/* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <linux/amd-iommu.h> #include <linux/bsearch.h> #include <linux/pci.h> #include <linux/slab.h> #include "kfd_priv.h" #include "kfd_device_queue_manager.h" #include "kfd_pm4_headers.h" #define MQD_SIZE_ALIGNED 768 static const struct kfd_device_info kaveri_device_info = { .asic_family = CHIP_KAVERI, .max_pasid_bits = 16, /* max num of queues for KV.TODO should be a dynamic value */ .max_no_of_hqd = 24, .ih_ring_entry_size = 4 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_cik, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED }; static const struct kfd_device_info carrizo_device_info = { .asic_family = CHIP_CARRIZO, .max_pasid_bits = 16, /* max num of queues for CZ.TODO should be a dynamic value */ .max_no_of_hqd = 24, .ih_ring_entry_size = 4 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_cik, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED }; struct kfd_deviceid { unsigned short did; const struct kfd_device_info *device_info; }; /* Please keep this sorted by increasing device id. */ static const struct kfd_deviceid supported_devices[] = { { 0x1304, &kaveri_device_info }, /* Kaveri */ { 0x1305, &kaveri_device_info }, /* Kaveri */ { 0x1306, &kaveri_device_info }, /* Kaveri */ { 0x1307, &kaveri_device_info }, /* Kaveri */ { 0x1309, &kaveri_device_info }, /* Kaveri */ { 0x130A, &kaveri_device_info }, /* Kaveri */ { 0x130B, &kaveri_device_info }, /* Kaveri */ { 0x130C, &kaveri_device_info }, /* Kaveri */ { 0x130D, &kaveri_device_info }, /* Kaveri */ { 0x130E, &kaveri_device_info }, /* Kaveri */ { 0x130F, &kaveri_device_info }, /* Kaveri */ { 0x1310, &kaveri_device_info }, /* Kaveri */ { 0x1311, &kaveri_device_info }, /* Kaveri */ { 0x1312, &kaveri_device_info }, /* Kaveri */ { 0x1313, &kaveri_device_info }, /* Kaveri */ { 0x1315, &kaveri_device_info }, /* Kaveri */ { 0x1316, &kaveri_device_info }, /* Kaveri */ { 0x1317, &kaveri_device_info }, /* Kaveri */ { 0x1318, &kaveri_device_info }, /* Kaveri */ { 0x131B, &kaveri_device_info }, /* Kaveri */ { 0x131C, &kaveri_device_info }, /* Kaveri */ { 0x131D, &kaveri_device_info }, /* Kaveri */ { 0x9870, &carrizo_device_info }, /* Carrizo */ { 0x9874, &carrizo_device_info }, /* Carrizo */ { 0x9875, &carrizo_device_info }, /* Carrizo */ { 0x9876, &carrizo_device_info }, /* Carrizo */ { 0x9877, &carrizo_device_info } /* Carrizo */ }; static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size, unsigned int chunk_size); static void kfd_gtt_sa_fini(struct kfd_dev *kfd); static const struct kfd_device_info *lookup_device_info(unsigned short did) { size_t i; for (i = 0; i < ARRAY_SIZE(supported_devices); i++) { if (supported_devices[i].did == did) { BUG_ON(supported_devices[i].device_info == NULL); return supported_devices[i].device_info; } } return NULL; } struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd, struct pci_dev *pdev, const struct kfd2kgd_calls *f2g) { struct kfd_dev *kfd; const struct kfd_device_info *device_info = lookup_device_info(pdev->device); if (!device_info) return NULL; kfd = kzalloc(sizeof(*kfd), GFP_KERNEL); if (!kfd) return NULL; kfd->kgd = kgd; kfd->device_info = device_info; kfd->pdev = pdev; kfd->init_complete = false; kfd->kfd2kgd = f2g; mutex_init(&kfd->doorbell_mutex); memset(&kfd->doorbell_available_index, 0, sizeof(kfd->doorbell_available_index)); return kfd; } static bool device_iommu_pasid_init(struct kfd_dev *kfd) { const u32 required_iommu_flags = AMD_IOMMU_DEVICE_FLAG_ATS_SUP | AMD_IOMMU_DEVICE_FLAG_PRI_SUP | AMD_IOMMU_DEVICE_FLAG_PASID_SUP; struct amd_iommu_device_info iommu_info; unsigned int pasid_limit; int err; err = amd_iommu_device_info(kfd->pdev, &iommu_info); if (err < 0) { dev_err(kfd_device, "error getting iommu info. is the iommu enabled?\n"); return false; } if ((iommu_info.flags & required_iommu_flags) != required_iommu_flags) { dev_err(kfd_device, "error required iommu flags ats(%i), pri(%i), pasid(%i)\n", (iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP) != 0, (iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) != 0, (iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP) != 0); return false; } pasid_limit = min_t(unsigned int, (unsigned int)1 << kfd->device_info->max_pasid_bits, iommu_info.max_pasids); /* * last pasid is used for kernel queues doorbells * in the future the last pasid might be used for a kernel thread. */ pasid_limit = min_t(unsigned int, pasid_limit, kfd->doorbell_process_limit - 1); err = amd_iommu_init_device(kfd->pdev, pasid_limit); if (err < 0) { dev_err(kfd_device, "error initializing iommu device\n"); return false; } if (!kfd_set_pasid_limit(pasid_limit)) { dev_err(kfd_device, "error setting pasid limit\n"); amd_iommu_free_device(kfd->pdev); return false; } return true; } static void iommu_pasid_shutdown_callback(struct pci_dev *pdev, int pasid) { struct kfd_dev *dev = kfd_device_by_pci_dev(pdev); if (dev) kfd_unbind_process_from_device(dev, pasid); } /* * This function called by IOMMU driver on PPR failure */ static int iommu_invalid_ppr_cb(struct pci_dev *pdev, int pasid, unsigned long address, u16 flags) { struct kfd_dev *dev; dev_warn(kfd_device, "Invalid PPR device %x:%x.%x pasid %d address 0x%lX flags 0x%X", PCI_BUS_NUM(pdev->devfn), PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), pasid, address, flags); dev = kfd_device_by_pci_dev(pdev); BUG_ON(dev == NULL); kfd_signal_iommu_event(dev, pasid, address, flags & PPR_FAULT_WRITE, flags & PPR_FAULT_EXEC); return AMD_IOMMU_INV_PRI_RSP_INVALID; } bool kgd2kfd_device_init(struct kfd_dev *kfd, const struct kgd2kfd_shared_resources *gpu_resources) { unsigned int size; kfd->shared_resources = *gpu_resources; /* calculate max size of mqds needed for queues */ size = max_num_of_queues_per_device * kfd->device_info->mqd_size_aligned; /* * calculate max size of runlist packet. * There can be only 2 packets at once */ size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_map_process) + max_num_of_queues_per_device * sizeof(struct pm4_map_queues) + sizeof(struct pm4_runlist)) * 2; /* Add size of HIQ & DIQ */ size += KFD_KERNEL_QUEUE_SIZE * 2; /* add another 512KB for all other allocations on gart (HPD, fences) */ size += 512 * 1024; if (kfd->kfd2kgd->init_gtt_mem_allocation( kfd->kgd, size, &kfd->gtt_mem, &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr)){ dev_err(kfd_device, "Could not allocate %d bytes for device (%x:%x)\n", size, kfd->pdev->vendor, kfd->pdev->device); goto out; } dev_info(kfd_device, "Allocated %d bytes on gart for device(%x:%x)\n", size, kfd->pdev->vendor, kfd->pdev->device); /* Initialize GTT sa with 512 byte chunk size */ if (kfd_gtt_sa_init(kfd, size, 512) != 0) { dev_err(kfd_device, "Error initializing gtt sub-allocator\n"); goto kfd_gtt_sa_init_error; } kfd_doorbell_init(kfd); if (kfd_topology_add_device(kfd) != 0) { dev_err(kfd_device, "Error adding device (%x:%x) to topology\n", kfd->pdev->vendor, kfd->pdev->device); goto kfd_topology_add_device_error; } if (kfd_interrupt_init(kfd)) { dev_err(kfd_device, "Error initializing interrupts for device (%x:%x)\n", kfd->pdev->vendor, kfd->pdev->device); goto kfd_interrupt_error; } if (!device_iommu_pasid_init(kfd)) { dev_err(kfd_device, "Error initializing iommuv2 for device (%x:%x)\n", kfd->pdev->vendor, kfd->pdev->device); goto device_iommu_pasid_error; } amd_iommu_set_invalidate_ctx_cb(kfd->pdev, iommu_pasid_shutdown_callback); amd_iommu_set_invalid_ppr_cb(kfd->pdev, iommu_invalid_ppr_cb); kfd->dqm = device_queue_manager_init(kfd); if (!kfd->dqm) { dev_err(kfd_device, "Error initializing queue manager for device (%x:%x)\n", kfd->pdev->vendor, kfd->pdev->device); goto device_queue_manager_error; } if (kfd->dqm->ops.start(kfd->dqm) != 0) { dev_err(kfd_device, "Error starting queuen manager for device (%x:%x)\n", kfd->pdev->vendor, kfd->pdev->device); goto dqm_start_error; } kfd->dbgmgr = NULL; kfd->init_complete = true; dev_info(kfd_device, "added device (%x:%x)\n", kfd->pdev->vendor, kfd->pdev->device); pr_debug("kfd: Starting kfd with the following scheduling policy %d\n", sched_policy); goto out; dqm_start_error: device_queue_manager_uninit(kfd->dqm); device_queue_manager_error: amd_iommu_free_device(kfd->pdev); device_iommu_pasid_error: kfd_interrupt_exit(kfd); kfd_interrupt_error: kfd_topology_remove_device(kfd); kfd_topology_add_device_error: kfd_gtt_sa_fini(kfd); kfd_gtt_sa_init_error: kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem); dev_err(kfd_device, "device (%x:%x) NOT added due to errors\n", kfd->pdev->vendor, kfd->pdev->device); out: return kfd->init_complete; } void kgd2kfd_device_exit(struct kfd_dev *kfd) { if (kfd->init_complete) { device_queue_manager_uninit(kfd->dqm); amd_iommu_free_device(kfd->pdev); kfd_interrupt_exit(kfd); kfd_topology_remove_device(kfd); kfd_gtt_sa_fini(kfd); kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem); } kfree(kfd); } void kgd2kfd_suspend(struct kfd_dev *kfd) { BUG_ON(kfd == NULL); if (kfd->init_complete) { kfd->dqm->ops.stop(kfd->dqm); amd_iommu_set_invalidate_ctx_cb(kfd->pdev, NULL); amd_iommu_set_invalid_ppr_cb(kfd->pdev, NULL); amd_iommu_free_device(kfd->pdev); } } int kgd2kfd_resume(struct kfd_dev *kfd) { unsigned int pasid_limit; int err; BUG_ON(kfd == NULL); pasid_limit = kfd_get_pasid_limit(); if (kfd->init_complete) { err = amd_iommu_init_device(kfd->pdev, pasid_limit); if (err < 0) return -ENXIO; amd_iommu_set_invalidate_ctx_cb(kfd->pdev, iommu_pasid_shutdown_callback); amd_iommu_set_invalid_ppr_cb(kfd->pdev, iommu_invalid_ppr_cb); kfd->dqm->ops.start(kfd->dqm); } return 0; } /* This is called directly from KGD at ISR. */ void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry) { if (!kfd->init_complete) return; spin_lock(&kfd->interrupt_lock); if (kfd->interrupts_active && interrupt_is_wanted(kfd, ih_ring_entry) && enqueue_ih_ring_entry(kfd, ih_ring_entry)) schedule_work(&kfd->interrupt_work); spin_unlock(&kfd->interrupt_lock); } static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size, unsigned int chunk_size) { unsigned int num_of_bits; BUG_ON(!kfd); BUG_ON(!kfd->gtt_mem); BUG_ON(buf_size < chunk_size); BUG_ON(buf_size == 0); BUG_ON(chunk_size == 0); kfd->gtt_sa_chunk_size = chunk_size; kfd->gtt_sa_num_of_chunks = buf_size / chunk_size; num_of_bits = kfd->gtt_sa_num_of_chunks / BITS_PER_BYTE; BUG_ON(num_of_bits == 0); kfd->gtt_sa_bitmap = kzalloc(num_of_bits, GFP_KERNEL); if (!kfd->gtt_sa_bitmap) return -ENOMEM; pr_debug("kfd: gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n", kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap); mutex_init(&kfd->gtt_sa_lock); return 0; } static void kfd_gtt_sa_fini(struct kfd_dev *kfd) { mutex_destroy(&kfd->gtt_sa_lock); kfree(kfd->gtt_sa_bitmap); } static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr, unsigned int bit_num, unsigned int chunk_size) { return start_addr + bit_num * chunk_size; } static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr, unsigned int bit_num, unsigned int chunk_size) { return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size); } int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size, struct kfd_mem_obj **mem_obj) { unsigned int found, start_search, cur_size; BUG_ON(!kfd); if (size == 0) return -EINVAL; if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size) return -ENOMEM; *mem_obj = kmalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL); if ((*mem_obj) == NULL) return -ENOMEM; pr_debug("kfd: allocated mem_obj = %p for size = %d\n", *mem_obj, size); start_search = 0; mutex_lock(&kfd->gtt_sa_lock); kfd_gtt_restart_search: /* Find the first chunk that is free */ found = find_next_zero_bit(kfd->gtt_sa_bitmap, kfd->gtt_sa_num_of_chunks, start_search); pr_debug("kfd: found = %d\n", found); /* If there wasn't any free chunk, bail out */ if (found == kfd->gtt_sa_num_of_chunks) goto kfd_gtt_no_free_chunk; /* Update fields of mem_obj */ (*mem_obj)->range_start = found; (*mem_obj)->range_end = found; (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr( kfd->gtt_start_gpu_addr, found, kfd->gtt_sa_chunk_size); (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr( kfd->gtt_start_cpu_ptr, found, kfd->gtt_sa_chunk_size); pr_debug("kfd: gpu_addr = %p, cpu_addr = %p\n", (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr); /* If we need only one chunk, mark it as allocated and get out */ if (size <= kfd->gtt_sa_chunk_size) { pr_debug("kfd: single bit\n"); set_bit(found, kfd->gtt_sa_bitmap); goto kfd_gtt_out; } /* Otherwise, try to see if we have enough contiguous chunks */ cur_size = size - kfd->gtt_sa_chunk_size; do { (*mem_obj)->range_end = find_next_zero_bit(kfd->gtt_sa_bitmap, kfd->gtt_sa_num_of_chunks, ++found); /* * If next free chunk is not contiguous than we need to * restart our search from the last free chunk we found (which * wasn't contiguous to the previous ones */ if ((*mem_obj)->range_end != found) { start_search = found; goto kfd_gtt_restart_search; } /* * If we reached end of buffer, bail out with error */ if (found == kfd->gtt_sa_num_of_chunks) goto kfd_gtt_no_free_chunk; /* Check if we don't need another chunk */ if (cur_size <= kfd->gtt_sa_chunk_size) cur_size = 0; else cur_size -= kfd->gtt_sa_chunk_size; } while (cur_size > 0); pr_debug("kfd: range_start = %d, range_end = %d\n", (*mem_obj)->range_start, (*mem_obj)->range_end); /* Mark the chunks as allocated */ for (found = (*mem_obj)->range_start; found <= (*mem_obj)->range_end; found++) set_bit(found, kfd->gtt_sa_bitmap); kfd_gtt_out: mutex_unlock(&kfd->gtt_sa_lock); return 0; kfd_gtt_no_free_chunk: pr_debug("kfd: allocation failed with mem_obj = %p\n", mem_obj); mutex_unlock(&kfd->gtt_sa_lock); kfree(mem_obj); return -ENOMEM; } int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj) { unsigned int bit; BUG_ON(!kfd); /* Act like kfree when trying to free a NULL object */ if (!mem_obj) return 0; pr_debug("kfd: free mem_obj = %p, range_start = %d, range_end = %d\n", mem_obj, mem_obj->range_start, mem_obj->range_end); mutex_lock(&kfd->gtt_sa_lock); /* Mark the chunks as free */ for (bit = mem_obj->range_start; bit <= mem_obj->range_end; bit++) clear_bit(bit, kfd->gtt_sa_bitmap); mutex_unlock(&kfd->gtt_sa_lock); kfree(mem_obj); return 0; }