/* * Copyright (c) 2012-2015, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <linux/clk.h> #include <linux/clk-provider.h> #include "dsi_pll.h" #include "dsi.xml.h" /* * DSI PLL 28nm - clock diagram (eg: DSI0): * * dsi0analog_postdiv_clk * | dsi0indirect_path_div2_clk * | | * +------+ | +----+ | |\ dsi0byte_mux * dsi0vco_clk --o--| DIV1 |--o--| /2 |--o--| \ | * | +------+ +----+ | m| | +----+ * | | u|--o--| /4 |-- dsi0pllbyte * | | x| +----+ * o--------------------------| / * | |/ * | +------+ * o----------| DIV3 |------------------------- dsi0pll * +------+ */ #define POLL_MAX_READS 10 #define POLL_TIMEOUT_US 50 #define NUM_PROVIDED_CLKS 2 #define VCO_REF_CLK_RATE 19200000 #define VCO_MIN_RATE 350000000 #define VCO_MAX_RATE 750000000 #define DSI_BYTE_PLL_CLK 0 #define DSI_PIXEL_PLL_CLK 1 #define LPFR_LUT_SIZE 10 struct lpfr_cfg { unsigned long vco_rate; u32 resistance; }; /* Loop filter resistance: */ static const struct lpfr_cfg lpfr_lut[LPFR_LUT_SIZE] = { { 479500000, 8 }, { 480000000, 11 }, { 575500000, 8 }, { 576000000, 12 }, { 610500000, 8 }, { 659500000, 9 }, { 671500000, 10 }, { 672000000, 14 }, { 708500000, 10 }, { 750000000, 11 }, }; struct pll_28nm_cached_state { unsigned long vco_rate; u8 postdiv3; u8 postdiv1; u8 byte_mux; }; struct dsi_pll_28nm { struct msm_dsi_pll base; int id; struct platform_device *pdev; void __iomem *mmio; int vco_delay; /* private clocks: */ struct clk *clks[NUM_DSI_CLOCKS_MAX]; u32 num_clks; /* clock-provider: */ struct clk *provided_clks[NUM_PROVIDED_CLKS]; struct clk_onecell_data clk_data; struct pll_28nm_cached_state cached_state; }; #define to_pll_28nm(x) container_of(x, struct dsi_pll_28nm, base) static bool pll_28nm_poll_for_ready(struct dsi_pll_28nm *pll_28nm, u32 nb_tries, u32 timeout_us) { bool pll_locked = false; u32 val; while (nb_tries--) { val = pll_read(pll_28nm->mmio + REG_DSI_28nm_PHY_PLL_STATUS); pll_locked = !!(val & DSI_28nm_PHY_PLL_STATUS_PLL_RDY); if (pll_locked) break; udelay(timeout_us); } DBG("DSI PLL is %slocked", pll_locked ? "" : "*not* "); return pll_locked; } static void pll_28nm_software_reset(struct dsi_pll_28nm *pll_28nm) { void __iomem *base = pll_28nm->mmio; /* * Add HW recommended delays after toggling the software * reset bit off and back on. */ pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_TEST_CFG, DSI_28nm_PHY_PLL_TEST_CFG_PLL_SW_RESET, 1); pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_TEST_CFG, 0x00, 1); } /* * Clock Callbacks */ static int dsi_pll_28nm_clk_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct msm_dsi_pll *pll = hw_clk_to_pll(hw); struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll); struct device *dev = &pll_28nm->pdev->dev; void __iomem *base = pll_28nm->mmio; unsigned long div_fbx1000, gen_vco_clk; u32 refclk_cfg, frac_n_mode, frac_n_value; u32 sdm_cfg0, sdm_cfg1, sdm_cfg2, sdm_cfg3; u32 cal_cfg10, cal_cfg11; u32 rem; int i; VERB("rate=%lu, parent's=%lu", rate, parent_rate); /* Force postdiv2 to be div-4 */ pll_write(base + REG_DSI_28nm_PHY_PLL_POSTDIV2_CFG, 3); /* Configure the Loop filter resistance */ for (i = 0; i < LPFR_LUT_SIZE; i++) if (rate <= lpfr_lut[i].vco_rate) break; if (i == LPFR_LUT_SIZE) { dev_err(dev, "unable to get loop filter resistance. vco=%lu\n", rate); return -EINVAL; } pll_write(base + REG_DSI_28nm_PHY_PLL_LPFR_CFG, lpfr_lut[i].resistance); /* Loop filter capacitance values : c1 and c2 */ pll_write(base + REG_DSI_28nm_PHY_PLL_LPFC1_CFG, 0x70); pll_write(base + REG_DSI_28nm_PHY_PLL_LPFC2_CFG, 0x15); rem = rate % VCO_REF_CLK_RATE; if (rem) { refclk_cfg = DSI_28nm_PHY_PLL_REFCLK_CFG_DBLR; frac_n_mode = 1; div_fbx1000 = rate / (VCO_REF_CLK_RATE / 500); gen_vco_clk = div_fbx1000 * (VCO_REF_CLK_RATE / 500); } else { refclk_cfg = 0x0; frac_n_mode = 0; div_fbx1000 = rate / (VCO_REF_CLK_RATE / 1000); gen_vco_clk = div_fbx1000 * (VCO_REF_CLK_RATE / 1000); } DBG("refclk_cfg = %d", refclk_cfg); rem = div_fbx1000 % 1000; frac_n_value = (rem << 16) / 1000; DBG("div_fb = %lu", div_fbx1000); DBG("frac_n_value = %d", frac_n_value); DBG("Generated VCO Clock: %lu", gen_vco_clk); rem = 0; sdm_cfg1 = pll_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG1); sdm_cfg1 &= ~DSI_28nm_PHY_PLL_SDM_CFG1_DC_OFFSET__MASK; if (frac_n_mode) { sdm_cfg0 = 0x0; sdm_cfg0 |= DSI_28nm_PHY_PLL_SDM_CFG0_BYP_DIV(0); sdm_cfg1 |= DSI_28nm_PHY_PLL_SDM_CFG1_DC_OFFSET( (u32)(((div_fbx1000 / 1000) & 0x3f) - 1)); sdm_cfg3 = frac_n_value >> 8; sdm_cfg2 = frac_n_value & 0xff; } else { sdm_cfg0 = DSI_28nm_PHY_PLL_SDM_CFG0_BYP; sdm_cfg0 |= DSI_28nm_PHY_PLL_SDM_CFG0_BYP_DIV( (u32)(((div_fbx1000 / 1000) & 0x3f) - 1)); sdm_cfg1 |= DSI_28nm_PHY_PLL_SDM_CFG1_DC_OFFSET(0); sdm_cfg2 = 0; sdm_cfg3 = 0; } DBG("sdm_cfg0=%d", sdm_cfg0); DBG("sdm_cfg1=%d", sdm_cfg1); DBG("sdm_cfg2=%d", sdm_cfg2); DBG("sdm_cfg3=%d", sdm_cfg3); cal_cfg11 = (u32)(gen_vco_clk / (256 * 1000000)); cal_cfg10 = (u32)((gen_vco_clk % (256 * 1000000)) / 1000000); DBG("cal_cfg10=%d, cal_cfg11=%d", cal_cfg10, cal_cfg11); pll_write(base + REG_DSI_28nm_PHY_PLL_CHGPUMP_CFG, 0x02); pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG3, 0x2b); pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG4, 0x06); pll_write(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2, 0x0d); pll_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG1, sdm_cfg1); pll_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG2, DSI_28nm_PHY_PLL_SDM_CFG2_FREQ_SEED_7_0(sdm_cfg2)); pll_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG3, DSI_28nm_PHY_PLL_SDM_CFG3_FREQ_SEED_15_8(sdm_cfg3)); pll_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG4, 0x00); /* Add hardware recommended delay for correct PLL configuration */ if (pll_28nm->vco_delay) udelay(pll_28nm->vco_delay); pll_write(base + REG_DSI_28nm_PHY_PLL_REFCLK_CFG, refclk_cfg); pll_write(base + REG_DSI_28nm_PHY_PLL_PWRGEN_CFG, 0x00); pll_write(base + REG_DSI_28nm_PHY_PLL_VCOLPF_CFG, 0x31); pll_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG0, sdm_cfg0); pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG0, 0x12); pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG6, 0x30); pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG7, 0x00); pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG8, 0x60); pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG9, 0x00); pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG10, cal_cfg10 & 0xff); pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG11, cal_cfg11 & 0xff); pll_write(base + REG_DSI_28nm_PHY_PLL_EFUSE_CFG, 0x20); return 0; } static int dsi_pll_28nm_clk_is_enabled(struct clk_hw *hw) { struct msm_dsi_pll *pll = hw_clk_to_pll(hw); struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll); return pll_28nm_poll_for_ready(pll_28nm, POLL_MAX_READS, POLL_TIMEOUT_US); } static unsigned long dsi_pll_28nm_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct msm_dsi_pll *pll = hw_clk_to_pll(hw); struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll); void __iomem *base = pll_28nm->mmio; u32 sdm0, doubler, sdm_byp_div; u32 sdm_dc_off, sdm_freq_seed, sdm2, sdm3; u32 ref_clk = VCO_REF_CLK_RATE; unsigned long vco_rate; VERB("parent_rate=%lu", parent_rate); /* Check to see if the ref clk doubler is enabled */ doubler = pll_read(base + REG_DSI_28nm_PHY_PLL_REFCLK_CFG) & DSI_28nm_PHY_PLL_REFCLK_CFG_DBLR; ref_clk += (doubler * VCO_REF_CLK_RATE); /* see if it is integer mode or sdm mode */ sdm0 = pll_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG0); if (sdm0 & DSI_28nm_PHY_PLL_SDM_CFG0_BYP) { /* integer mode */ sdm_byp_div = FIELD( pll_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG0), DSI_28nm_PHY_PLL_SDM_CFG0_BYP_DIV) + 1; vco_rate = ref_clk * sdm_byp_div; } else { /* sdm mode */ sdm_dc_off = FIELD( pll_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG1), DSI_28nm_PHY_PLL_SDM_CFG1_DC_OFFSET); DBG("sdm_dc_off = %d", sdm_dc_off); sdm2 = FIELD(pll_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG2), DSI_28nm_PHY_PLL_SDM_CFG2_FREQ_SEED_7_0); sdm3 = FIELD(pll_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG3), DSI_28nm_PHY_PLL_SDM_CFG3_FREQ_SEED_15_8); sdm_freq_seed = (sdm3 << 8) | sdm2; DBG("sdm_freq_seed = %d", sdm_freq_seed); vco_rate = (ref_clk * (sdm_dc_off + 1)) + mult_frac(ref_clk, sdm_freq_seed, BIT(16)); DBG("vco rate = %lu", vco_rate); } DBG("returning vco rate = %lu", vco_rate); return vco_rate; } static const struct clk_ops clk_ops_dsi_pll_28nm_vco = { .round_rate = msm_dsi_pll_helper_clk_round_rate, .set_rate = dsi_pll_28nm_clk_set_rate, .recalc_rate = dsi_pll_28nm_clk_recalc_rate, .prepare = msm_dsi_pll_helper_clk_prepare, .unprepare = msm_dsi_pll_helper_clk_unprepare, .is_enabled = dsi_pll_28nm_clk_is_enabled, }; /* * PLL Callbacks */ static int dsi_pll_28nm_enable_seq_hpm(struct msm_dsi_pll *pll) { struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll); struct device *dev = &pll_28nm->pdev->dev; void __iomem *base = pll_28nm->mmio; u32 max_reads = 5, timeout_us = 100; bool locked; u32 val; int i; DBG("id=%d", pll_28nm->id); pll_28nm_software_reset(pll_28nm); /* * PLL power up sequence. * Add necessary delays recommended by hardware. */ val = DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRDN_B; pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 1); val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRGEN_PWRDN_B; pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 200); val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B; pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500); val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_ENABLE; pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 600); for (i = 0; i < 2; i++) { /* DSI Uniphy lock detect setting */ pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2, 0x0c, 100); pll_write(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2, 0x0d); /* poll for PLL ready status */ locked = pll_28nm_poll_for_ready(pll_28nm, max_reads, timeout_us); if (locked) break; pll_28nm_software_reset(pll_28nm); /* * PLL power up sequence. * Add necessary delays recommended by hardware. */ val = DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRDN_B; pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 1); val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRGEN_PWRDN_B; pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 200); val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B; pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 250); val &= ~DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B; pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 200); val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B; pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500); val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_ENABLE; pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 600); } if (unlikely(!locked)) dev_err(dev, "DSI PLL lock failed\n"); else DBG("DSI PLL Lock success"); return locked ? 0 : -EINVAL; } static int dsi_pll_28nm_enable_seq_lp(struct msm_dsi_pll *pll) { struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll); struct device *dev = &pll_28nm->pdev->dev; void __iomem *base = pll_28nm->mmio; bool locked; u32 max_reads = 10, timeout_us = 50; u32 val; DBG("id=%d", pll_28nm->id); pll_28nm_software_reset(pll_28nm); /* * PLL power up sequence. * Add necessary delays recommended by hardware. */ pll_write_ndelay(base + REG_DSI_28nm_PHY_PLL_CAL_CFG1, 0x34, 500); val = DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRDN_B; pll_write_ndelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500); val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRGEN_PWRDN_B; pll_write_ndelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500); val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B | DSI_28nm_PHY_PLL_GLB_CFG_PLL_ENABLE; pll_write_ndelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500); /* DSI PLL toggle lock detect setting */ pll_write_ndelay(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2, 0x04, 500); pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2, 0x05, 512); locked = pll_28nm_poll_for_ready(pll_28nm, max_reads, timeout_us); if (unlikely(!locked)) dev_err(dev, "DSI PLL lock failed\n"); else DBG("DSI PLL lock success"); return locked ? 0 : -EINVAL; } static void dsi_pll_28nm_disable_seq(struct msm_dsi_pll *pll) { struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll); DBG("id=%d", pll_28nm->id); pll_write(pll_28nm->mmio + REG_DSI_28nm_PHY_PLL_GLB_CFG, 0x00); } static void dsi_pll_28nm_save_state(struct msm_dsi_pll *pll) { struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll); struct pll_28nm_cached_state *cached_state = &pll_28nm->cached_state; void __iomem *base = pll_28nm->mmio; cached_state->postdiv3 = pll_read(base + REG_DSI_28nm_PHY_PLL_POSTDIV3_CFG); cached_state->postdiv1 = pll_read(base + REG_DSI_28nm_PHY_PLL_POSTDIV1_CFG); cached_state->byte_mux = pll_read(base + REG_DSI_28nm_PHY_PLL_VREG_CFG); cached_state->vco_rate = clk_hw_get_rate(&pll->clk_hw); } static int dsi_pll_28nm_restore_state(struct msm_dsi_pll *pll) { struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll); struct pll_28nm_cached_state *cached_state = &pll_28nm->cached_state; void __iomem *base = pll_28nm->mmio; int ret; ret = dsi_pll_28nm_clk_set_rate(&pll->clk_hw, cached_state->vco_rate, 0); if (ret) { dev_err(&pll_28nm->pdev->dev, "restore vco rate failed. ret=%d\n", ret); return ret; } pll_write(base + REG_DSI_28nm_PHY_PLL_POSTDIV3_CFG, cached_state->postdiv3); pll_write(base + REG_DSI_28nm_PHY_PLL_POSTDIV1_CFG, cached_state->postdiv1); pll_write(base + REG_DSI_28nm_PHY_PLL_VREG_CFG, cached_state->byte_mux); return 0; } static int dsi_pll_28nm_get_provider(struct msm_dsi_pll *pll, struct clk **byte_clk_provider, struct clk **pixel_clk_provider) { struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll); if (byte_clk_provider) *byte_clk_provider = pll_28nm->provided_clks[DSI_BYTE_PLL_CLK]; if (pixel_clk_provider) *pixel_clk_provider = pll_28nm->provided_clks[DSI_PIXEL_PLL_CLK]; return 0; } static void dsi_pll_28nm_destroy(struct msm_dsi_pll *pll) { struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll); int i; msm_dsi_pll_helper_unregister_clks(pll_28nm->pdev, pll_28nm->clks, pll_28nm->num_clks); for (i = 0; i < NUM_PROVIDED_CLKS; i++) pll_28nm->provided_clks[i] = NULL; pll_28nm->num_clks = 0; pll_28nm->clk_data.clks = NULL; pll_28nm->clk_data.clk_num = 0; } static int pll_28nm_register(struct dsi_pll_28nm *pll_28nm) { char clk_name[32], parent1[32], parent2[32], vco_name[32]; struct clk_init_data vco_init = { .parent_names = (const char *[]){ "xo" }, .num_parents = 1, .name = vco_name, .ops = &clk_ops_dsi_pll_28nm_vco, }; struct device *dev = &pll_28nm->pdev->dev; struct clk **clks = pll_28nm->clks; struct clk **provided_clks = pll_28nm->provided_clks; int num = 0; int ret; DBG("%d", pll_28nm->id); snprintf(vco_name, 32, "dsi%dvco_clk", pll_28nm->id); pll_28nm->base.clk_hw.init = &vco_init; clks[num++] = clk_register(dev, &pll_28nm->base.clk_hw); snprintf(clk_name, 32, "dsi%danalog_postdiv_clk", pll_28nm->id); snprintf(parent1, 32, "dsi%dvco_clk", pll_28nm->id); clks[num++] = clk_register_divider(dev, clk_name, parent1, CLK_SET_RATE_PARENT, pll_28nm->mmio + REG_DSI_28nm_PHY_PLL_POSTDIV1_CFG, 0, 4, 0, NULL); snprintf(clk_name, 32, "dsi%dindirect_path_div2_clk", pll_28nm->id); snprintf(parent1, 32, "dsi%danalog_postdiv_clk", pll_28nm->id); clks[num++] = clk_register_fixed_factor(dev, clk_name, parent1, CLK_SET_RATE_PARENT, 1, 2); snprintf(clk_name, 32, "dsi%dpll", pll_28nm->id); snprintf(parent1, 32, "dsi%dvco_clk", pll_28nm->id); clks[num++] = provided_clks[DSI_PIXEL_PLL_CLK] = clk_register_divider(dev, clk_name, parent1, 0, pll_28nm->mmio + REG_DSI_28nm_PHY_PLL_POSTDIV3_CFG, 0, 8, 0, NULL); snprintf(clk_name, 32, "dsi%dbyte_mux", pll_28nm->id); snprintf(parent1, 32, "dsi%dvco_clk", pll_28nm->id); snprintf(parent2, 32, "dsi%dindirect_path_div2_clk", pll_28nm->id); clks[num++] = clk_register_mux(dev, clk_name, (const char *[]){ parent1, parent2 }, 2, CLK_SET_RATE_PARENT, pll_28nm->mmio + REG_DSI_28nm_PHY_PLL_VREG_CFG, 1, 1, 0, NULL); snprintf(clk_name, 32, "dsi%dpllbyte", pll_28nm->id); snprintf(parent1, 32, "dsi%dbyte_mux", pll_28nm->id); clks[num++] = provided_clks[DSI_BYTE_PLL_CLK] = clk_register_fixed_factor(dev, clk_name, parent1, CLK_SET_RATE_PARENT, 1, 4); pll_28nm->num_clks = num; pll_28nm->clk_data.clk_num = NUM_PROVIDED_CLKS; pll_28nm->clk_data.clks = provided_clks; ret = of_clk_add_provider(dev->of_node, of_clk_src_onecell_get, &pll_28nm->clk_data); if (ret) { dev_err(dev, "failed to register clk provider: %d\n", ret); return ret; } return 0; } struct msm_dsi_pll *msm_dsi_pll_28nm_init(struct platform_device *pdev, enum msm_dsi_phy_type type, int id) { struct dsi_pll_28nm *pll_28nm; struct msm_dsi_pll *pll; int ret; if (!pdev) return ERR_PTR(-ENODEV); pll_28nm = devm_kzalloc(&pdev->dev, sizeof(*pll_28nm), GFP_KERNEL); if (!pll_28nm) return ERR_PTR(-ENOMEM); pll_28nm->pdev = pdev; pll_28nm->id = id; pll_28nm->mmio = msm_ioremap(pdev, "dsi_pll", "DSI_PLL"); if (IS_ERR_OR_NULL(pll_28nm->mmio)) { dev_err(&pdev->dev, "%s: failed to map pll base\n", __func__); return ERR_PTR(-ENOMEM); } pll = &pll_28nm->base; pll->min_rate = VCO_MIN_RATE; pll->max_rate = VCO_MAX_RATE; pll->get_provider = dsi_pll_28nm_get_provider; pll->destroy = dsi_pll_28nm_destroy; pll->disable_seq = dsi_pll_28nm_disable_seq; pll->save_state = dsi_pll_28nm_save_state; pll->restore_state = dsi_pll_28nm_restore_state; if (type == MSM_DSI_PHY_28NM_HPM) { pll_28nm->vco_delay = 1; pll->en_seq_cnt = 3; pll->enable_seqs[0] = dsi_pll_28nm_enable_seq_hpm; pll->enable_seqs[1] = dsi_pll_28nm_enable_seq_hpm; pll->enable_seqs[2] = dsi_pll_28nm_enable_seq_hpm; } else if (type == MSM_DSI_PHY_28NM_LP) { pll_28nm->vco_delay = 1000; pll->en_seq_cnt = 1; pll->enable_seqs[0] = dsi_pll_28nm_enable_seq_lp; } else { dev_err(&pdev->dev, "phy type (%d) is not 28nm\n", type); return ERR_PTR(-EINVAL); } ret = pll_28nm_register(pll_28nm); if (ret) { dev_err(&pdev->dev, "failed to register PLL: %d\n", ret); return ERR_PTR(ret); } return pll; }