/* * Platform CAN bus driver for Bosch C_CAN controller * * Copyright (C) 2010 ST Microelectronics * Bhupesh Sharma <bhupesh.sharma@st.com> * * Borrowed heavily from the C_CAN driver originally written by: * Copyright (C) 2007 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de> * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch> * * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B. * Bosch C_CAN user manual can be obtained from: * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/ * users_manual_c_can.pdf * * This file is licensed under the terms of the GNU General Public * License version 2. This program is licensed "as is" without any * warranty of any kind, whether express or implied. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/netdevice.h> #include <linux/if_arp.h> #include <linux/if_ether.h> #include <linux/list.h> #include <linux/io.h> #include <linux/platform_device.h> #include <linux/clk.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/mfd/syscon.h> #include <linux/regmap.h> #include <linux/can/dev.h> #include "c_can.h" #define DCAN_RAM_INIT_BIT (1 << 3) static DEFINE_SPINLOCK(raminit_lock); /* * 16-bit c_can registers can be arranged differently in the memory * architecture of different implementations. For example: 16-bit * registers can be aligned to a 16-bit boundary or 32-bit boundary etc. * Handle the same by providing a common read/write interface. */ static u16 c_can_plat_read_reg_aligned_to_16bit(const struct c_can_priv *priv, enum reg index) { return readw(priv->base + priv->regs[index]); } static void c_can_plat_write_reg_aligned_to_16bit(const struct c_can_priv *priv, enum reg index, u16 val) { writew(val, priv->base + priv->regs[index]); } static u16 c_can_plat_read_reg_aligned_to_32bit(const struct c_can_priv *priv, enum reg index) { return readw(priv->base + 2 * priv->regs[index]); } static void c_can_plat_write_reg_aligned_to_32bit(const struct c_can_priv *priv, enum reg index, u16 val) { writew(val, priv->base + 2 * priv->regs[index]); } static void c_can_hw_raminit_wait_syscon(const struct c_can_priv *priv, u32 mask, u32 val) { const struct c_can_raminit *raminit = &priv->raminit_sys; int timeout = 0; u32 ctrl = 0; /* We look only at the bits of our instance. */ val &= mask; do { udelay(1); timeout++; regmap_read(raminit->syscon, raminit->reg, &ctrl); if (timeout == 1000) { dev_err(&priv->dev->dev, "%s: time out\n", __func__); break; } } while ((ctrl & mask) != val); } static void c_can_hw_raminit_syscon(const struct c_can_priv *priv, bool enable) { const struct c_can_raminit *raminit = &priv->raminit_sys; u32 ctrl = 0; u32 mask; spin_lock(&raminit_lock); mask = 1 << raminit->bits.start | 1 << raminit->bits.done; regmap_read(raminit->syscon, raminit->reg, &ctrl); /* We clear the start bit first. The start bit is * looking at the 0 -> transition, but is not self clearing; * NOTE: DONE must be written with 1 to clear it. * We can't clear the DONE bit here using regmap_update_bits() * as it will bypass the write if initial condition is START:0 DONE:1 * e.g. on DRA7 which needs START pulse. */ ctrl &= ~mask; /* START = 0, DONE = 0 */ regmap_update_bits(raminit->syscon, raminit->reg, mask, ctrl); /* check if START bit is 0. Ignore DONE bit for now * as it can be either 0 or 1. */ c_can_hw_raminit_wait_syscon(priv, 1 << raminit->bits.start, ctrl); if (enable) { /* Clear DONE bit & set START bit. */ ctrl |= 1 << raminit->bits.start; /* DONE must be written with 1 to clear it */ ctrl |= 1 << raminit->bits.done; regmap_update_bits(raminit->syscon, raminit->reg, mask, ctrl); /* prevent further clearing of DONE bit */ ctrl &= ~(1 << raminit->bits.done); /* clear START bit if start pulse is needed */ if (raminit->needs_pulse) { ctrl &= ~(1 << raminit->bits.start); regmap_update_bits(raminit->syscon, raminit->reg, mask, ctrl); } ctrl |= 1 << raminit->bits.done; c_can_hw_raminit_wait_syscon(priv, mask, ctrl); } spin_unlock(&raminit_lock); } static u32 c_can_plat_read_reg32(const struct c_can_priv *priv, enum reg index) { u32 val; val = priv->read_reg(priv, index); val |= ((u32) priv->read_reg(priv, index + 1)) << 16; return val; } static void c_can_plat_write_reg32(const struct c_can_priv *priv, enum reg index, u32 val) { priv->write_reg(priv, index + 1, val >> 16); priv->write_reg(priv, index, val); } static u32 d_can_plat_read_reg32(const struct c_can_priv *priv, enum reg index) { return readl(priv->base + priv->regs[index]); } static void d_can_plat_write_reg32(const struct c_can_priv *priv, enum reg index, u32 val) { writel(val, priv->base + priv->regs[index]); } static void c_can_hw_raminit_wait(const struct c_can_priv *priv, u32 mask) { while (priv->read_reg32(priv, C_CAN_FUNCTION_REG) & mask) udelay(1); } static void c_can_hw_raminit(const struct c_can_priv *priv, bool enable) { u32 ctrl; ctrl = priv->read_reg32(priv, C_CAN_FUNCTION_REG); ctrl &= ~DCAN_RAM_INIT_BIT; priv->write_reg32(priv, C_CAN_FUNCTION_REG, ctrl); c_can_hw_raminit_wait(priv, ctrl); if (enable) { ctrl |= DCAN_RAM_INIT_BIT; priv->write_reg32(priv, C_CAN_FUNCTION_REG, ctrl); c_can_hw_raminit_wait(priv, ctrl); } } static const struct c_can_driver_data c_can_drvdata = { .id = BOSCH_C_CAN, }; static const struct c_can_driver_data d_can_drvdata = { .id = BOSCH_D_CAN, }; static const struct raminit_bits dra7_raminit_bits[] = { [0] = { .start = 3, .done = 1, }, [1] = { .start = 5, .done = 2, }, }; static const struct c_can_driver_data dra7_dcan_drvdata = { .id = BOSCH_D_CAN, .raminit_num = ARRAY_SIZE(dra7_raminit_bits), .raminit_bits = dra7_raminit_bits, .raminit_pulse = true, }; static const struct raminit_bits am3352_raminit_bits[] = { [0] = { .start = 0, .done = 8, }, [1] = { .start = 1, .done = 9, }, }; static const struct c_can_driver_data am3352_dcan_drvdata = { .id = BOSCH_D_CAN, .raminit_num = ARRAY_SIZE(am3352_raminit_bits), .raminit_bits = am3352_raminit_bits, }; static struct platform_device_id c_can_id_table[] = { { .name = KBUILD_MODNAME, .driver_data = (kernel_ulong_t)&c_can_drvdata, }, { .name = "c_can", .driver_data = (kernel_ulong_t)&c_can_drvdata, }, { .name = "d_can", .driver_data = (kernel_ulong_t)&d_can_drvdata, }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(platform, c_can_id_table); static const struct of_device_id c_can_of_table[] = { { .compatible = "bosch,c_can", .data = &c_can_drvdata }, { .compatible = "bosch,d_can", .data = &d_can_drvdata }, { .compatible = "ti,dra7-d_can", .data = &dra7_dcan_drvdata }, { .compatible = "ti,am3352-d_can", .data = &am3352_dcan_drvdata }, { .compatible = "ti,am4372-d_can", .data = &am3352_dcan_drvdata }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, c_can_of_table); static int c_can_plat_probe(struct platform_device *pdev) { int ret; void __iomem *addr; struct net_device *dev; struct c_can_priv *priv; const struct of_device_id *match; struct resource *mem; int irq; struct clk *clk; const struct c_can_driver_data *drvdata; struct device_node *np = pdev->dev.of_node; match = of_match_device(c_can_of_table, &pdev->dev); if (match) { drvdata = match->data; } else if (pdev->id_entry->driver_data) { drvdata = (struct c_can_driver_data *) platform_get_device_id(pdev)->driver_data; } else { return -ENODEV; } /* get the appropriate clk */ clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(clk)) { ret = PTR_ERR(clk); goto exit; } /* get the platform data */ irq = platform_get_irq(pdev, 0); if (irq <= 0) { ret = -ENODEV; goto exit; } mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); addr = devm_ioremap_resource(&pdev->dev, mem); if (IS_ERR(addr)) { ret = PTR_ERR(addr); goto exit; } /* allocate the c_can device */ dev = alloc_c_can_dev(); if (!dev) { ret = -ENOMEM; goto exit; } priv = netdev_priv(dev); switch (drvdata->id) { case BOSCH_C_CAN: priv->regs = reg_map_c_can; switch (mem->flags & IORESOURCE_MEM_TYPE_MASK) { case IORESOURCE_MEM_32BIT: priv->read_reg = c_can_plat_read_reg_aligned_to_32bit; priv->write_reg = c_can_plat_write_reg_aligned_to_32bit; priv->read_reg32 = c_can_plat_read_reg32; priv->write_reg32 = c_can_plat_write_reg32; break; case IORESOURCE_MEM_16BIT: default: priv->read_reg = c_can_plat_read_reg_aligned_to_16bit; priv->write_reg = c_can_plat_write_reg_aligned_to_16bit; priv->read_reg32 = c_can_plat_read_reg32; priv->write_reg32 = c_can_plat_write_reg32; break; } break; case BOSCH_D_CAN: priv->regs = reg_map_d_can; priv->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES; priv->read_reg = c_can_plat_read_reg_aligned_to_16bit; priv->write_reg = c_can_plat_write_reg_aligned_to_16bit; priv->read_reg32 = d_can_plat_read_reg32; priv->write_reg32 = d_can_plat_write_reg32; /* Check if we need custom RAMINIT via syscon. Mostly for TI * platforms. Only supported with DT boot. */ if (np && of_property_read_bool(np, "syscon-raminit")) { u32 id; struct c_can_raminit *raminit = &priv->raminit_sys; ret = -EINVAL; raminit->syscon = syscon_regmap_lookup_by_phandle(np, "syscon-raminit"); if (IS_ERR(raminit->syscon)) { /* can fail with -EPROBE_DEFER */ ret = PTR_ERR(raminit->syscon); free_c_can_dev(dev); return ret; } if (of_property_read_u32_index(np, "syscon-raminit", 1, &raminit->reg)) { dev_err(&pdev->dev, "couldn't get the RAMINIT reg. offset!\n"); goto exit_free_device; } if (of_property_read_u32_index(np, "syscon-raminit", 2, &id)) { dev_err(&pdev->dev, "couldn't get the CAN instance ID\n"); goto exit_free_device; } if (id >= drvdata->raminit_num) { dev_err(&pdev->dev, "Invalid CAN instance ID\n"); goto exit_free_device; } raminit->bits = drvdata->raminit_bits[id]; raminit->needs_pulse = drvdata->raminit_pulse; priv->raminit = c_can_hw_raminit_syscon; } else { priv->raminit = c_can_hw_raminit; } break; default: ret = -EINVAL; goto exit_free_device; } dev->irq = irq; priv->base = addr; priv->device = &pdev->dev; priv->can.clock.freq = clk_get_rate(clk); priv->priv = clk; priv->type = drvdata->id; platform_set_drvdata(pdev, dev); SET_NETDEV_DEV(dev, &pdev->dev); ret = register_c_can_dev(dev); if (ret) { dev_err(&pdev->dev, "registering %s failed (err=%d)\n", KBUILD_MODNAME, ret); goto exit_free_device; } dev_info(&pdev->dev, "%s device registered (regs=%p, irq=%d)\n", KBUILD_MODNAME, priv->base, dev->irq); return 0; exit_free_device: free_c_can_dev(dev); exit: dev_err(&pdev->dev, "probe failed\n"); return ret; } static int c_can_plat_remove(struct platform_device *pdev) { struct net_device *dev = platform_get_drvdata(pdev); unregister_c_can_dev(dev); free_c_can_dev(dev); return 0; } #ifdef CONFIG_PM static int c_can_suspend(struct platform_device *pdev, pm_message_t state) { int ret; struct net_device *ndev = platform_get_drvdata(pdev); struct c_can_priv *priv = netdev_priv(ndev); if (priv->type != BOSCH_D_CAN) { dev_warn(&pdev->dev, "Not supported\n"); return 0; } if (netif_running(ndev)) { netif_stop_queue(ndev); netif_device_detach(ndev); } ret = c_can_power_down(ndev); if (ret) { netdev_err(ndev, "failed to enter power down mode\n"); return ret; } priv->can.state = CAN_STATE_SLEEPING; return 0; } static int c_can_resume(struct platform_device *pdev) { int ret; struct net_device *ndev = platform_get_drvdata(pdev); struct c_can_priv *priv = netdev_priv(ndev); if (priv->type != BOSCH_D_CAN) { dev_warn(&pdev->dev, "Not supported\n"); return 0; } ret = c_can_power_up(ndev); if (ret) { netdev_err(ndev, "Still in power down mode\n"); return ret; } priv->can.state = CAN_STATE_ERROR_ACTIVE; if (netif_running(ndev)) { netif_device_attach(ndev); netif_start_queue(ndev); } return 0; } #else #define c_can_suspend NULL #define c_can_resume NULL #endif static struct platform_driver c_can_plat_driver = { .driver = { .name = KBUILD_MODNAME, .of_match_table = c_can_of_table, }, .probe = c_can_plat_probe, .remove = c_can_plat_remove, .suspend = c_can_suspend, .resume = c_can_resume, .id_table = c_can_id_table, }; module_platform_driver(c_can_plat_driver); MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Platform CAN bus driver for Bosch C_CAN controller");