/* * Copyright (C) 2011-2013 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/errno.h> #include <linux/export.h> #include <linux/kernel.h> #include <drm/drmP.h> #include <drm/drm_rect.h> /** * drm_rect_intersect - intersect two rectangles * @r1: first rectangle * @r2: second rectangle * * Calculate the intersection of rectangles @r1 and @r2. * @r1 will be overwritten with the intersection. * * RETURNS: * %true if rectangle @r1 is still visible after the operation, * %false otherwise. */ bool drm_rect_intersect(struct drm_rect *r1, const struct drm_rect *r2) { r1->x1 = max(r1->x1, r2->x1); r1->y1 = max(r1->y1, r2->y1); r1->x2 = min(r1->x2, r2->x2); r1->y2 = min(r1->y2, r2->y2); return drm_rect_visible(r1); } EXPORT_SYMBOL(drm_rect_intersect); /** * drm_rect_clip_scaled - perform a scaled clip operation * @src: source window rectangle * @dst: destination window rectangle * @clip: clip rectangle * @hscale: horizontal scaling factor * @vscale: vertical scaling factor * * Clip rectangle @dst by rectangle @clip. Clip rectangle @src by the * same amounts multiplied by @hscale and @vscale. * * RETURNS: * %true if rectangle @dst is still visible after being clipped, * %false otherwise */ bool drm_rect_clip_scaled(struct drm_rect *src, struct drm_rect *dst, const struct drm_rect *clip, int hscale, int vscale) { int diff; diff = clip->x1 - dst->x1; if (diff > 0) { int64_t tmp = src->x1 + (int64_t) diff * hscale; src->x1 = clamp_t(int64_t, tmp, INT_MIN, INT_MAX); } diff = clip->y1 - dst->y1; if (diff > 0) { int64_t tmp = src->y1 + (int64_t) diff * vscale; src->y1 = clamp_t(int64_t, tmp, INT_MIN, INT_MAX); } diff = dst->x2 - clip->x2; if (diff > 0) { int64_t tmp = src->x2 - (int64_t) diff * hscale; src->x2 = clamp_t(int64_t, tmp, INT_MIN, INT_MAX); } diff = dst->y2 - clip->y2; if (diff > 0) { int64_t tmp = src->y2 - (int64_t) diff * vscale; src->y2 = clamp_t(int64_t, tmp, INT_MIN, INT_MAX); } return drm_rect_intersect(dst, clip); } EXPORT_SYMBOL(drm_rect_clip_scaled); static int drm_calc_scale(int src, int dst) { int scale = 0; if (src < 0 || dst < 0) return -EINVAL; if (dst == 0) return 0; scale = src / dst; return scale; } /** * drm_rect_calc_hscale - calculate the horizontal scaling factor * @src: source window rectangle * @dst: destination window rectangle * @min_hscale: minimum allowed horizontal scaling factor * @max_hscale: maximum allowed horizontal scaling factor * * Calculate the horizontal scaling factor as * (@src width) / (@dst width). * * RETURNS: * The horizontal scaling factor, or errno of out of limits. */ int drm_rect_calc_hscale(const struct drm_rect *src, const struct drm_rect *dst, int min_hscale, int max_hscale) { int src_w = drm_rect_width(src); int dst_w = drm_rect_width(dst); int hscale = drm_calc_scale(src_w, dst_w); if (hscale < 0 || dst_w == 0) return hscale; if (hscale < min_hscale || hscale > max_hscale) return -ERANGE; return hscale; } EXPORT_SYMBOL(drm_rect_calc_hscale); /** * drm_rect_calc_vscale - calculate the vertical scaling factor * @src: source window rectangle * @dst: destination window rectangle * @min_vscale: minimum allowed vertical scaling factor * @max_vscale: maximum allowed vertical scaling factor * * Calculate the vertical scaling factor as * (@src height) / (@dst height). * * RETURNS: * The vertical scaling factor, or errno of out of limits. */ int drm_rect_calc_vscale(const struct drm_rect *src, const struct drm_rect *dst, int min_vscale, int max_vscale) { int src_h = drm_rect_height(src); int dst_h = drm_rect_height(dst); int vscale = drm_calc_scale(src_h, dst_h); if (vscale < 0 || dst_h == 0) return vscale; if (vscale < min_vscale || vscale > max_vscale) return -ERANGE; return vscale; } EXPORT_SYMBOL(drm_rect_calc_vscale); /** * drm_calc_hscale_relaxed - calculate the horizontal scaling factor * @src: source window rectangle * @dst: destination window rectangle * @min_hscale: minimum allowed horizontal scaling factor * @max_hscale: maximum allowed horizontal scaling factor * * Calculate the horizontal scaling factor as * (@src width) / (@dst width). * * If the calculated scaling factor is below @min_vscale, * decrease the height of rectangle @dst to compensate. * * If the calculated scaling factor is above @max_vscale, * decrease the height of rectangle @src to compensate. * * RETURNS: * The horizontal scaling factor. */ int drm_rect_calc_hscale_relaxed(struct drm_rect *src, struct drm_rect *dst, int min_hscale, int max_hscale) { int src_w = drm_rect_width(src); int dst_w = drm_rect_width(dst); int hscale = drm_calc_scale(src_w, dst_w); if (hscale < 0 || dst_w == 0) return hscale; if (hscale < min_hscale) { int max_dst_w = src_w / min_hscale; drm_rect_adjust_size(dst, max_dst_w - dst_w, 0); return min_hscale; } if (hscale > max_hscale) { int max_src_w = dst_w * max_hscale; drm_rect_adjust_size(src, max_src_w - src_w, 0); return max_hscale; } return hscale; } EXPORT_SYMBOL(drm_rect_calc_hscale_relaxed); /** * drm_rect_calc_vscale_relaxed - calculate the vertical scaling factor * @src: source window rectangle * @dst: destination window rectangle * @min_vscale: minimum allowed vertical scaling factor * @max_vscale: maximum allowed vertical scaling factor * * Calculate the vertical scaling factor as * (@src height) / (@dst height). * * If the calculated scaling factor is below @min_vscale, * decrease the height of rectangle @dst to compensate. * * If the calculated scaling factor is above @max_vscale, * decrease the height of rectangle @src to compensate. * * RETURNS: * The vertical scaling factor. */ int drm_rect_calc_vscale_relaxed(struct drm_rect *src, struct drm_rect *dst, int min_vscale, int max_vscale) { int src_h = drm_rect_height(src); int dst_h = drm_rect_height(dst); int vscale = drm_calc_scale(src_h, dst_h); if (vscale < 0 || dst_h == 0) return vscale; if (vscale < min_vscale) { int max_dst_h = src_h / min_vscale; drm_rect_adjust_size(dst, 0, max_dst_h - dst_h); return min_vscale; } if (vscale > max_vscale) { int max_src_h = dst_h * max_vscale; drm_rect_adjust_size(src, 0, max_src_h - src_h); return max_vscale; } return vscale; } EXPORT_SYMBOL(drm_rect_calc_vscale_relaxed); /** * drm_rect_debug_print - print the rectangle information * @r: rectangle to print * @fixed_point: rectangle is in 16.16 fixed point format */ void drm_rect_debug_print(const struct drm_rect *r, bool fixed_point) { int w = drm_rect_width(r); int h = drm_rect_height(r); if (fixed_point) DRM_DEBUG_KMS("%d.%06ux%d.%06u%+d.%06u%+d.%06u\n", w >> 16, ((w & 0xffff) * 15625) >> 10, h >> 16, ((h & 0xffff) * 15625) >> 10, r->x1 >> 16, ((r->x1 & 0xffff) * 15625) >> 10, r->y1 >> 16, ((r->y1 & 0xffff) * 15625) >> 10); else DRM_DEBUG_KMS("%dx%d%+d%+d\n", w, h, r->x1, r->y1); } EXPORT_SYMBOL(drm_rect_debug_print); /** * drm_rect_rotate - Rotate the rectangle * @r: rectangle to be rotated * @width: Width of the coordinate space * @height: Height of the coordinate space * @rotation: Transformation to be applied * * Apply @rotation to the coordinates of rectangle @r. * * @width and @height combined with @rotation define * the location of the new origin. * * @width correcsponds to the horizontal and @height * to the vertical axis of the untransformed coordinate * space. */ void drm_rect_rotate(struct drm_rect *r, int width, int height, unsigned int rotation) { struct drm_rect tmp; if (rotation & (BIT(DRM_REFLECT_X) | BIT(DRM_REFLECT_Y))) { tmp = *r; if (rotation & BIT(DRM_REFLECT_X)) { r->x1 = width - tmp.x2; r->x2 = width - tmp.x1; } if (rotation & BIT(DRM_REFLECT_Y)) { r->y1 = height - tmp.y2; r->y2 = height - tmp.y1; } } switch (rotation & DRM_ROTATE_MASK) { case BIT(DRM_ROTATE_0): break; case BIT(DRM_ROTATE_90): tmp = *r; r->x1 = tmp.y1; r->x2 = tmp.y2; r->y1 = width - tmp.x2; r->y2 = width - tmp.x1; break; case BIT(DRM_ROTATE_180): tmp = *r; r->x1 = width - tmp.x2; r->x2 = width - tmp.x1; r->y1 = height - tmp.y2; r->y2 = height - tmp.y1; break; case BIT(DRM_ROTATE_270): tmp = *r; r->x1 = height - tmp.y2; r->x2 = height - tmp.y1; r->y1 = tmp.x1; r->y2 = tmp.x2; break; default: break; } } EXPORT_SYMBOL(drm_rect_rotate); /** * drm_rect_rotate_inv - Inverse rotate the rectangle * @r: rectangle to be rotated * @width: Width of the coordinate space * @height: Height of the coordinate space * @rotation: Transformation whose inverse is to be applied * * Apply the inverse of @rotation to the coordinates * of rectangle @r. * * @width and @height combined with @rotation define * the location of the new origin. * * @width correcsponds to the horizontal and @height * to the vertical axis of the original untransformed * coordinate space, so that you never have to flip * them when doing a rotatation and its inverse. * That is, if you do: * * drm_rotate(&r, width, height, rotation); * drm_rotate_inv(&r, width, height, rotation); * * you will always get back the original rectangle. */ void drm_rect_rotate_inv(struct drm_rect *r, int width, int height, unsigned int rotation) { struct drm_rect tmp; switch (rotation & DRM_ROTATE_MASK) { case BIT(DRM_ROTATE_0): break; case BIT(DRM_ROTATE_90): tmp = *r; r->x1 = width - tmp.y2; r->x2 = width - tmp.y1; r->y1 = tmp.x1; r->y2 = tmp.x2; break; case BIT(DRM_ROTATE_180): tmp = *r; r->x1 = width - tmp.x2; r->x2 = width - tmp.x1; r->y1 = height - tmp.y2; r->y2 = height - tmp.y1; break; case BIT(DRM_ROTATE_270): tmp = *r; r->x1 = tmp.y1; r->x2 = tmp.y2; r->y1 = height - tmp.x2; r->y2 = height - tmp.x1; break; default: break; } if (rotation & (BIT(DRM_REFLECT_X) | BIT(DRM_REFLECT_Y))) { tmp = *r; if (rotation & BIT(DRM_REFLECT_X)) { r->x1 = width - tmp.x2; r->x2 = width - tmp.x1; } if (rotation & BIT(DRM_REFLECT_Y)) { r->y1 = height - tmp.y2; r->y2 = height - tmp.y1; } } } EXPORT_SYMBOL(drm_rect_rotate_inv);