/* * Copyright (C) 2014 Red Hat * Author: Rob Clark <robdclark@gmail.com> * Author: Vinay Simha <vinaysimha@inforcecomputing.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see <http://www.gnu.org/licenses/>. */ #include "mdp4_kms.h" #include "drm_crtc.h" #include "drm_crtc_helper.h" struct mdp4_lcdc_encoder { struct drm_encoder base; struct drm_panel *panel; struct clk *lcdc_clk; unsigned long int pixclock; struct regulator *regs[3]; bool enabled; uint32_t bsc; }; #define to_mdp4_lcdc_encoder(x) container_of(x, struct mdp4_lcdc_encoder, base) static struct mdp4_kms *get_kms(struct drm_encoder *encoder) { struct msm_drm_private *priv = encoder->dev->dev_private; return to_mdp4_kms(to_mdp_kms(priv->kms)); } #ifdef DOWNSTREAM_CONFIG_MSM_BUS_SCALING #include <mach/board.h> static void bs_init(struct mdp4_lcdc_encoder *mdp4_lcdc_encoder) { struct drm_device *dev = mdp4_lcdc_encoder->base.dev; struct lcdc_platform_data *lcdc_pdata = mdp4_find_pdata("lvds.0"); if (!lcdc_pdata) { dev_err(dev->dev, "could not find lvds pdata\n"); return; } if (lcdc_pdata->bus_scale_table) { mdp4_lcdc_encoder->bsc = msm_bus_scale_register_client( lcdc_pdata->bus_scale_table); DBG("lvds : bus scale client: %08x", mdp4_lcdc_encoder->bsc); } } static void bs_fini(struct mdp4_lcdc_encoder *mdp4_lcdc_encoder) { if (mdp4_lcdc_encoder->bsc) { msm_bus_scale_unregister_client(mdp4_lcdc_encoder->bsc); mdp4_lcdc_encoder->bsc = 0; } } static void bs_set(struct mdp4_lcdc_encoder *mdp4_lcdc_encoder, int idx) { if (mdp4_lcdc_encoder->bsc) { DBG("set bus scaling: %d", idx); msm_bus_scale_client_update_request(mdp4_lcdc_encoder->bsc, idx); } } #else static void bs_init(struct mdp4_lcdc_encoder *mdp4_lcdc_encoder) {} static void bs_fini(struct mdp4_lcdc_encoder *mdp4_lcdc_encoder) {} static void bs_set(struct mdp4_lcdc_encoder *mdp4_lcdc_encoder, int idx) {} #endif static void mdp4_lcdc_encoder_destroy(struct drm_encoder *encoder) { struct mdp4_lcdc_encoder *mdp4_lcdc_encoder = to_mdp4_lcdc_encoder(encoder); bs_fini(mdp4_lcdc_encoder); drm_encoder_cleanup(encoder); kfree(mdp4_lcdc_encoder); } static const struct drm_encoder_funcs mdp4_lcdc_encoder_funcs = { .destroy = mdp4_lcdc_encoder_destroy, }; /* this should probably be a helper: */ struct drm_connector *get_connector(struct drm_encoder *encoder) { struct drm_device *dev = encoder->dev; struct drm_connector *connector; list_for_each_entry(connector, &dev->mode_config.connector_list, head) if (connector->encoder == encoder) return connector; return NULL; } static void setup_phy(struct drm_encoder *encoder) { struct drm_device *dev = encoder->dev; struct drm_connector *connector = get_connector(encoder); struct mdp4_kms *mdp4_kms = get_kms(encoder); uint32_t lvds_intf = 0, lvds_phy_cfg0 = 0; int bpp, nchan, swap; if (!connector) return; bpp = 3 * connector->display_info.bpc; if (!bpp) bpp = 18; /* TODO, these should come from panel somehow: */ nchan = 1; swap = 0; switch (bpp) { case 24: mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_3_TO_0(0), MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT0(0x08) | MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT1(0x05) | MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT2(0x04) | MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT3(0x03)); mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_6_TO_4(0), MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT4(0x02) | MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT5(0x01) | MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT6(0x00)); mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_3_TO_0(1), MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT0(0x11) | MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT1(0x10) | MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT2(0x0d) | MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT3(0x0c)); mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_6_TO_4(1), MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT4(0x0b) | MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT5(0x0a) | MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT6(0x09)); mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_3_TO_0(2), MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT0(0x1a) | MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT1(0x19) | MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT2(0x18) | MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT3(0x15)); mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_6_TO_4(2), MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT4(0x14) | MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT5(0x13) | MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT6(0x12)); mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_3_TO_0(3), MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT0(0x1b) | MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT1(0x17) | MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT2(0x16) | MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT3(0x0f)); mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_6_TO_4(3), MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT4(0x0e) | MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT5(0x07) | MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT6(0x06)); if (nchan == 2) { lvds_intf |= MDP4_LCDC_LVDS_INTF_CTL_CH2_DATA_LANE3_EN | MDP4_LCDC_LVDS_INTF_CTL_CH2_DATA_LANE2_EN | MDP4_LCDC_LVDS_INTF_CTL_CH2_DATA_LANE1_EN | MDP4_LCDC_LVDS_INTF_CTL_CH2_DATA_LANE0_EN | MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE3_EN | MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE2_EN | MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE1_EN | MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE0_EN; } else { lvds_intf |= MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE3_EN | MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE2_EN | MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE1_EN | MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE0_EN; } break; case 18: mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_3_TO_0(0), MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT0(0x0a) | MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT1(0x07) | MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT2(0x06) | MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT3(0x05)); mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_6_TO_4(0), MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT4(0x04) | MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT5(0x03) | MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT6(0x02)); mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_3_TO_0(1), MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT0(0x13) | MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT1(0x12) | MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT2(0x0f) | MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT3(0x0e)); mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_6_TO_4(1), MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT4(0x0d) | MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT5(0x0c) | MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT6(0x0b)); mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_3_TO_0(2), MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT0(0x1a) | MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT1(0x19) | MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT2(0x18) | MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT3(0x17)); mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_6_TO_4(2), MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT4(0x16) | MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT5(0x15) | MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT6(0x14)); if (nchan == 2) { lvds_intf |= MDP4_LCDC_LVDS_INTF_CTL_CH2_DATA_LANE2_EN | MDP4_LCDC_LVDS_INTF_CTL_CH2_DATA_LANE1_EN | MDP4_LCDC_LVDS_INTF_CTL_CH2_DATA_LANE0_EN | MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE2_EN | MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE1_EN | MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE0_EN; } else { lvds_intf |= MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE2_EN | MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE1_EN | MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE0_EN; } lvds_intf |= MDP4_LCDC_LVDS_INTF_CTL_RGB_OUT; break; default: dev_err(dev->dev, "unknown bpp: %d\n", bpp); return; } switch (nchan) { case 1: lvds_phy_cfg0 = MDP4_LVDS_PHY_CFG0_CHANNEL0; lvds_intf |= MDP4_LCDC_LVDS_INTF_CTL_CH1_CLK_LANE_EN | MDP4_LCDC_LVDS_INTF_CTL_MODE_SEL; break; case 2: lvds_phy_cfg0 = MDP4_LVDS_PHY_CFG0_CHANNEL0 | MDP4_LVDS_PHY_CFG0_CHANNEL1; lvds_intf |= MDP4_LCDC_LVDS_INTF_CTL_CH2_CLK_LANE_EN | MDP4_LCDC_LVDS_INTF_CTL_CH1_CLK_LANE_EN; break; default: dev_err(dev->dev, "unknown # of channels: %d\n", nchan); return; } if (swap) lvds_intf |= MDP4_LCDC_LVDS_INTF_CTL_CH_SWAP; lvds_intf |= MDP4_LCDC_LVDS_INTF_CTL_ENABLE; mdp4_write(mdp4_kms, REG_MDP4_LVDS_PHY_CFG0, lvds_phy_cfg0); mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_INTF_CTL, lvds_intf); mdp4_write(mdp4_kms, REG_MDP4_LVDS_PHY_CFG2, 0x30); mb(); udelay(1); lvds_phy_cfg0 |= MDP4_LVDS_PHY_CFG0_SERIALIZATION_ENBLE; mdp4_write(mdp4_kms, REG_MDP4_LVDS_PHY_CFG0, lvds_phy_cfg0); } static bool mdp4_lcdc_encoder_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { return true; } static void mdp4_lcdc_encoder_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct mdp4_lcdc_encoder *mdp4_lcdc_encoder = to_mdp4_lcdc_encoder(encoder); struct mdp4_kms *mdp4_kms = get_kms(encoder); uint32_t lcdc_hsync_skew, vsync_period, vsync_len, ctrl_pol; uint32_t display_v_start, display_v_end; uint32_t hsync_start_x, hsync_end_x; mode = adjusted_mode; DBG("set mode: %d:\"%s\" %d %d %d %d %d %d %d %d %d %d 0x%x 0x%x", mode->base.id, mode->name, mode->vrefresh, mode->clock, mode->hdisplay, mode->hsync_start, mode->hsync_end, mode->htotal, mode->vdisplay, mode->vsync_start, mode->vsync_end, mode->vtotal, mode->type, mode->flags); mdp4_lcdc_encoder->pixclock = mode->clock * 1000; DBG("pixclock=%lu", mdp4_lcdc_encoder->pixclock); ctrl_pol = 0; if (mode->flags & DRM_MODE_FLAG_NHSYNC) ctrl_pol |= MDP4_LCDC_CTRL_POLARITY_HSYNC_LOW; if (mode->flags & DRM_MODE_FLAG_NVSYNC) ctrl_pol |= MDP4_LCDC_CTRL_POLARITY_VSYNC_LOW; /* probably need to get DATA_EN polarity from panel.. */ lcdc_hsync_skew = 0; /* get this from panel? */ hsync_start_x = (mode->htotal - mode->hsync_start); hsync_end_x = mode->htotal - (mode->hsync_start - mode->hdisplay) - 1; vsync_period = mode->vtotal * mode->htotal; vsync_len = (mode->vsync_end - mode->vsync_start) * mode->htotal; display_v_start = (mode->vtotal - mode->vsync_start) * mode->htotal + lcdc_hsync_skew; display_v_end = vsync_period - ((mode->vsync_start - mode->vdisplay) * mode->htotal) + lcdc_hsync_skew - 1; mdp4_write(mdp4_kms, REG_MDP4_LCDC_HSYNC_CTRL, MDP4_LCDC_HSYNC_CTRL_PULSEW(mode->hsync_end - mode->hsync_start) | MDP4_LCDC_HSYNC_CTRL_PERIOD(mode->htotal)); mdp4_write(mdp4_kms, REG_MDP4_LCDC_VSYNC_PERIOD, vsync_period); mdp4_write(mdp4_kms, REG_MDP4_LCDC_VSYNC_LEN, vsync_len); mdp4_write(mdp4_kms, REG_MDP4_LCDC_DISPLAY_HCTRL, MDP4_LCDC_DISPLAY_HCTRL_START(hsync_start_x) | MDP4_LCDC_DISPLAY_HCTRL_END(hsync_end_x)); mdp4_write(mdp4_kms, REG_MDP4_LCDC_DISPLAY_VSTART, display_v_start); mdp4_write(mdp4_kms, REG_MDP4_LCDC_DISPLAY_VEND, display_v_end); mdp4_write(mdp4_kms, REG_MDP4_LCDC_BORDER_CLR, 0); mdp4_write(mdp4_kms, REG_MDP4_LCDC_UNDERFLOW_CLR, MDP4_LCDC_UNDERFLOW_CLR_ENABLE_RECOVERY | MDP4_LCDC_UNDERFLOW_CLR_COLOR(0xff)); mdp4_write(mdp4_kms, REG_MDP4_LCDC_HSYNC_SKEW, lcdc_hsync_skew); mdp4_write(mdp4_kms, REG_MDP4_LCDC_CTRL_POLARITY, ctrl_pol); mdp4_write(mdp4_kms, REG_MDP4_LCDC_ACTIVE_HCTL, MDP4_LCDC_ACTIVE_HCTL_START(0) | MDP4_LCDC_ACTIVE_HCTL_END(0)); mdp4_write(mdp4_kms, REG_MDP4_LCDC_ACTIVE_VSTART, 0); mdp4_write(mdp4_kms, REG_MDP4_LCDC_ACTIVE_VEND, 0); } static void mdp4_lcdc_encoder_disable(struct drm_encoder *encoder) { struct drm_device *dev = encoder->dev; struct mdp4_lcdc_encoder *mdp4_lcdc_encoder = to_mdp4_lcdc_encoder(encoder); struct mdp4_kms *mdp4_kms = get_kms(encoder); struct drm_panel *panel = mdp4_lcdc_encoder->panel; int i, ret; if (WARN_ON(!mdp4_lcdc_encoder->enabled)) return; mdp4_write(mdp4_kms, REG_MDP4_LCDC_ENABLE, 0); if (panel) { drm_panel_disable(panel); drm_panel_unprepare(panel); } /* * Wait for a vsync so we know the ENABLE=0 latched before * the (connector) source of the vsync's gets disabled, * otherwise we end up in a funny state if we re-enable * before the disable latches, which results that some of * the settings changes for the new modeset (like new * scanout buffer) don't latch properly.. */ mdp_irq_wait(&mdp4_kms->base, MDP4_IRQ_PRIMARY_VSYNC); clk_disable_unprepare(mdp4_lcdc_encoder->lcdc_clk); for (i = 0; i < ARRAY_SIZE(mdp4_lcdc_encoder->regs); i++) { ret = regulator_disable(mdp4_lcdc_encoder->regs[i]); if (ret) dev_err(dev->dev, "failed to disable regulator: %d\n", ret); } bs_set(mdp4_lcdc_encoder, 0); mdp4_lcdc_encoder->enabled = false; } static void mdp4_lcdc_encoder_enable(struct drm_encoder *encoder) { struct drm_device *dev = encoder->dev; struct mdp4_lcdc_encoder *mdp4_lcdc_encoder = to_mdp4_lcdc_encoder(encoder); unsigned long pc = mdp4_lcdc_encoder->pixclock; struct mdp4_kms *mdp4_kms = get_kms(encoder); struct drm_panel *panel = mdp4_lcdc_encoder->panel; int i, ret; if (WARN_ON(mdp4_lcdc_encoder->enabled)) return; /* TODO: hard-coded for 18bpp: */ mdp4_crtc_set_config(encoder->crtc, MDP4_DMA_CONFIG_R_BPC(BPC6) | MDP4_DMA_CONFIG_G_BPC(BPC6) | MDP4_DMA_CONFIG_B_BPC(BPC6) | MDP4_DMA_CONFIG_PACK_ALIGN_MSB | MDP4_DMA_CONFIG_PACK(0x21) | MDP4_DMA_CONFIG_DEFLKR_EN | MDP4_DMA_CONFIG_DITHER_EN); mdp4_crtc_set_intf(encoder->crtc, INTF_LCDC_DTV, 0); bs_set(mdp4_lcdc_encoder, 1); for (i = 0; i < ARRAY_SIZE(mdp4_lcdc_encoder->regs); i++) { ret = regulator_enable(mdp4_lcdc_encoder->regs[i]); if (ret) dev_err(dev->dev, "failed to enable regulator: %d\n", ret); } DBG("setting lcdc_clk=%lu", pc); ret = clk_set_rate(mdp4_lcdc_encoder->lcdc_clk, pc); if (ret) dev_err(dev->dev, "failed to configure lcdc_clk: %d\n", ret); ret = clk_prepare_enable(mdp4_lcdc_encoder->lcdc_clk); if (ret) dev_err(dev->dev, "failed to enable lcdc_clk: %d\n", ret); if (panel) { drm_panel_prepare(panel); drm_panel_enable(panel); } setup_phy(encoder); mdp4_write(mdp4_kms, REG_MDP4_LCDC_ENABLE, 1); mdp4_lcdc_encoder->enabled = true; } static const struct drm_encoder_helper_funcs mdp4_lcdc_encoder_helper_funcs = { .mode_fixup = mdp4_lcdc_encoder_mode_fixup, .mode_set = mdp4_lcdc_encoder_mode_set, .disable = mdp4_lcdc_encoder_disable, .enable = mdp4_lcdc_encoder_enable, }; long mdp4_lcdc_round_pixclk(struct drm_encoder *encoder, unsigned long rate) { struct mdp4_lcdc_encoder *mdp4_lcdc_encoder = to_mdp4_lcdc_encoder(encoder); return clk_round_rate(mdp4_lcdc_encoder->lcdc_clk, rate); } /* initialize encoder */ struct drm_encoder *mdp4_lcdc_encoder_init(struct drm_device *dev, struct drm_panel *panel) { struct drm_encoder *encoder = NULL; struct mdp4_lcdc_encoder *mdp4_lcdc_encoder; struct regulator *reg; int ret; mdp4_lcdc_encoder = kzalloc(sizeof(*mdp4_lcdc_encoder), GFP_KERNEL); if (!mdp4_lcdc_encoder) { ret = -ENOMEM; goto fail; } mdp4_lcdc_encoder->panel = panel; encoder = &mdp4_lcdc_encoder->base; drm_encoder_init(dev, encoder, &mdp4_lcdc_encoder_funcs, DRM_MODE_ENCODER_LVDS); drm_encoder_helper_add(encoder, &mdp4_lcdc_encoder_helper_funcs); /* TODO: do we need different pll in other cases? */ mdp4_lcdc_encoder->lcdc_clk = mpd4_lvds_pll_init(dev); if (IS_ERR(mdp4_lcdc_encoder->lcdc_clk)) { dev_err(dev->dev, "failed to get lvds_clk\n"); ret = PTR_ERR(mdp4_lcdc_encoder->lcdc_clk); goto fail; } /* TODO: different regulators in other cases? */ reg = devm_regulator_get(dev->dev, "lvds-vccs-3p3v"); if (IS_ERR(reg)) { ret = PTR_ERR(reg); dev_err(dev->dev, "failed to get lvds-vccs-3p3v: %d\n", ret); goto fail; } mdp4_lcdc_encoder->regs[0] = reg; reg = devm_regulator_get(dev->dev, "lvds-pll-vdda"); if (IS_ERR(reg)) { ret = PTR_ERR(reg); dev_err(dev->dev, "failed to get lvds-pll-vdda: %d\n", ret); goto fail; } mdp4_lcdc_encoder->regs[1] = reg; reg = devm_regulator_get(dev->dev, "lvds-vdda"); if (IS_ERR(reg)) { ret = PTR_ERR(reg); dev_err(dev->dev, "failed to get lvds-vdda: %d\n", ret); goto fail; } mdp4_lcdc_encoder->regs[2] = reg; bs_init(mdp4_lcdc_encoder); return encoder; fail: if (encoder) mdp4_lcdc_encoder_destroy(encoder); return ERR_PTR(ret); }