/* * Bosch BMC150 three-axis magnetic field sensor driver * * Copyright (c) 2015, Intel Corporation. * * This code is based on bmm050_api.c authored by contact@bosch.sensortec.com: * * (C) Copyright 2011~2014 Bosch Sensortec GmbH All Rights Reserved * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. */ #include <linux/module.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/acpi.h> #include <linux/gpio/consumer.h> #include <linux/pm.h> #include <linux/pm_runtime.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/buffer.h> #include <linux/iio/events.h> #include <linux/iio/trigger.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/triggered_buffer.h> #include <linux/regmap.h> #define BMC150_MAGN_DRV_NAME "bmc150_magn" #define BMC150_MAGN_IRQ_NAME "bmc150_magn_event" #define BMC150_MAGN_REG_CHIP_ID 0x40 #define BMC150_MAGN_CHIP_ID_VAL 0x32 #define BMC150_MAGN_REG_X_L 0x42 #define BMC150_MAGN_REG_X_M 0x43 #define BMC150_MAGN_REG_Y_L 0x44 #define BMC150_MAGN_REG_Y_M 0x45 #define BMC150_MAGN_SHIFT_XY_L 3 #define BMC150_MAGN_REG_Z_L 0x46 #define BMC150_MAGN_REG_Z_M 0x47 #define BMC150_MAGN_SHIFT_Z_L 1 #define BMC150_MAGN_REG_RHALL_L 0x48 #define BMC150_MAGN_REG_RHALL_M 0x49 #define BMC150_MAGN_SHIFT_RHALL_L 2 #define BMC150_MAGN_REG_INT_STATUS 0x4A #define BMC150_MAGN_REG_POWER 0x4B #define BMC150_MAGN_MASK_POWER_CTL BIT(0) #define BMC150_MAGN_REG_OPMODE_ODR 0x4C #define BMC150_MAGN_MASK_OPMODE GENMASK(2, 1) #define BMC150_MAGN_SHIFT_OPMODE 1 #define BMC150_MAGN_MODE_NORMAL 0x00 #define BMC150_MAGN_MODE_FORCED 0x01 #define BMC150_MAGN_MODE_SLEEP 0x03 #define BMC150_MAGN_MASK_ODR GENMASK(5, 3) #define BMC150_MAGN_SHIFT_ODR 3 #define BMC150_MAGN_REG_INT 0x4D #define BMC150_MAGN_REG_INT_DRDY 0x4E #define BMC150_MAGN_MASK_DRDY_EN BIT(7) #define BMC150_MAGN_SHIFT_DRDY_EN 7 #define BMC150_MAGN_MASK_DRDY_INT3 BIT(6) #define BMC150_MAGN_MASK_DRDY_Z_EN BIT(5) #define BMC150_MAGN_MASK_DRDY_Y_EN BIT(4) #define BMC150_MAGN_MASK_DRDY_X_EN BIT(3) #define BMC150_MAGN_MASK_DRDY_DR_POLARITY BIT(2) #define BMC150_MAGN_MASK_DRDY_LATCHING BIT(1) #define BMC150_MAGN_MASK_DRDY_INT3_POLARITY BIT(0) #define BMC150_MAGN_REG_LOW_THRESH 0x4F #define BMC150_MAGN_REG_HIGH_THRESH 0x50 #define BMC150_MAGN_REG_REP_XY 0x51 #define BMC150_MAGN_REG_REP_Z 0x52 #define BMC150_MAGN_REG_REP_DATAMASK GENMASK(7, 0) #define BMC150_MAGN_REG_TRIM_START 0x5D #define BMC150_MAGN_REG_TRIM_END 0x71 #define BMC150_MAGN_XY_OVERFLOW_VAL -4096 #define BMC150_MAGN_Z_OVERFLOW_VAL -16384 /* Time from SUSPEND to SLEEP */ #define BMC150_MAGN_START_UP_TIME_MS 3 #define BMC150_MAGN_AUTO_SUSPEND_DELAY_MS 2000 #define BMC150_MAGN_REGVAL_TO_REPXY(regval) (((regval) * 2) + 1) #define BMC150_MAGN_REGVAL_TO_REPZ(regval) ((regval) + 1) #define BMC150_MAGN_REPXY_TO_REGVAL(rep) (((rep) - 1) / 2) #define BMC150_MAGN_REPZ_TO_REGVAL(rep) ((rep) - 1) enum bmc150_magn_axis { AXIS_X, AXIS_Y, AXIS_Z, RHALL, AXIS_XYZ_MAX = RHALL, AXIS_XYZR_MAX, }; enum bmc150_magn_power_modes { BMC150_MAGN_POWER_MODE_SUSPEND, BMC150_MAGN_POWER_MODE_SLEEP, BMC150_MAGN_POWER_MODE_NORMAL, }; struct bmc150_magn_trim_regs { s8 x1; s8 y1; __le16 reserved1; u8 reserved2; __le16 z4; s8 x2; s8 y2; __le16 reserved3; __le16 z2; __le16 z1; __le16 xyz1; __le16 z3; s8 xy2; u8 xy1; } __packed; struct bmc150_magn_data { struct i2c_client *client; /* * 1. Protect this structure. * 2. Serialize sequences that power on/off the device and access HW. */ struct mutex mutex; struct regmap *regmap; /* 4 x 32 bits for x, y z, 4 bytes align, 64 bits timestamp */ s32 buffer[6]; struct iio_trigger *dready_trig; bool dready_trigger_on; int max_odr; }; static const struct { int freq; u8 reg_val; } bmc150_magn_samp_freq_table[] = { {2, 0x01}, {6, 0x02}, {8, 0x03}, {10, 0x00}, {15, 0x04}, {20, 0x05}, {25, 0x06}, {30, 0x07} }; enum bmc150_magn_presets { LOW_POWER_PRESET, REGULAR_PRESET, ENHANCED_REGULAR_PRESET, HIGH_ACCURACY_PRESET }; static const struct bmc150_magn_preset { u8 rep_xy; u8 rep_z; u8 odr; } bmc150_magn_presets_table[] = { [LOW_POWER_PRESET] = {3, 3, 10}, [REGULAR_PRESET] = {9, 15, 10}, [ENHANCED_REGULAR_PRESET] = {15, 27, 10}, [HIGH_ACCURACY_PRESET] = {47, 83, 20}, }; #define BMC150_MAGN_DEFAULT_PRESET REGULAR_PRESET static bool bmc150_magn_is_writeable_reg(struct device *dev, unsigned int reg) { switch (reg) { case BMC150_MAGN_REG_POWER: case BMC150_MAGN_REG_OPMODE_ODR: case BMC150_MAGN_REG_INT: case BMC150_MAGN_REG_INT_DRDY: case BMC150_MAGN_REG_LOW_THRESH: case BMC150_MAGN_REG_HIGH_THRESH: case BMC150_MAGN_REG_REP_XY: case BMC150_MAGN_REG_REP_Z: return true; default: return false; }; } static bool bmc150_magn_is_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case BMC150_MAGN_REG_X_L: case BMC150_MAGN_REG_X_M: case BMC150_MAGN_REG_Y_L: case BMC150_MAGN_REG_Y_M: case BMC150_MAGN_REG_Z_L: case BMC150_MAGN_REG_Z_M: case BMC150_MAGN_REG_RHALL_L: case BMC150_MAGN_REG_RHALL_M: case BMC150_MAGN_REG_INT_STATUS: return true; default: return false; } } static const struct regmap_config bmc150_magn_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = BMC150_MAGN_REG_TRIM_END, .cache_type = REGCACHE_RBTREE, .writeable_reg = bmc150_magn_is_writeable_reg, .volatile_reg = bmc150_magn_is_volatile_reg, }; static int bmc150_magn_set_power_mode(struct bmc150_magn_data *data, enum bmc150_magn_power_modes mode, bool state) { int ret; switch (mode) { case BMC150_MAGN_POWER_MODE_SUSPEND: ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_POWER, BMC150_MAGN_MASK_POWER_CTL, !state); if (ret < 0) return ret; usleep_range(BMC150_MAGN_START_UP_TIME_MS * 1000, 20000); return 0; case BMC150_MAGN_POWER_MODE_SLEEP: return regmap_update_bits(data->regmap, BMC150_MAGN_REG_OPMODE_ODR, BMC150_MAGN_MASK_OPMODE, BMC150_MAGN_MODE_SLEEP << BMC150_MAGN_SHIFT_OPMODE); case BMC150_MAGN_POWER_MODE_NORMAL: return regmap_update_bits(data->regmap, BMC150_MAGN_REG_OPMODE_ODR, BMC150_MAGN_MASK_OPMODE, BMC150_MAGN_MODE_NORMAL << BMC150_MAGN_SHIFT_OPMODE); } return -EINVAL; } static int bmc150_magn_set_power_state(struct bmc150_magn_data *data, bool on) { #ifdef CONFIG_PM int ret; if (on) { ret = pm_runtime_get_sync(&data->client->dev); } else { pm_runtime_mark_last_busy(&data->client->dev); ret = pm_runtime_put_autosuspend(&data->client->dev); } if (ret < 0) { dev_err(&data->client->dev, "failed to change power state to %d\n", on); if (on) pm_runtime_put_noidle(&data->client->dev); return ret; } #endif return 0; } static int bmc150_magn_get_odr(struct bmc150_magn_data *data, int *val) { int ret, reg_val; u8 i, odr_val; ret = regmap_read(data->regmap, BMC150_MAGN_REG_OPMODE_ODR, ®_val); if (ret < 0) return ret; odr_val = (reg_val & BMC150_MAGN_MASK_ODR) >> BMC150_MAGN_SHIFT_ODR; for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) if (bmc150_magn_samp_freq_table[i].reg_val == odr_val) { *val = bmc150_magn_samp_freq_table[i].freq; return 0; } return -EINVAL; } static int bmc150_magn_set_odr(struct bmc150_magn_data *data, int val) { int ret; u8 i; for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) { if (bmc150_magn_samp_freq_table[i].freq == val) { ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_OPMODE_ODR, BMC150_MAGN_MASK_ODR, bmc150_magn_samp_freq_table[i]. reg_val << BMC150_MAGN_SHIFT_ODR); if (ret < 0) return ret; return 0; } } return -EINVAL; } static int bmc150_magn_set_max_odr(struct bmc150_magn_data *data, int rep_xy, int rep_z, int odr) { int ret, reg_val, max_odr; if (rep_xy <= 0) { ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY, ®_val); if (ret < 0) return ret; rep_xy = BMC150_MAGN_REGVAL_TO_REPXY(reg_val); } if (rep_z <= 0) { ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z, ®_val); if (ret < 0) return ret; rep_z = BMC150_MAGN_REGVAL_TO_REPZ(reg_val); } if (odr <= 0) { ret = bmc150_magn_get_odr(data, &odr); if (ret < 0) return ret; } /* the maximum selectable read-out frequency from datasheet */ max_odr = 1000000 / (145 * rep_xy + 500 * rep_z + 980); if (odr > max_odr) { dev_err(&data->client->dev, "Can't set oversampling with sampling freq %d\n", odr); return -EINVAL; } data->max_odr = max_odr; return 0; } static s32 bmc150_magn_compensate_x(struct bmc150_magn_trim_regs *tregs, s16 x, u16 rhall) { s16 val; u16 xyz1 = le16_to_cpu(tregs->xyz1); if (x == BMC150_MAGN_XY_OVERFLOW_VAL) return S32_MIN; if (!rhall) rhall = xyz1; val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000))); val = ((s16)((((s32)x) * ((((((((s32)tregs->xy2) * ((((s32)val) * ((s32)val)) >> 7)) + (((s32)val) * ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) * ((s32)(((s16)tregs->x2) + ((s16)0xA0)))) >> 12)) >> 13)) + (((s16)tregs->x1) << 3); return (s32)val; } static s32 bmc150_magn_compensate_y(struct bmc150_magn_trim_regs *tregs, s16 y, u16 rhall) { s16 val; u16 xyz1 = le16_to_cpu(tregs->xyz1); if (y == BMC150_MAGN_XY_OVERFLOW_VAL) return S32_MIN; if (!rhall) rhall = xyz1; val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000))); val = ((s16)((((s32)y) * ((((((((s32)tregs->xy2) * ((((s32)val) * ((s32)val)) >> 7)) + (((s32)val) * ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) * ((s32)(((s16)tregs->y2) + ((s16)0xA0)))) >> 12)) >> 13)) + (((s16)tregs->y1) << 3); return (s32)val; } static s32 bmc150_magn_compensate_z(struct bmc150_magn_trim_regs *tregs, s16 z, u16 rhall) { s32 val; u16 xyz1 = le16_to_cpu(tregs->xyz1); u16 z1 = le16_to_cpu(tregs->z1); s16 z2 = le16_to_cpu(tregs->z2); s16 z3 = le16_to_cpu(tregs->z3); s16 z4 = le16_to_cpu(tregs->z4); if (z == BMC150_MAGN_Z_OVERFLOW_VAL) return S32_MIN; val = (((((s32)(z - z4)) << 15) - ((((s32)z3) * ((s32)(((s16)rhall) - ((s16)xyz1)))) >> 2)) / (z2 + ((s16)(((((s32)z1) * ((((s16)rhall) << 1))) + (1 << 15)) >> 16)))); return val; } static int bmc150_magn_read_xyz(struct bmc150_magn_data *data, s32 *buffer) { int ret; __le16 values[AXIS_XYZR_MAX]; s16 raw_x, raw_y, raw_z; u16 rhall; struct bmc150_magn_trim_regs tregs; ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_X_L, values, sizeof(values)); if (ret < 0) return ret; raw_x = (s16)le16_to_cpu(values[AXIS_X]) >> BMC150_MAGN_SHIFT_XY_L; raw_y = (s16)le16_to_cpu(values[AXIS_Y]) >> BMC150_MAGN_SHIFT_XY_L; raw_z = (s16)le16_to_cpu(values[AXIS_Z]) >> BMC150_MAGN_SHIFT_Z_L; rhall = le16_to_cpu(values[RHALL]) >> BMC150_MAGN_SHIFT_RHALL_L; ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_TRIM_START, &tregs, sizeof(tregs)); if (ret < 0) return ret; buffer[AXIS_X] = bmc150_magn_compensate_x(&tregs, raw_x, rhall); buffer[AXIS_Y] = bmc150_magn_compensate_y(&tregs, raw_y, rhall); buffer[AXIS_Z] = bmc150_magn_compensate_z(&tregs, raw_z, rhall); return 0; } static int bmc150_magn_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct bmc150_magn_data *data = iio_priv(indio_dev); int ret, tmp; s32 values[AXIS_XYZ_MAX]; switch (mask) { case IIO_CHAN_INFO_RAW: if (iio_buffer_enabled(indio_dev)) return -EBUSY; mutex_lock(&data->mutex); ret = bmc150_magn_set_power_state(data, true); if (ret < 0) { mutex_unlock(&data->mutex); return ret; } ret = bmc150_magn_read_xyz(data, values); if (ret < 0) { bmc150_magn_set_power_state(data, false); mutex_unlock(&data->mutex); return ret; } *val = values[chan->scan_index]; ret = bmc150_magn_set_power_state(data, false); if (ret < 0) { mutex_unlock(&data->mutex); return ret; } mutex_unlock(&data->mutex); return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: /* * The API/driver performs an off-chip temperature * compensation and outputs x/y/z magnetic field data in * 16 LSB/uT to the upper application layer. */ *val = 0; *val2 = 625; return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_SAMP_FREQ: ret = bmc150_magn_get_odr(data, val); if (ret < 0) return ret; return IIO_VAL_INT; case IIO_CHAN_INFO_OVERSAMPLING_RATIO: switch (chan->channel2) { case IIO_MOD_X: case IIO_MOD_Y: ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY, &tmp); if (ret < 0) return ret; *val = BMC150_MAGN_REGVAL_TO_REPXY(tmp); return IIO_VAL_INT; case IIO_MOD_Z: ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z, &tmp); if (ret < 0) return ret; *val = BMC150_MAGN_REGVAL_TO_REPZ(tmp); return IIO_VAL_INT; default: return -EINVAL; } default: return -EINVAL; } } static int bmc150_magn_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct bmc150_magn_data *data = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: if (val > data->max_odr) return -EINVAL; mutex_lock(&data->mutex); ret = bmc150_magn_set_odr(data, val); mutex_unlock(&data->mutex); return ret; case IIO_CHAN_INFO_OVERSAMPLING_RATIO: switch (chan->channel2) { case IIO_MOD_X: case IIO_MOD_Y: if (val < 1 || val > 511) return -EINVAL; mutex_lock(&data->mutex); ret = bmc150_magn_set_max_odr(data, val, 0, 0); if (ret < 0) { mutex_unlock(&data->mutex); return ret; } ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_REP_XY, BMC150_MAGN_REG_REP_DATAMASK, BMC150_MAGN_REPXY_TO_REGVAL (val)); mutex_unlock(&data->mutex); return ret; case IIO_MOD_Z: if (val < 1 || val > 256) return -EINVAL; mutex_lock(&data->mutex); ret = bmc150_magn_set_max_odr(data, 0, val, 0); if (ret < 0) { mutex_unlock(&data->mutex); return ret; } ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_REP_Z, BMC150_MAGN_REG_REP_DATAMASK, BMC150_MAGN_REPZ_TO_REGVAL (val)); mutex_unlock(&data->mutex); return ret; default: return -EINVAL; } default: return -EINVAL; } } static ssize_t bmc150_magn_show_samp_freq_avail(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct bmc150_magn_data *data = iio_priv(indio_dev); size_t len = 0; u8 i; for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) { if (bmc150_magn_samp_freq_table[i].freq > data->max_odr) break; len += scnprintf(buf + len, PAGE_SIZE - len, "%d ", bmc150_magn_samp_freq_table[i].freq); } /* replace last space with a newline */ buf[len - 1] = '\n'; return len; } static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(bmc150_magn_show_samp_freq_avail); static struct attribute *bmc150_magn_attributes[] = { &iio_dev_attr_sampling_frequency_available.dev_attr.attr, NULL, }; static const struct attribute_group bmc150_magn_attrs_group = { .attrs = bmc150_magn_attributes, }; #define BMC150_MAGN_CHANNEL(_axis) { \ .type = IIO_MAGN, \ .modified = 1, \ .channel2 = IIO_MOD_##_axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \ BIT(IIO_CHAN_INFO_SCALE), \ .scan_index = AXIS_##_axis, \ .scan_type = { \ .sign = 's', \ .realbits = 32, \ .storagebits = 32, \ .endianness = IIO_LE \ }, \ } static const struct iio_chan_spec bmc150_magn_channels[] = { BMC150_MAGN_CHANNEL(X), BMC150_MAGN_CHANNEL(Y), BMC150_MAGN_CHANNEL(Z), IIO_CHAN_SOFT_TIMESTAMP(3), }; static const struct iio_info bmc150_magn_info = { .attrs = &bmc150_magn_attrs_group, .read_raw = bmc150_magn_read_raw, .write_raw = bmc150_magn_write_raw, .driver_module = THIS_MODULE, }; static const unsigned long bmc150_magn_scan_masks[] = { BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z), 0}; static irqreturn_t bmc150_magn_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct bmc150_magn_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->mutex); ret = bmc150_magn_read_xyz(data, data->buffer); if (ret < 0) goto err; iio_push_to_buffers_with_timestamp(indio_dev, data->buffer, pf->timestamp); err: mutex_unlock(&data->mutex); iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static int bmc150_magn_init(struct bmc150_magn_data *data) { int ret, chip_id; struct bmc150_magn_preset preset; ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, false); if (ret < 0) { dev_err(&data->client->dev, "Failed to bring up device from suspend mode\n"); return ret; } ret = regmap_read(data->regmap, BMC150_MAGN_REG_CHIP_ID, &chip_id); if (ret < 0) { dev_err(&data->client->dev, "Failed reading chip id\n"); goto err_poweroff; } if (chip_id != BMC150_MAGN_CHIP_ID_VAL) { dev_err(&data->client->dev, "Invalid chip id 0x%x\n", chip_id); ret = -ENODEV; goto err_poweroff; } dev_dbg(&data->client->dev, "Chip id %x\n", chip_id); preset = bmc150_magn_presets_table[BMC150_MAGN_DEFAULT_PRESET]; ret = bmc150_magn_set_odr(data, preset.odr); if (ret < 0) { dev_err(&data->client->dev, "Failed to set ODR to %d\n", preset.odr); goto err_poweroff; } ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_XY, BMC150_MAGN_REPXY_TO_REGVAL(preset.rep_xy)); if (ret < 0) { dev_err(&data->client->dev, "Failed to set REP XY to %d\n", preset.rep_xy); goto err_poweroff; } ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_Z, BMC150_MAGN_REPZ_TO_REGVAL(preset.rep_z)); if (ret < 0) { dev_err(&data->client->dev, "Failed to set REP Z to %d\n", preset.rep_z); goto err_poweroff; } ret = bmc150_magn_set_max_odr(data, preset.rep_xy, preset.rep_z, preset.odr); if (ret < 0) goto err_poweroff; ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL, true); if (ret < 0) { dev_err(&data->client->dev, "Failed to power on device\n"); goto err_poweroff; } return 0; err_poweroff: bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true); return ret; } static int bmc150_magn_reset_intr(struct bmc150_magn_data *data) { int tmp; /* * Data Ready (DRDY) is always cleared after * readout of data registers ends. */ return regmap_read(data->regmap, BMC150_MAGN_REG_X_L, &tmp); } static int bmc150_magn_trig_try_reen(struct iio_trigger *trig) { struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); struct bmc150_magn_data *data = iio_priv(indio_dev); int ret; if (!data->dready_trigger_on) return 0; mutex_lock(&data->mutex); ret = bmc150_magn_reset_intr(data); mutex_unlock(&data->mutex); return ret; } static int bmc150_magn_data_rdy_trigger_set_state(struct iio_trigger *trig, bool state) { struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); struct bmc150_magn_data *data = iio_priv(indio_dev); int ret = 0; mutex_lock(&data->mutex); if (state == data->dready_trigger_on) goto err_unlock; ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_INT_DRDY, BMC150_MAGN_MASK_DRDY_EN, state << BMC150_MAGN_SHIFT_DRDY_EN); if (ret < 0) goto err_unlock; data->dready_trigger_on = state; if (state) { ret = bmc150_magn_reset_intr(data); if (ret < 0) goto err_unlock; } mutex_unlock(&data->mutex); return 0; err_unlock: mutex_unlock(&data->mutex); return ret; } static const struct iio_trigger_ops bmc150_magn_trigger_ops = { .set_trigger_state = bmc150_magn_data_rdy_trigger_set_state, .try_reenable = bmc150_magn_trig_try_reen, .owner = THIS_MODULE, }; static int bmc150_magn_buffer_preenable(struct iio_dev *indio_dev) { struct bmc150_magn_data *data = iio_priv(indio_dev); return bmc150_magn_set_power_state(data, true); } static int bmc150_magn_buffer_postdisable(struct iio_dev *indio_dev) { struct bmc150_magn_data *data = iio_priv(indio_dev); return bmc150_magn_set_power_state(data, false); } static const struct iio_buffer_setup_ops bmc150_magn_buffer_setup_ops = { .preenable = bmc150_magn_buffer_preenable, .postenable = iio_triggered_buffer_postenable, .predisable = iio_triggered_buffer_predisable, .postdisable = bmc150_magn_buffer_postdisable, }; static const char *bmc150_magn_match_acpi_device(struct device *dev) { const struct acpi_device_id *id; id = acpi_match_device(dev->driver->acpi_match_table, dev); if (!id) return NULL; return dev_name(dev); } static int bmc150_magn_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct bmc150_magn_data *data; struct iio_dev *indio_dev; const char *name = NULL; int ret; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); i2c_set_clientdata(client, indio_dev); data->client = client; if (id) name = id->name; else if (ACPI_HANDLE(&client->dev)) name = bmc150_magn_match_acpi_device(&client->dev); else return -ENOSYS; mutex_init(&data->mutex); data->regmap = devm_regmap_init_i2c(client, &bmc150_magn_regmap_config); if (IS_ERR(data->regmap)) { dev_err(&client->dev, "Failed to allocate register map\n"); return PTR_ERR(data->regmap); } ret = bmc150_magn_init(data); if (ret < 0) return ret; indio_dev->dev.parent = &client->dev; indio_dev->channels = bmc150_magn_channels; indio_dev->num_channels = ARRAY_SIZE(bmc150_magn_channels); indio_dev->available_scan_masks = bmc150_magn_scan_masks; indio_dev->name = name; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = &bmc150_magn_info; if (client->irq > 0) { data->dready_trig = devm_iio_trigger_alloc(&client->dev, "%s-dev%d", indio_dev->name, indio_dev->id); if (!data->dready_trig) { ret = -ENOMEM; dev_err(&client->dev, "iio trigger alloc failed\n"); goto err_poweroff; } data->dready_trig->dev.parent = &client->dev; data->dready_trig->ops = &bmc150_magn_trigger_ops; iio_trigger_set_drvdata(data->dready_trig, indio_dev); ret = iio_trigger_register(data->dready_trig); if (ret) { dev_err(&client->dev, "iio trigger register failed\n"); goto err_poweroff; } ret = request_threaded_irq(client->irq, iio_trigger_generic_data_rdy_poll, NULL, IRQF_TRIGGER_RISING | IRQF_ONESHOT, BMC150_MAGN_IRQ_NAME, data->dready_trig); if (ret < 0) { dev_err(&client->dev, "request irq %d failed\n", client->irq); goto err_trigger_unregister; } } ret = iio_triggered_buffer_setup(indio_dev, iio_pollfunc_store_time, bmc150_magn_trigger_handler, &bmc150_magn_buffer_setup_ops); if (ret < 0) { dev_err(&client->dev, "iio triggered buffer setup failed\n"); goto err_free_irq; } ret = iio_device_register(indio_dev); if (ret < 0) { dev_err(&client->dev, "unable to register iio device\n"); goto err_buffer_cleanup; } ret = pm_runtime_set_active(&client->dev); if (ret) goto err_iio_unregister; pm_runtime_enable(&client->dev); pm_runtime_set_autosuspend_delay(&client->dev, BMC150_MAGN_AUTO_SUSPEND_DELAY_MS); pm_runtime_use_autosuspend(&client->dev); dev_dbg(&indio_dev->dev, "Registered device %s\n", name); return 0; err_iio_unregister: iio_device_unregister(indio_dev); err_buffer_cleanup: iio_triggered_buffer_cleanup(indio_dev); err_free_irq: if (client->irq > 0) free_irq(client->irq, data->dready_trig); err_trigger_unregister: if (data->dready_trig) iio_trigger_unregister(data->dready_trig); err_poweroff: bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true); return ret; } static int bmc150_magn_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); struct bmc150_magn_data *data = iio_priv(indio_dev); pm_runtime_disable(&client->dev); pm_runtime_set_suspended(&client->dev); pm_runtime_put_noidle(&client->dev); iio_device_unregister(indio_dev); iio_triggered_buffer_cleanup(indio_dev); if (client->irq > 0) free_irq(data->client->irq, data->dready_trig); if (data->dready_trig) iio_trigger_unregister(data->dready_trig); mutex_lock(&data->mutex); bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true); mutex_unlock(&data->mutex); return 0; } #ifdef CONFIG_PM static int bmc150_magn_runtime_suspend(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct bmc150_magn_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->mutex); ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP, true); mutex_unlock(&data->mutex); if (ret < 0) { dev_err(&data->client->dev, "powering off device failed\n"); return ret; } return 0; } /* * Should be called with data->mutex held. */ static int bmc150_magn_runtime_resume(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct bmc150_magn_data *data = iio_priv(indio_dev); return bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL, true); } #endif #ifdef CONFIG_PM_SLEEP static int bmc150_magn_suspend(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct bmc150_magn_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->mutex); ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP, true); mutex_unlock(&data->mutex); return ret; } static int bmc150_magn_resume(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct bmc150_magn_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->mutex); ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL, true); mutex_unlock(&data->mutex); return ret; } #endif static const struct dev_pm_ops bmc150_magn_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(bmc150_magn_suspend, bmc150_magn_resume) SET_RUNTIME_PM_OPS(bmc150_magn_runtime_suspend, bmc150_magn_runtime_resume, NULL) }; static const struct acpi_device_id bmc150_magn_acpi_match[] = { {"BMC150B", 0}, {"BMC156B", 0}, {}, }; MODULE_DEVICE_TABLE(acpi, bmc150_magn_acpi_match); static const struct i2c_device_id bmc150_magn_id[] = { {"bmc150_magn", 0}, {"bmc156_magn", 0}, {}, }; MODULE_DEVICE_TABLE(i2c, bmc150_magn_id); static struct i2c_driver bmc150_magn_driver = { .driver = { .name = BMC150_MAGN_DRV_NAME, .acpi_match_table = ACPI_PTR(bmc150_magn_acpi_match), .pm = &bmc150_magn_pm_ops, }, .probe = bmc150_magn_probe, .remove = bmc150_magn_remove, .id_table = bmc150_magn_id, }; module_i2c_driver(bmc150_magn_driver); MODULE_AUTHOR("Irina Tirdea <irina.tirdea@intel.com>"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("BMC150 magnetometer driver");