no_ack = !!(info->flags & IEEE80211_TX_CTL_NO_ACK); /* Set the rate control probe flag for all (sub-) frames. * This is because the TX_STATS_AMPDU flag is only set on * the last frame, so it has to be inherited. */ info->flags |= (sinfo->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE); /* NOTE: For the first rate, the ERP & AMPDU flags are directly * taken from mac_control. For all fallback rate, the firmware * updates the mac_control flags from the rate info field. */ for (i = 0; i < CARL9170_TX_MAX_RATES; i++) { __le32 phy_set; txrate = &sinfo->control.rates[i]; if (txrate->idx < 0) break; phy_set = carl9170_tx_physet(ar, info, txrate); if (i == 0) { __le16 mac_tmp = cpu_to_le16(0); /* first rate - part of the hw's frame header */ txc->f.phy_control = phy_set; if (ampdu && txrate->flags & IEEE80211_TX_RC_MCS) mac_tmp |= cpu_to_le16(AR9170_TX_MAC_AGGR); if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack)) mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_RTS); else if (carl9170_tx_cts_check(ar, txrate)) mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_CTS); txc->f.mac_control |= mac_tmp; } else { /* fallback rates are stored in the firmware's * retry rate set array. */ txc->s.rr[i - 1] = phy_set; } SET_VAL(CARL9170_TX_SUPER_RI_TRIES, txc->s.ri[i], txrate->count); if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack)) txc->s.ri[i] |= (AR9170_TX_MAC_PROT_RTS << CARL9170_TX_SUPER_RI_ERP_PROT_S); else if (carl9170_tx_cts_check(ar, txrate)) txc->s.ri[i] |= (AR9170_TX_MAC_PROT_CTS << CARL9170_TX_SUPER_RI_ERP_PROT_S); if (ampdu && (txrate->flags & IEEE80211_TX_RC_MCS)) txc->s.ri[i] |= CARL9170_TX_SUPER_RI_AMPDU; } } static int carl9170_tx_prepare(struct ar9170 *ar, struct ieee80211_sta *sta, struct sk_buff *skb) { struct ieee80211_hdr *hdr; struct _carl9170_tx_superframe *txc; struct carl9170_vif_info *cvif; struct ieee80211_tx_info *info; struct carl9170_tx_info *arinfo; unsigned int hw_queue; __le16 mac_tmp; u16 len; BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data)); BUILD_BUG_ON(sizeof(struct _carl9170_tx_superdesc) != CARL9170_TX_SUPERDESC_LEN); BUILD_BUG_ON(sizeof(struct _ar9170_tx_hwdesc) != AR9170_TX_HWDESC_LEN); BUILD_BUG_ON(AR9170_MAX_VIRTUAL_MAC > ((CARL9170_TX_SUPER_MISC_VIF_ID >> CARL9170_TX_SUPER_MISC_VIF_ID_S) + 1)); hw_queue = ar9170_qmap[carl9170_get_queue(ar, skb)]; hdr = (void *)skb->data; info = IEEE80211_SKB_CB(skb); len = skb->len; /* * Note: If the frame was sent through a monitor interface, * the ieee80211_vif pointer can be NULL. */ if (likely(info->control.vif)) cvif = (void *) info->control.vif->drv_priv; else cvif = NULL; txc = (void *)skb_push(skb, sizeof(*txc)); memset(txc, 0, sizeof(*txc)); SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, txc->s.misc, hw_queue); if (likely(cvif)) SET_VAL(CARL9170_TX_SUPER_MISC_VIF_ID, txc->s.misc, cvif->id); if (unlikely(info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM)) txc->s.misc |= CARL9170_TX_SUPER_MISC_CAB; if (unlikely(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)) txc->s.misc |= CARL9170_TX_SUPER_MISC_ASSIGN_SEQ; if (unlikely(ieee80211_is_probe_resp(hdr->frame_control))) txc->s.misc |= CARL9170_TX_SUPER_MISC_FILL_IN_TSF; mac_tmp = cpu_to_le16(AR9170_TX_MAC_HW_DURATION | AR9170_TX_MAC_BACKOFF); mac_tmp |= cpu_to_le16((hw_queue << AR9170_TX_MAC_QOS_S) & AR9170_TX_MAC_QOS); if (unlikely(info->flags & IEEE80211_TX_CTL_NO_ACK)) mac_tmp |= cpu_to_le16(AR9170_TX_MAC_NO_ACK); if (info->control.hw_key) { len += info->control.hw_key->icv_len; switch (info->control.hw_key->cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: case WLAN_CIPHER_SUITE_TKIP: mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_RC4); break; case WLAN_CIPHER_SUITE_CCMP: mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_AES); break; default: WARN_ON(1); goto err_out; } } if (info->flags & IEEE80211_TX_CTL_AMPDU) { unsigned int density, factor; if (unlikely(!sta || !cvif)) goto err_out; factor = min_t(unsigned int, 1u, sta->ht_cap.ampdu_factor); density = sta->ht_cap.ampdu_density; if (density) { /* * Watch out! * * Otus uses slightly different density values than * those from the 802.11n spec. */ density = max_t(unsigned int, density + 1, 7u); } SET_VAL(CARL9170_TX_SUPER_AMPDU_DENSITY, txc->s.ampdu_settings, density); SET_VAL(CARL9170_TX_SUPER_AMPDU_FACTOR, txc->s.ampdu_settings, factor); } txc->s.len = cpu_to_le16(skb->len); txc->f.length = cpu_to_le16(len + FCS_LEN); txc->f.mac_control = mac_tmp; arinfo = (void *)info->rate_driver_data; arinfo->timeout = jiffies; arinfo->ar = ar; kref_init(&arinfo->ref); return 0; err_out: skb_pull(skb, sizeof(*txc)); return -EINVAL; } static void carl9170_set_immba(struct ar9170 *ar, struct sk_buff *skb) { struct _carl9170_tx_superframe *super; super = (void *) skb->data; super->f.mac_control |= cpu_to_le16(AR9170_TX_MAC_IMM_BA); } static void carl9170_set_ampdu_params(struct ar9170 *ar, struct sk_buff *skb) { struct _carl9170_tx_superframe *super; int tmp; super = (void *) skb->data; tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_DENSITY) << CARL9170_TX_SUPER_AMPDU_DENSITY_S; /* * If you haven't noticed carl9170_tx_prepare has already filled * in all ampdu spacing & factor parameters. * Now it's the time to check whenever the settings have to be * updated by the firmware, or if everything is still the same. * * There's no sane way to handle different density values with * this hardware, so we may as well just do the compare in the * driver. */ if (tmp != ar->current_density) { ar->current_density = tmp; super->s.ampdu_settings |= CARL9170_TX_SUPER_AMPDU_COMMIT_DENSITY; } tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_FACTOR) << CARL9170_TX_SUPER_AMPDU_FACTOR_S; if (tmp != ar->current_factor) { ar->current_factor = tmp; super->s.ampdu_settings |= CARL9170_TX_SUPER_AMPDU_COMMIT_FACTOR; } } static void carl9170_tx_ampdu(struct ar9170 *ar) { struct sk_buff_head agg; struct carl9170_sta_tid *tid_info; struct sk_buff *skb, *first; struct ieee80211_tx_info *tx_info_first; unsigned int i = 0, done_ampdus = 0; u16 seq, queue, tmpssn; atomic_inc(&ar->tx_ampdu_scheduler); ar->tx_ampdu_schedule = false; if (atomic_read(&ar->tx_ampdu_upload)) return; if (!ar->tx_ampdu_list_len) return; __skb_queue_head_init(&agg); rcu_read_lock(); tid_info = rcu_dereference(ar->tx_ampdu_iter); if (WARN_ON_ONCE(!tid_info)) { rcu_read_unlock(); return; } retry: list_for_each_entry_continue_rcu(tid_info, &ar->tx_ampdu_list, list) { i++; if (tid_info->state < CARL9170_TID_STATE_PROGRESS) continue; queue = TID_TO_WME_AC(tid_info->tid); spin_lock_bh(&tid_info->lock); if (tid_info->state != CARL9170_TID_STATE_XMIT) goto processed; tid_info->counter++; first = skb_peek(&tid_info->queue); tmpssn = carl9170_get_seq(first); seq = tid_info->snx; if (unlikely(tmpssn != seq)) { tid_info->state = CARL9170_TID_STATE_IDLE; goto processed; } tx_info_first = NULL; while ((skb = skb_peek(&tid_info->queue))) { /* strict 0, 1, ..., n - 1, n frame sequence order */ if (unlikely(carl9170_get_seq(skb) != seq)) break; /* don't upload more than AMPDU FACTOR allows. */ if (unlikely(SEQ_DIFF(tid_info->snx, tid_info->bsn) >= (tid_info->max - 1))) break; if (!tx_info_first) { carl9170_tx_get_rates(ar, tid_info->vif, tid_info->sta, first); tx_info_first = IEEE80211_SKB_CB(first); } carl9170_tx_apply_rateset(ar, tx_info_first, skb); atomic_inc(&ar->tx_ampdu_upload); tid_info->snx = seq = SEQ_NEXT(seq); __skb_unlink(skb, &tid_info->queue); __skb_queue_tail(&agg, skb); if (skb_queue_len(&agg) >= CARL9170_NUM_TX_AGG_MAX) break; } if (skb_queue_empty(&tid_info->queue) || carl9170_get_seq(skb_peek(&tid_info->queue)) != tid_info->snx) { /* stop TID, if A-MPDU frames are still missing, * or whenever the queue is empty. */ tid_info->state = CARL9170_TID_STATE_IDLE; } done_ampdus++; processed: spin_unlock_bh(&tid_info->lock); if (skb_queue_empty(&agg)) continue; /* apply ampdu spacing & factor settings */ carl9170_set_ampdu_params(ar, skb_peek(&agg)); /* set aggregation push bit */ carl9170_set_immba(ar, skb_peek_tail(&agg)); spin_lock_bh(&ar->tx_pending[queue].lock); skb_queue_splice_tail_init(&agg, &ar->tx_pending[queue]); spin_unlock_bh(&ar->tx_pending[queue].lock); ar->tx_schedule = true; } if ((done_ampdus++ == 0) && (i++ == 0)) goto retry; rcu_assign_pointer(ar->tx_ampdu_iter, tid_info); rcu_read_unlock(); } static struct sk_buff *carl9170_tx_pick_skb(struct ar9170 *ar, struct sk_buff_head *queue) { struct sk_buff *skb; struct ieee80211_tx_info *info; struct carl9170_tx_info *arinfo; BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data)); spin_lock_bh(&queue->lock); skb = skb_peek(queue); if (unlikely(!skb)) goto err_unlock; if (carl9170_alloc_dev_space(ar, skb)) goto err_unlock; __skb_unlink(skb, queue); spin_unlock_bh(&queue->lock); info = IEEE80211_SKB_CB(skb); arinfo = (void *) info->rate_driver_data; arinfo->timeout = jiffies; return skb; err_unlock: spin_unlock_bh(&queue->lock); return NULL; } void carl9170_tx_drop(struct ar9170 *ar, struct sk_buff *skb) { struct _carl9170_tx_superframe *super; uint8_t q = 0; ar->tx_dropped++; super = (void *)skb->data; SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, q, ar9170_qmap[carl9170_get_queue(ar, skb)]); __carl9170_tx_process_status(ar, super->s.cookie, q); } static bool carl9170_tx_ps_drop(struct ar9170 *ar, struct sk_buff *skb) { struct ieee80211_sta *sta; struct carl9170_sta_info *sta_info; struct ieee80211_tx_info *tx_info; rcu_read_lock(); sta = __carl9170_get_tx_sta(ar, skb); if (!sta) goto out_rcu; sta_info = (void *) sta->drv_priv; tx_info = IEEE80211_SKB_CB(skb); if (unlikely(sta_info->sleeping) && !(tx_info->flags & (IEEE80211_TX_CTL_NO_PS_BUFFER | IEEE80211_TX_CTL_CLEAR_PS_FILT))) { rcu_read_unlock(); if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) atomic_dec(&ar->tx_ampdu_upload); tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; carl9170_release_dev_space(ar, skb); carl9170_tx_status(ar, skb, false); return true; } out_rcu: rcu_read_unlock(); return false; } static void carl9170_bar_check(struct ar9170 *ar, struct sk_buff *skb) { struct _carl9170_tx_superframe *super = (void *) skb->data; struct ieee80211_bar *bar = (void *) super->frame_data; if (unlikely(ieee80211_is_back_req(bar->frame_control)) && skb->len >= sizeof(struct ieee80211_bar)) { struct carl9170_bar_list_entry *entry; unsigned int queue = skb_get_queue_mapping(skb); entry = kmalloc(sizeof(*entry), GFP_ATOMIC); if (!WARN_ON_ONCE(!entry)) { entry->skb = skb; spin_lock_bh(&ar->bar_list_lock[queue]); list_add_tail_rcu(&entry->list, &ar->bar_list[queue]); spin_unlock_bh(&ar->bar_list_lock[queue]); } } } static void carl9170_tx(struct ar9170 *ar) { struct sk_buff *skb; unsigned int i, q; bool schedule_garbagecollector = false; ar->tx_schedule = false; if (unlikely(!IS_STARTED(ar))) return; carl9170_usb_handle_tx_err(ar); for (i = 0; i < ar->hw->queues; i++) { while (!skb_queue_empty(&ar->tx_pending[i])) { skb = carl9170_tx_pick_skb(ar, &ar->tx_pending[i]); if (unlikely(!skb)) break; if (unlikely(carl9170_tx_ps_drop(ar, skb))) continue; carl9170_bar_check(ar, skb); atomic_inc(&ar->tx_total_pending); q = __carl9170_get_queue(ar, i); /* * NB: tx_status[i] vs. tx_status[q], * TODO: Move into pick_skb or alloc_dev_space. */ skb_queue_tail(&ar->tx_status[q], skb); /* * increase ref count to "2". * Ref counting is the easiest way to solve the * race between the urb's completion routine: * carl9170_tx_callback * and wlan tx status functions: * carl9170_tx_status/janitor. */ carl9170_tx_get_skb(skb); carl9170_usb_tx(ar, skb); schedule_garbagecollector = true; } } if (!schedule_garbagecollector) return; ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor, msecs_to_jiffies(CARL9170_TX_TIMEOUT)); } static bool carl9170_tx_ampdu_queue(struct ar9170 *ar, struct ieee80211_sta *sta, struct sk_buff *skb, struct ieee80211_tx_info *txinfo) { struct carl9170_sta_info *sta_info; struct carl9170_sta_tid *agg; struct sk_buff *iter; u16 tid, seq, qseq, off; bool run = false; tid = carl9170_get_tid(skb); seq = carl9170_get_seq(skb); sta_info = (void *) sta->drv_priv; rcu_read_lock(); agg = rcu_dereference(sta_info->agg[tid]); if (!agg) goto err_unlock_rcu; spin_lock_bh(&agg->lock); if (unlikely(agg->state < CARL9170_TID_STATE_IDLE)) goto err_unlock; /* check if sequence is within the BA window */ if (unlikely(!BAW_WITHIN(agg->bsn, CARL9170_BAW_BITS, seq))) goto err_unlock; if (WARN_ON_ONCE(!BAW_WITHIN(agg->snx, CARL9170_BAW_BITS, seq))) goto err_unlock; off = SEQ_DIFF(seq, agg->bsn); if (WARN_ON_ONCE(test_and_set_bit(off, agg->bitmap))) goto err_unlock; if (likely(BAW_WITHIN(agg->hsn, CARL9170_BAW_BITS, seq))) { __skb_queue_tail(&agg->queue, skb); agg->hsn = seq; goto queued; } skb_queue_reverse_walk(&agg->queue, iter) { qseq = carl9170_get_seq(iter); if (BAW_WITHIN(qseq, CARL9170_BAW_BITS, seq)) { __skb_queue_after(&agg->queue, iter, skb); goto queued; } } __skb_queue_head(&agg->queue, skb); queued: if (unlikely(agg->state != CARL9170_TID_STATE_XMIT)) { if (agg->snx == carl9170_get_seq(skb_peek(&agg->queue))) { agg->state = CARL9170_TID_STATE_XMIT; run = true; } } spin_unlock_bh(&agg->lock); rcu_read_unlock(); return run; err_unlock: spin_unlock_bh(&agg->lock); err_unlock_rcu: rcu_read_unlock(); txinfo->flags &= ~IEEE80211_TX_CTL_AMPDU; carl9170_tx_status(ar, skb, false); ar->tx_dropped++; return false; } void carl9170_op_tx(struct ieee80211_hw *hw, struct ieee80211_tx_control *control, struct sk_buff *skb) { struct ar9170 *ar = hw->priv; struct ieee80211_tx_info *info; struct ieee80211_sta *sta = control->sta; struct ieee80211_vif *vif; bool run; if (unlikely(!IS_STARTED(ar))) goto err_free; info = IEEE80211_SKB_CB(skb); vif = info->control.vif; if (unlikely(carl9170_tx_prepare(ar, sta, skb))) goto err_free; carl9170_tx_accounting(ar, skb); /* * from now on, one has to use carl9170_tx_status to free * all ressouces which are associated with the frame. */ if (sta) { struct carl9170_sta_info *stai = (void *) sta->drv_priv; atomic_inc(&stai->pending_frames); } if (info->flags & IEEE80211_TX_CTL_AMPDU) { /* to static code analyzers and reviewers: * mac80211 guarantees that a valid "sta" * reference is present, if a frame is to * be part of an ampdu. Hence any extra * sta == NULL checks are redundant in this * special case. */ run = carl9170_tx_ampdu_queue(ar, sta, skb, info); if (run) carl9170_tx_ampdu(ar); } else { unsigned int queue = skb_get_queue_mapping(skb); carl9170_tx_get_rates(ar, vif, sta, skb); carl9170_tx_apply_rateset(ar, info, skb); skb_queue_tail(&ar->tx_pending[queue], skb); } carl9170_tx(ar); return; err_free: ar->tx_dropped++; ieee80211_free_txskb(ar->hw, skb); } void carl9170_tx_scheduler(struct ar9170 *ar) { if (ar->tx_ampdu_schedule) carl9170_tx_ampdu(ar); if (ar->tx_schedule) carl9170_tx(ar); } /* caller has to take rcu_read_lock */ static struct carl9170_vif_info *carl9170_pick_beaconing_vif(struct ar9170 *ar) { struct carl9170_vif_info *cvif; int i = 1; /* The AR9170 hardware has no fancy beacon queue or some * other scheduling mechanism. So, the driver has to make * due by setting the two beacon timers (pretbtt and tbtt) * once and then swapping the beacon address in the HW's * register file each time the pretbtt fires. */ cvif = rcu_dereference(ar->beacon_iter); if (ar->vifs > 0 && cvif) { do { list_for_each_entry_continue_rcu(cvif, &ar->vif_list, list) { if (cvif->active && cvif->enable_beacon) goto out; } } while (ar->beacon_enabled && i--); } out: RCU_INIT_POINTER(ar->beacon_iter, cvif); return cvif; } static bool carl9170_tx_beacon_physet(struct ar9170 *ar, struct sk_buff *skb, u32 *ht1, u32 *plcp) { struct ieee80211_tx_info *txinfo; struct ieee80211_tx_rate *rate; unsigned int power, chains; bool ht_rate; txinfo = IEEE80211_SKB_CB(skb); rate = &txinfo->control.rates[0]; ht_rate = !!(txinfo->control.rates[0].flags & IEEE80211_TX_RC_MCS); carl9170_tx_rate_tpc_chains(ar, txinfo, rate, plcp, &power, &chains); *ht1 = AR9170_MAC_BCN_HT1_TX_ANT0; if (chains == AR9170_TX_PHY_TXCHAIN_2) *ht1 |= AR9170_MAC_BCN_HT1_TX_ANT1; SET_VAL(AR9170_MAC_BCN_HT1_PWR_CTRL, *ht1, 7); SET_VAL(AR9170_MAC_BCN_HT1_TPC, *ht1, power); SET_VAL(AR9170_MAC_BCN_HT1_CHAIN_MASK, *ht1, chains); if (ht_rate) { *ht1 |= AR9170_MAC_BCN_HT1_HT_EN; if (rate->flags & IEEE80211_TX_RC_SHORT_GI) *plcp |= AR9170_MAC_BCN_HT2_SGI; if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) { *ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_SHARED; *plcp |= AR9170_MAC_BCN_HT2_BW40; } else if (rate->flags & IEEE80211_TX_RC_DUP_DATA) { *ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_DUP; *plcp |= AR9170_MAC_BCN_HT2_BW40; } SET_VAL(AR9170_MAC_BCN_HT2_LEN, *plcp, skb->len + FCS_LEN); } else { if (*plcp <= AR9170_TX_PHY_RATE_CCK_11M) *plcp |= ((skb->len + FCS_LEN) << (3 + 16)) + 0x0400; else *plcp |= ((skb->len + FCS_LEN) << 16) + 0x0010; } return ht_rate; } int carl9170_update_beacon(struct ar9170 *ar, const bool submit) { struct sk_buff *skb = NULL; struct carl9170_vif_info *cvif; __le32 *data, *old = NULL; u32 word, ht1, plcp, off, addr, len; int i = 0, err = 0; bool ht_rate; rcu_read_lock(); cvif = carl9170_pick_beaconing_vif(ar); if (!cvif) goto out_unlock; skb = ieee80211_beacon_get_tim(ar->hw, carl9170_get_vif(cvif), NULL, NULL); if (!skb) { err = -ENOMEM; goto err_free; } spin_lock_bh(&ar->beacon_lock); data = (__le32 *)skb->data; if (cvif->beacon) old = (__le32 *)cvif->beacon->data; off = cvif->id * AR9170_MAC_BCN_LENGTH_MAX; addr = ar->fw.beacon_addr + off; len = roundup(skb->len + FCS_LEN, 4); if ((off + len) > ar->fw.beacon_max_len) { if (net_ratelimit()) { wiphy_err(ar->hw->wiphy, "beacon does not " "fit into device memory!\n"); } err = -EINVAL; goto err_unlock; } if (len > AR9170_MAC_BCN_LENGTH_MAX) { if (net_ratelimit()) { wiphy_err(ar->hw->wiphy, "no support for beacons " "bigger than %d (yours:%d).\n", AR9170_MAC_BCN_LENGTH_MAX, len); } err = -EMSGSIZE; goto err_unlock; } ht_rate = carl9170_tx_beacon_physet(ar, skb, &ht1, &plcp); carl9170_async_regwrite_begin(ar); carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT1, ht1); if (ht_rate) carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT2, plcp); else carl9170_async_regwrite(AR9170_MAC_REG_BCN_PLCP, plcp); for (i = 0; i < DIV_ROUND_UP(skb->len, 4); i++) { /* * XXX: This accesses beyond skb data for up * to the last 3 bytes!! */ if (old && (data[i] == old[i])) continue; word = le32_to_cpu(data[i]); carl9170_async_regwrite(addr + 4 * i, word); } carl9170_async_regwrite_finish(); dev_kfree_skb_any(cvif->beacon); cvif->beacon = NULL; err = carl9170_async_regwrite_result(); if (!err) cvif->beacon = skb; spin_unlock_bh(&ar->beacon_lock); if (err) goto err_free; if (submit) { err = carl9170_bcn_ctrl(ar, cvif->id, CARL9170_BCN_CTRL_CAB_TRIGGER, addr, skb->len + FCS_LEN); if (err) goto err_free; } out_unlock: rcu_read_unlock(); return 0; err_unlock: spin_unlock_bh(&ar->beacon_lock); err_free: rcu_read_unlock(); dev_kfree_skb_any(skb); return err; }