/* * Copyright (C) 2014 Intel Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Adjustable fractional divider clock implementation. * Output rate = (m / n) * parent_rate. * Uses rational best approximation algorithm. */ #include <linux/clk-provider.h> #include <linux/module.h> #include <linux/device.h> #include <linux/slab.h> #include <linux/rational.h> #define to_clk_fd(_hw) container_of(_hw, struct clk_fractional_divider, hw) static unsigned long clk_fd_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_fractional_divider *fd = to_clk_fd(hw); unsigned long flags = 0; unsigned long m, n; u32 val; u64 ret; if (fd->lock) spin_lock_irqsave(fd->lock, flags); else __acquire(fd->lock); val = clk_readl(fd->reg); if (fd->lock) spin_unlock_irqrestore(fd->lock, flags); else __release(fd->lock); m = (val & fd->mmask) >> fd->mshift; n = (val & fd->nmask) >> fd->nshift; if (!n || !m) return parent_rate; ret = (u64)parent_rate * m; do_div(ret, n); return ret; } static long clk_fd_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { struct clk_fractional_divider *fd = to_clk_fd(hw); unsigned long scale; unsigned long m, n; u64 ret; if (!rate || rate >= *parent_rate) return *parent_rate; /* * Get rate closer to *parent_rate to guarantee there is no overflow * for m and n. In the result it will be the nearest rate left shifted * by (scale - fd->nwidth) bits. */ scale = fls_long(*parent_rate / rate - 1); if (scale > fd->nwidth) rate <<= scale - fd->nwidth; rational_best_approximation(rate, *parent_rate, GENMASK(fd->mwidth - 1, 0), GENMASK(fd->nwidth - 1, 0), &m, &n); ret = (u64)*parent_rate * m; do_div(ret, n); return ret; } static int clk_fd_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_fractional_divider *fd = to_clk_fd(hw); unsigned long flags = 0; unsigned long m, n; u32 val; rational_best_approximation(rate, parent_rate, GENMASK(fd->mwidth - 1, 0), GENMASK(fd->nwidth - 1, 0), &m, &n); if (fd->lock) spin_lock_irqsave(fd->lock, flags); else __acquire(fd->lock); val = clk_readl(fd->reg); val &= ~(fd->mmask | fd->nmask); val |= (m << fd->mshift) | (n << fd->nshift); clk_writel(val, fd->reg); if (fd->lock) spin_unlock_irqrestore(fd->lock, flags); else __release(fd->lock); return 0; } const struct clk_ops clk_fractional_divider_ops = { .recalc_rate = clk_fd_recalc_rate, .round_rate = clk_fd_round_rate, .set_rate = clk_fd_set_rate, }; EXPORT_SYMBOL_GPL(clk_fractional_divider_ops); struct clk *clk_register_fractional_divider(struct device *dev, const char *name, const char *parent_name, unsigned long flags, void __iomem *reg, u8 mshift, u8 mwidth, u8 nshift, u8 nwidth, u8 clk_divider_flags, spinlock_t *lock) { struct clk_fractional_divider *fd; struct clk_init_data init; struct clk *clk; fd = kzalloc(sizeof(*fd), GFP_KERNEL); if (!fd) return ERR_PTR(-ENOMEM); init.name = name; init.ops = &clk_fractional_divider_ops; init.flags = flags | CLK_IS_BASIC; init.parent_names = parent_name ? &parent_name : NULL; init.num_parents = parent_name ? 1 : 0; fd->reg = reg; fd->mshift = mshift; fd->mwidth = mwidth; fd->mmask = GENMASK(mwidth - 1, 0) << mshift; fd->nshift = nshift; fd->nwidth = nwidth; fd->nmask = GENMASK(nwidth - 1, 0) << nshift; fd->flags = clk_divider_flags; fd->lock = lock; fd->hw.init = &init; clk = clk_register(dev, &fd->hw); if (IS_ERR(clk)) kfree(fd); return clk; } EXPORT_SYMBOL_GPL(clk_register_fractional_divider);