/* * Intel Cache Quality-of-Service Monitoring (CQM) support. * * Based very, very heavily on work by Peter Zijlstra. */ #include <linux/perf_event.h> #include <linux/slab.h> #include <asm/cpu_device_id.h> #include "perf_event.h" #define MSR_IA32_PQR_ASSOC 0x0c8f #define MSR_IA32_QM_CTR 0x0c8e #define MSR_IA32_QM_EVTSEL 0x0c8d static u32 cqm_max_rmid = -1; static unsigned int cqm_l3_scale; /* supposedly cacheline size */ /** * struct intel_pqr_state - State cache for the PQR MSR * @rmid: The cached Resource Monitoring ID * @closid: The cached Class Of Service ID * @rmid_usecnt: The usage counter for rmid * * The upper 32 bits of MSR_IA32_PQR_ASSOC contain closid and the * lower 10 bits rmid. The update to MSR_IA32_PQR_ASSOC always * contains both parts, so we need to cache them. * * The cache also helps to avoid pointless updates if the value does * not change. */ struct intel_pqr_state { u32 rmid; u32 closid; int rmid_usecnt; }; /* * The cached intel_pqr_state is strictly per CPU and can never be * updated from a remote CPU. Both functions which modify the state * (intel_cqm_event_start and intel_cqm_event_stop) are called with * interrupts disabled, which is sufficient for the protection. */ static DEFINE_PER_CPU(struct intel_pqr_state, pqr_state); /* * Protects cache_cgroups and cqm_rmid_free_lru and cqm_rmid_limbo_lru. * Also protects event->hw.cqm_rmid * * Hold either for stability, both for modification of ->hw.cqm_rmid. */ static DEFINE_MUTEX(cache_mutex); static DEFINE_RAW_SPINLOCK(cache_lock); /* * Groups of events that have the same target(s), one RMID per group. */ static LIST_HEAD(cache_groups); /* * Mask of CPUs for reading CQM values. We only need one per-socket. */ static cpumask_t cqm_cpumask; #define RMID_VAL_ERROR (1ULL << 63) #define RMID_VAL_UNAVAIL (1ULL << 62) #define QOS_L3_OCCUP_EVENT_ID (1 << 0) #define QOS_EVENT_MASK QOS_L3_OCCUP_EVENT_ID /* * This is central to the rotation algorithm in __intel_cqm_rmid_rotate(). * * This rmid is always free and is guaranteed to have an associated * near-zero occupancy value, i.e. no cachelines are tagged with this * RMID, once __intel_cqm_rmid_rotate() returns. */ static u32 intel_cqm_rotation_rmid; #define INVALID_RMID (-1) /* * Is @rmid valid for programming the hardware? * * rmid 0 is reserved by the hardware for all non-monitored tasks, which * means that we should never come across an rmid with that value. * Likewise, an rmid value of -1 is used to indicate "no rmid currently * assigned" and is used as part of the rotation code. */ static inline bool __rmid_valid(u32 rmid) { if (!rmid || rmid == INVALID_RMID) return false; return true; } static u64 __rmid_read(u32 rmid) { u64 val; /* * Ignore the SDM, this thing is _NOTHING_ like a regular perfcnt, * it just says that to increase confusion. */ wrmsr(MSR_IA32_QM_EVTSEL, QOS_L3_OCCUP_EVENT_ID, rmid); rdmsrl(MSR_IA32_QM_CTR, val); /* * Aside from the ERROR and UNAVAIL bits, assume this thing returns * the number of cachelines tagged with @rmid. */ return val; } enum rmid_recycle_state { RMID_YOUNG = 0, RMID_AVAILABLE, RMID_DIRTY, }; struct cqm_rmid_entry { u32 rmid; enum rmid_recycle_state state; struct list_head list; unsigned long queue_time; }; /* * cqm_rmid_free_lru - A least recently used list of RMIDs. * * Oldest entry at the head, newest (most recently used) entry at the * tail. This list is never traversed, it's only used to keep track of * the lru order. That is, we only pick entries of the head or insert * them on the tail. * * All entries on the list are 'free', and their RMIDs are not currently * in use. To mark an RMID as in use, remove its entry from the lru * list. * * * cqm_rmid_limbo_lru - list of currently unused but (potentially) dirty RMIDs. * * This list is contains RMIDs that no one is currently using but that * may have a non-zero occupancy value associated with them. The * rotation worker moves RMIDs from the limbo list to the free list once * the occupancy value drops below __intel_cqm_threshold. * * Both lists are protected by cache_mutex. */ static LIST_HEAD(cqm_rmid_free_lru); static LIST_HEAD(cqm_rmid_limbo_lru); /* * We use a simple array of pointers so that we can lookup a struct * cqm_rmid_entry in O(1). This alleviates the callers of __get_rmid() * and __put_rmid() from having to worry about dealing with struct * cqm_rmid_entry - they just deal with rmids, i.e. integers. * * Once this array is initialized it is read-only. No locks are required * to access it. * * All entries for all RMIDs can be looked up in the this array at all * times. */ static struct cqm_rmid_entry **cqm_rmid_ptrs; static inline struct cqm_rmid_entry *__rmid_entry(u32 rmid) { struct cqm_rmid_entry *entry; entry = cqm_rmid_ptrs[rmid]; WARN_ON(entry->rmid != rmid); return entry; } /* * Returns < 0 on fail. * * We expect to be called with cache_mutex held. */ static u32 __get_rmid(void) { struct cqm_rmid_entry *entry; lockdep_assert_held(&cache_mutex); if (list_empty(&cqm_rmid_free_lru)) return INVALID_RMID; entry = list_first_entry(&cqm_rmid_free_lru, struct cqm_rmid_entry, list); list_del(&entry->list); return entry->rmid; } static void __put_rmid(u32 rmid) { struct cqm_rmid_entry *entry; lockdep_assert_held(&cache_mutex); WARN_ON(!__rmid_valid(rmid)); entry = __rmid_entry(rmid); entry->queue_time = jiffies; entry->state = RMID_YOUNG; list_add_tail(&entry->list, &cqm_rmid_limbo_lru); } static int intel_cqm_setup_rmid_cache(void) { struct cqm_rmid_entry *entry; unsigned int nr_rmids; int r = 0; nr_rmids = cqm_max_rmid + 1; cqm_rmid_ptrs = kmalloc(sizeof(struct cqm_rmid_entry *) * nr_rmids, GFP_KERNEL); if (!cqm_rmid_ptrs) return -ENOMEM; for (; r <= cqm_max_rmid; r++) { struct cqm_rmid_entry *entry; entry = kmalloc(sizeof(*entry), GFP_KERNEL); if (!entry) goto fail; INIT_LIST_HEAD(&entry->list); entry->rmid = r; cqm_rmid_ptrs[r] = entry; list_add_tail(&entry->list, &cqm_rmid_free_lru); } /* * RMID 0 is special and is always allocated. It's used for all * tasks that are not monitored. */ entry = __rmid_entry(0); list_del(&entry->list); mutex_lock(&cache_mutex); intel_cqm_rotation_rmid = __get_rmid(); mutex_unlock(&cache_mutex); return 0; fail: while (r--) kfree(cqm_rmid_ptrs[r]); kfree(cqm_rmid_ptrs); return -ENOMEM; } /* * Determine if @a and @b measure the same set of tasks. * * If @a and @b measure the same set of tasks then we want to share a * single RMID. */ static bool __match_event(struct perf_event *a, struct perf_event *b) { /* Per-cpu and task events don't mix */ if ((a->attach_state & PERF_ATTACH_TASK) != (b->attach_state & PERF_ATTACH_TASK)) return false; #ifdef CONFIG_CGROUP_PERF if (a->cgrp != b->cgrp) return false; #endif /* If not task event, we're machine wide */ if (!(b->attach_state & PERF_ATTACH_TASK)) return true; /* * Events that target same task are placed into the same cache group. */ if (a->hw.target == b->hw.target) return true; /* * Are we an inherited event? */ if (b->parent == a) return true; return false; } #ifdef CONFIG_CGROUP_PERF static inline struct perf_cgroup *event_to_cgroup(struct perf_event *event) { if (event->attach_state & PERF_ATTACH_TASK) return perf_cgroup_from_task(event->hw.target, event->ctx); return event->cgrp; } #endif /* * Determine if @a's tasks intersect with @b's tasks * * There are combinations of events that we explicitly prohibit, * * PROHIBITS * system-wide -> cgroup and task * cgroup -> system-wide * -> task in cgroup * task -> system-wide * -> task in cgroup * * Call this function before allocating an RMID. */ static bool __conflict_event(struct perf_event *a, struct perf_event *b) { #ifdef CONFIG_CGROUP_PERF /* * We can have any number of cgroups but only one system-wide * event at a time. */ if (a->cgrp && b->cgrp) { struct perf_cgroup *ac = a->cgrp; struct perf_cgroup *bc = b->cgrp; /* * This condition should have been caught in * __match_event() and we should be sharing an RMID. */ WARN_ON_ONCE(ac == bc); if (cgroup_is_descendant(ac->css.cgroup, bc->css.cgroup) || cgroup_is_descendant(bc->css.cgroup, ac->css.cgroup)) return true; return false; } if (a->cgrp || b->cgrp) { struct perf_cgroup *ac, *bc; /* * cgroup and system-wide events are mutually exclusive */ if ((a->cgrp && !(b->attach_state & PERF_ATTACH_TASK)) || (b->cgrp && !(a->attach_state & PERF_ATTACH_TASK))) return true; /* * Ensure neither event is part of the other's cgroup */ ac = event_to_cgroup(a); bc = event_to_cgroup(b); if (ac == bc) return true; /* * Must have cgroup and non-intersecting task events. */ if (!ac || !bc) return false; /* * We have cgroup and task events, and the task belongs * to a cgroup. Check for for overlap. */ if (cgroup_is_descendant(ac->css.cgroup, bc->css.cgroup) || cgroup_is_descendant(bc->css.cgroup, ac->css.cgroup)) return true; return false; } #endif /* * If one of them is not a task, same story as above with cgroups. */ if (!(a->attach_state & PERF_ATTACH_TASK) || !(b->attach_state & PERF_ATTACH_TASK)) return true; /* * Must be non-overlapping. */ return false; } struct rmid_read { u32 rmid; atomic64_t value; }; static void __intel_cqm_event_count(void *info); /* * Exchange the RMID of a group of events. */ static u32 intel_cqm_xchg_rmid(struct perf_event *group, u32 rmid) { struct perf_event *event; struct list_head *head = &group->hw.cqm_group_entry; u32 old_rmid = group->hw.cqm_rmid; lockdep_assert_held(&cache_mutex); /* * If our RMID is being deallocated, perform a read now. */ if (__rmid_valid(old_rmid) && !__rmid_valid(rmid)) { struct rmid_read rr = { .value = ATOMIC64_INIT(0), .rmid = old_rmid, }; on_each_cpu_mask(&cqm_cpumask, __intel_cqm_event_count, &rr, 1); local64_set(&group->count, atomic64_read(&rr.value)); } raw_spin_lock_irq(&cache_lock); group->hw.cqm_rmid = rmid; list_for_each_entry(event, head, hw.cqm_group_entry) event->hw.cqm_rmid = rmid; raw_spin_unlock_irq(&cache_lock); return old_rmid; } /* * If we fail to assign a new RMID for intel_cqm_rotation_rmid because * cachelines are still tagged with RMIDs in limbo, we progressively * increment the threshold until we find an RMID in limbo with <= * __intel_cqm_threshold lines tagged. This is designed to mitigate the * problem where cachelines tagged with an RMID are not steadily being * evicted. * * On successful rotations we decrease the threshold back towards zero. * * __intel_cqm_max_threshold provides an upper bound on the threshold, * and is measured in bytes because it's exposed to userland. */ static unsigned int __intel_cqm_threshold; static unsigned int __intel_cqm_max_threshold; /* * Test whether an RMID has a zero occupancy value on this cpu. */ static void intel_cqm_stable(void *arg) { struct cqm_rmid_entry *entry; list_for_each_entry(entry, &cqm_rmid_limbo_lru, list) { if (entry->state != RMID_AVAILABLE) break; if (__rmid_read(entry->rmid) > __intel_cqm_threshold) entry->state = RMID_DIRTY; } } /* * If we have group events waiting for an RMID that don't conflict with * events already running, assign @rmid. */ static bool intel_cqm_sched_in_event(u32 rmid) { struct perf_event *leader, *event; lockdep_assert_held(&cache_mutex); leader = list_first_entry(&cache_groups, struct perf_event, hw.cqm_groups_entry); event = leader; list_for_each_entry_continue(event, &cache_groups, hw.cqm_groups_entry) { if (__rmid_valid(event->hw.cqm_rmid)) continue; if (__conflict_event(event, leader)) continue; intel_cqm_xchg_rmid(event, rmid); return true; } return false; } /* * Initially use this constant for both the limbo queue time and the * rotation timer interval, pmu::hrtimer_interval_ms. * * They don't need to be the same, but the two are related since if you * rotate faster than you recycle RMIDs, you may run out of available * RMIDs. */ #define RMID_DEFAULT_QUEUE_TIME 250 /* ms */ static unsigned int __rmid_queue_time_ms = RMID_DEFAULT_QUEUE_TIME; /* * intel_cqm_rmid_stabilize - move RMIDs from limbo to free list * @nr_available: number of freeable RMIDs on the limbo list * * Quiescent state; wait for all 'freed' RMIDs to become unused, i.e. no * cachelines are tagged with those RMIDs. After this we can reuse them * and know that the current set of active RMIDs is stable. * * Return %true or %false depending on whether stabilization needs to be * reattempted. * * If we return %true then @nr_available is updated to indicate the * number of RMIDs on the limbo list that have been queued for the * minimum queue time (RMID_AVAILABLE), but whose data occupancy values * are above __intel_cqm_threshold. */ static bool intel_cqm_rmid_stabilize(unsigned int *available) { struct cqm_rmid_entry *entry, *tmp; lockdep_assert_held(&cache_mutex); *available = 0; list_for_each_entry(entry, &cqm_rmid_limbo_lru, list) { unsigned long min_queue_time; unsigned long now = jiffies; /* * We hold RMIDs placed into limbo for a minimum queue * time. Before the minimum queue time has elapsed we do * not recycle RMIDs. * * The reasoning is that until a sufficient time has * passed since we stopped using an RMID, any RMID * placed onto the limbo list will likely still have * data tagged in the cache, which means we'll probably * fail to recycle it anyway. * * We can save ourselves an expensive IPI by skipping * any RMIDs that have not been queued for the minimum * time. */ min_queue_time = entry->queue_time + msecs_to_jiffies(__rmid_queue_time_ms); if (time_after(min_queue_time, now)) break; entry->state = RMID_AVAILABLE; (*available)++; } /* * Fast return if none of the RMIDs on the limbo list have been * sitting on the queue for the minimum queue time. */ if (!*available) return false; /* * Test whether an RMID is free for each package. */ on_each_cpu_mask(&cqm_cpumask, intel_cqm_stable, NULL, true); list_for_each_entry_safe(entry, tmp, &cqm_rmid_limbo_lru, list) { /* * Exhausted all RMIDs that have waited min queue time. */ if (entry->state == RMID_YOUNG) break; if (entry->state == RMID_DIRTY) continue; list_del(&entry->list); /* remove from limbo */ /* * The rotation RMID gets priority if it's * currently invalid. In which case, skip adding * the RMID to the the free lru. */ if (!__rmid_valid(intel_cqm_rotation_rmid)) { intel_cqm_rotation_rmid = entry->rmid; continue; } /* * If we have groups waiting for RMIDs, hand * them one now provided they don't conflict. */ if (intel_cqm_sched_in_event(entry->rmid)) continue; /* * Otherwise place it onto the free list. */ list_add_tail(&entry->list, &cqm_rmid_free_lru); } return __rmid_valid(intel_cqm_rotation_rmid); } /* * Pick a victim group and move it to the tail of the group list. * @next: The first group without an RMID */ static void __intel_cqm_pick_and_rotate(struct perf_event *next) { struct perf_event *rotor; u32 rmid; lockdep_assert_held(&cache_mutex); rotor = list_first_entry(&cache_groups, struct perf_event, hw.cqm_groups_entry); /* * The group at the front of the list should always have a valid * RMID. If it doesn't then no groups have RMIDs assigned and we * don't need to rotate the list. */ if (next == rotor) return; rmid = intel_cqm_xchg_rmid(rotor, INVALID_RMID); __put_rmid(rmid); list_rotate_left(&cache_groups); } /* * Deallocate the RMIDs from any events that conflict with @event, and * place them on the back of the group list. */ static void intel_cqm_sched_out_conflicting_events(struct perf_event *event) { struct perf_event *group, *g; u32 rmid; lockdep_assert_held(&cache_mutex); list_for_each_entry_safe(group, g, &cache_groups, hw.cqm_groups_entry) { if (group == event) continue; rmid = group->hw.cqm_rmid; /* * Skip events that don't have a valid RMID. */ if (!__rmid_valid(rmid)) continue; /* * No conflict? No problem! Leave the event alone. */ if (!__conflict_event(group, event)) continue; intel_cqm_xchg_rmid(group, INVALID_RMID); __put_rmid(rmid); } } /* * Attempt to rotate the groups and assign new RMIDs. * * We rotate for two reasons, * 1. To handle the scheduling of conflicting events * 2. To recycle RMIDs * * Rotating RMIDs is complicated because the hardware doesn't give us * any clues. * * There's problems with the hardware interface; when you change the * task:RMID map cachelines retain their 'old' tags, giving a skewed * picture. In order to work around this, we must always keep one free * RMID - intel_cqm_rotation_rmid. * * Rotation works by taking away an RMID from a group (the old RMID), * and assigning the free RMID to another group (the new RMID). We must * then wait for the old RMID to not be used (no cachelines tagged). * This ensure that all cachelines are tagged with 'active' RMIDs. At * this point we can start reading values for the new RMID and treat the * old RMID as the free RMID for the next rotation. * * Return %true or %false depending on whether we did any rotating. */ static bool __intel_cqm_rmid_rotate(void) { struct perf_event *group, *start = NULL; unsigned int threshold_limit; unsigned int nr_needed = 0; unsigned int nr_available; bool rotated = false; mutex_lock(&cache_mutex); again: /* * Fast path through this function if there are no groups and no * RMIDs that need cleaning. */ if (list_empty(&cache_groups) && list_empty(&cqm_rmid_limbo_lru)) goto out; list_for_each_entry(group, &cache_groups, hw.cqm_groups_entry) { if (!__rmid_valid(group->hw.cqm_rmid)) { if (!start) start = group; nr_needed++; } } /* * We have some event groups, but they all have RMIDs assigned * and no RMIDs need cleaning. */ if (!nr_needed && list_empty(&cqm_rmid_limbo_lru)) goto out; if (!nr_needed) goto stabilize; /* * We have more event groups without RMIDs than available RMIDs, * or we have event groups that conflict with the ones currently * scheduled. * * We force deallocate the rmid of the group at the head of * cache_groups. The first event group without an RMID then gets * assigned intel_cqm_rotation_rmid. This ensures we always make * forward progress. * * Rotate the cache_groups list so the previous head is now the * tail. */ __intel_cqm_pick_and_rotate(start); /* * If the rotation is going to succeed, reduce the threshold so * that we don't needlessly reuse dirty RMIDs. */ if (__rmid_valid(intel_cqm_rotation_rmid)) { intel_cqm_xchg_rmid(start, intel_cqm_rotation_rmid); intel_cqm_rotation_rmid = __get_rmid(); intel_cqm_sched_out_conflicting_events(start); if (__intel_cqm_threshold) __intel_cqm_threshold--; } rotated = true; stabilize: /* * We now need to stablize the RMID we freed above (if any) to * ensure that the next time we rotate we have an RMID with zero * occupancy value. * * Alternatively, if we didn't need to perform any rotation, * we'll have a bunch of RMIDs in limbo that need stabilizing. */ threshold_limit = __intel_cqm_max_threshold / cqm_l3_scale; while (intel_cqm_rmid_stabilize(&nr_available) && __intel_cqm_threshold < threshold_limit) { unsigned int steal_limit; /* * Don't spin if nobody is actively waiting for an RMID, * the rotation worker will be kicked as soon as an * event needs an RMID anyway. */ if (!nr_needed) break; /* Allow max 25% of RMIDs to be in limbo. */ steal_limit = (cqm_max_rmid + 1) / 4; /* * We failed to stabilize any RMIDs so our rotation * logic is now stuck. In order to make forward progress * we have a few options: * * 1. rotate ("steal") another RMID * 2. increase the threshold * 3. do nothing * * We do both of 1. and 2. until we hit the steal limit. * * The steal limit prevents all RMIDs ending up on the * limbo list. This can happen if every RMID has a * non-zero occupancy above threshold_limit, and the * occupancy values aren't dropping fast enough. * * Note that there is prioritisation at work here - we'd * rather increase the number of RMIDs on the limbo list * than increase the threshold, because increasing the * threshold skews the event data (because we reuse * dirty RMIDs) - threshold bumps are a last resort. */ if (nr_available < steal_limit) goto again; __intel_cqm_threshold++; } out: mutex_unlock(&cache_mutex); return rotated; } static void intel_cqm_rmid_rotate(struct work_struct *work); static DECLARE_DELAYED_WORK(intel_cqm_rmid_work, intel_cqm_rmid_rotate); static struct pmu intel_cqm_pmu; static void intel_cqm_rmid_rotate(struct work_struct *work) { unsigned long delay; __intel_cqm_rmid_rotate(); delay = msecs_to_jiffies(intel_cqm_pmu.hrtimer_interval_ms); schedule_delayed_work(&intel_cqm_rmid_work, delay); } /* * Find a group and setup RMID. * * If we're part of a group, we use the group's RMID. */ static void intel_cqm_setup_event(struct perf_event *event, struct perf_event **group) { struct perf_event *iter; bool conflict = false; u32 rmid; list_for_each_entry(iter, &cache_groups, hw.cqm_groups_entry) { rmid = iter->hw.cqm_rmid; if (__match_event(iter, event)) { /* All tasks in a group share an RMID */ event->hw.cqm_rmid = rmid; *group = iter; return; } /* * We only care about conflicts for events that are * actually scheduled in (and hence have a valid RMID). */ if (__conflict_event(iter, event) && __rmid_valid(rmid)) conflict = true; } if (conflict) rmid = INVALID_RMID; else rmid = __get_rmid(); event->hw.cqm_rmid = rmid; } static void intel_cqm_event_read(struct perf_event *event) { unsigned long flags; u32 rmid; u64 val; /* * Task events are handled by intel_cqm_event_count(). */ if (event->cpu == -1) return; raw_spin_lock_irqsave(&cache_lock, flags); rmid = event->hw.cqm_rmid; if (!__rmid_valid(rmid)) goto out; val = __rmid_read(rmid); /* * Ignore this reading on error states and do not update the value. */ if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL)) goto out; local64_set(&event->count, val); out: raw_spin_unlock_irqrestore(&cache_lock, flags); } static void __intel_cqm_event_count(void *info) { struct rmid_read *rr = info; u64 val; val = __rmid_read(rr->rmid); if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL)) return; atomic64_add(val, &rr->value); } static inline bool cqm_group_leader(struct perf_event *event) { return !list_empty(&event->hw.cqm_groups_entry); } static u64 intel_cqm_event_count(struct perf_event *event) { unsigned long flags; struct rmid_read rr = { .value = ATOMIC64_INIT(0), }; /* * We only need to worry about task events. System-wide events * are handled like usual, i.e. entirely with * intel_cqm_event_read(). */ if (event->cpu != -1) return __perf_event_count(event); /* * Only the group leader gets to report values. This stops us * reporting duplicate values to userspace, and gives us a clear * rule for which task gets to report the values. * * Note that it is impossible to attribute these values to * specific packages - we forfeit that ability when we create * task events. */ if (!cqm_group_leader(event)) return 0; /* * Getting up-to-date values requires an SMP IPI which is not * possible if we're being called in interrupt context. Return * the cached values instead. */ if (unlikely(in_interrupt())) goto out; /* * Notice that we don't perform the reading of an RMID * atomically, because we can't hold a spin lock across the * IPIs. * * Speculatively perform the read, since @event might be * assigned a different (possibly invalid) RMID while we're * busying performing the IPI calls. It's therefore necessary to * check @event's RMID afterwards, and if it has changed, * discard the result of the read. */ rr.rmid = ACCESS_ONCE(event->hw.cqm_rmid); if (!__rmid_valid(rr.rmid)) goto out; on_each_cpu_mask(&cqm_cpumask, __intel_cqm_event_count, &rr, 1); raw_spin_lock_irqsave(&cache_lock, flags); if (event->hw.cqm_rmid == rr.rmid) local64_set(&event->count, atomic64_read(&rr.value)); raw_spin_unlock_irqrestore(&cache_lock, flags); out: return __perf_event_count(event); } static void intel_cqm_event_start(struct perf_event *event, int mode) { struct intel_pqr_state *state = this_cpu_ptr(&pqr_state); u32 rmid = event->hw.cqm_rmid; if (!(event->hw.cqm_state & PERF_HES_STOPPED)) return; event->hw.cqm_state &= ~PERF_HES_STOPPED; if (state->rmid_usecnt++) { if (!WARN_ON_ONCE(state->rmid != rmid)) return; } else { WARN_ON_ONCE(state->rmid); } state->rmid = rmid; wrmsr(MSR_IA32_PQR_ASSOC, rmid, state->closid); } static void intel_cqm_event_stop(struct perf_event *event, int mode) { struct intel_pqr_state *state = this_cpu_ptr(&pqr_state); if (event->hw.cqm_state & PERF_HES_STOPPED) return; event->hw.cqm_state |= PERF_HES_STOPPED; intel_cqm_event_read(event); if (!--state->rmid_usecnt) { state->rmid = 0; wrmsr(MSR_IA32_PQR_ASSOC, 0, state->closid); } else { WARN_ON_ONCE(!state->rmid); } } static int intel_cqm_event_add(struct perf_event *event, int mode) { unsigned long flags; u32 rmid; raw_spin_lock_irqsave(&cache_lock, flags); event->hw.cqm_state = PERF_HES_STOPPED; rmid = event->hw.cqm_rmid; if (__rmid_valid(rmid) && (mode & PERF_EF_START)) intel_cqm_event_start(event, mode); raw_spin_unlock_irqrestore(&cache_lock, flags); return 0; } static void intel_cqm_event_destroy(struct perf_event *event) { struct perf_event *group_other = NULL; mutex_lock(&cache_mutex); /* * If there's another event in this group... */ if (!list_empty(&event->hw.cqm_group_entry)) { group_other = list_first_entry(&event->hw.cqm_group_entry, struct perf_event, hw.cqm_group_entry); list_del(&event->hw.cqm_group_entry); } /* * And we're the group leader.. */ if (cqm_group_leader(event)) { /* * If there was a group_other, make that leader, otherwise * destroy the group and return the RMID. */ if (group_other) { list_replace(&event->hw.cqm_groups_entry, &group_other->hw.cqm_groups_entry); } else { u32 rmid = event->hw.cqm_rmid; if (__rmid_valid(rmid)) __put_rmid(rmid); list_del(&event->hw.cqm_groups_entry); } } mutex_unlock(&cache_mutex); } static int intel_cqm_event_init(struct perf_event *event) { struct perf_event *group = NULL; bool rotate = false; if (event->attr.type != intel_cqm_pmu.type) return -ENOENT; if (event->attr.config & ~QOS_EVENT_MASK) return -EINVAL; /* unsupported modes and filters */ if (event->attr.exclude_user || event->attr.exclude_kernel || event->attr.exclude_hv || event->attr.exclude_idle || event->attr.exclude_host || event->attr.exclude_guest || event->attr.sample_period) /* no sampling */ return -EINVAL; INIT_LIST_HEAD(&event->hw.cqm_group_entry); INIT_LIST_HEAD(&event->hw.cqm_groups_entry); event->destroy = intel_cqm_event_destroy; mutex_lock(&cache_mutex); /* Will also set rmid */ intel_cqm_setup_event(event, &group); if (group) { list_add_tail(&event->hw.cqm_group_entry, &group->hw.cqm_group_entry); } else { list_add_tail(&event->hw.cqm_groups_entry, &cache_groups); /* * All RMIDs are either in use or have recently been * used. Kick the rotation worker to clean/free some. * * We only do this for the group leader, rather than for * every event in a group to save on needless work. */ if (!__rmid_valid(event->hw.cqm_rmid)) rotate = true; } mutex_unlock(&cache_mutex); if (rotate) schedule_delayed_work(&intel_cqm_rmid_work, 0); return 0; } EVENT_ATTR_STR(llc_occupancy, intel_cqm_llc, "event=0x01"); EVENT_ATTR_STR(llc_occupancy.per-pkg, intel_cqm_llc_pkg, "1"); EVENT_ATTR_STR(llc_occupancy.unit, intel_cqm_llc_unit, "Bytes"); EVENT_ATTR_STR(llc_occupancy.scale, intel_cqm_llc_scale, NULL); EVENT_ATTR_STR(llc_occupancy.snapshot, intel_cqm_llc_snapshot, "1"); static struct attribute *intel_cqm_events_attr[] = { EVENT_PTR(intel_cqm_llc), EVENT_PTR(intel_cqm_llc_pkg), EVENT_PTR(intel_cqm_llc_unit), EVENT_PTR(intel_cqm_llc_scale), EVENT_PTR(intel_cqm_llc_snapshot), NULL, }; static struct attribute_group intel_cqm_events_group = { .name = "events", .attrs = intel_cqm_events_attr, }; PMU_FORMAT_ATTR(event, "config:0-7"); static struct attribute *intel_cqm_formats_attr[] = { &format_attr_event.attr, NULL, }; static struct attribute_group intel_cqm_format_group = { .name = "format", .attrs = intel_cqm_formats_attr, }; static ssize_t max_recycle_threshold_show(struct device *dev, struct device_attribute *attr, char *page) { ssize_t rv; mutex_lock(&cache_mutex); rv = snprintf(page, PAGE_SIZE-1, "%u\n", __intel_cqm_max_threshold); mutex_unlock(&cache_mutex); return rv; } static ssize_t max_recycle_threshold_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned int bytes, cachelines; int ret; ret = kstrtouint(buf, 0, &bytes); if (ret) return ret; mutex_lock(&cache_mutex); __intel_cqm_max_threshold = bytes; cachelines = bytes / cqm_l3_scale; /* * The new maximum takes effect immediately. */ if (__intel_cqm_threshold > cachelines) __intel_cqm_threshold = cachelines; mutex_unlock(&cache_mutex); return count; } static DEVICE_ATTR_RW(max_recycle_threshold); static struct attribute *intel_cqm_attrs[] = { &dev_attr_max_recycle_threshold.attr, NULL, }; static const struct attribute_group intel_cqm_group = { .attrs = intel_cqm_attrs, }; static const struct attribute_group *intel_cqm_attr_groups[] = { &intel_cqm_events_group, &intel_cqm_format_group, &intel_cqm_group, NULL, }; static struct pmu intel_cqm_pmu = { .hrtimer_interval_ms = RMID_DEFAULT_QUEUE_TIME, .attr_groups = intel_cqm_attr_groups, .task_ctx_nr = perf_sw_context, .event_init = intel_cqm_event_init, .add = intel_cqm_event_add, .del = intel_cqm_event_stop, .start = intel_cqm_event_start, .stop = intel_cqm_event_stop, .read = intel_cqm_event_read, .count = intel_cqm_event_count, }; static inline void cqm_pick_event_reader(int cpu) { int phys_id = topology_physical_package_id(cpu); int i; for_each_cpu(i, &cqm_cpumask) { if (phys_id == topology_physical_package_id(i)) return; /* already got reader for this socket */ } cpumask_set_cpu(cpu, &cqm_cpumask); } static void intel_cqm_cpu_starting(unsigned int cpu) { struct intel_pqr_state *state = &per_cpu(pqr_state, cpu); struct cpuinfo_x86 *c = &cpu_data(cpu); state->rmid = 0; state->closid = 0; state->rmid_usecnt = 0; WARN_ON(c->x86_cache_max_rmid != cqm_max_rmid); WARN_ON(c->x86_cache_occ_scale != cqm_l3_scale); } static void intel_cqm_cpu_exit(unsigned int cpu) { int phys_id = topology_physical_package_id(cpu); int i; /* * Is @cpu a designated cqm reader? */ if (!cpumask_test_and_clear_cpu(cpu, &cqm_cpumask)) return; for_each_online_cpu(i) { if (i == cpu) continue; if (phys_id == topology_physical_package_id(i)) { cpumask_set_cpu(i, &cqm_cpumask); break; } } } static int intel_cqm_cpu_notifier(struct notifier_block *nb, unsigned long action, void *hcpu) { unsigned int cpu = (unsigned long)hcpu; switch (action & ~CPU_TASKS_FROZEN) { case CPU_DOWN_PREPARE: intel_cqm_cpu_exit(cpu); break; case CPU_STARTING: intel_cqm_cpu_starting(cpu); cqm_pick_event_reader(cpu); break; } return NOTIFY_OK; } static const struct x86_cpu_id intel_cqm_match[] = { { .vendor = X86_VENDOR_INTEL, .feature = X86_FEATURE_CQM_OCCUP_LLC }, {} }; static int __init intel_cqm_init(void) { char *str, scale[20]; int i, cpu, ret; if (!x86_match_cpu(intel_cqm_match)) return -ENODEV; cqm_l3_scale = boot_cpu_data.x86_cache_occ_scale; /* * It's possible that not all resources support the same number * of RMIDs. Instead of making scheduling much more complicated * (where we have to match a task's RMID to a cpu that supports * that many RMIDs) just find the minimum RMIDs supported across * all cpus. * * Also, check that the scales match on all cpus. */ cpu_notifier_register_begin(); for_each_online_cpu(cpu) { struct cpuinfo_x86 *c = &cpu_data(cpu); if (c->x86_cache_max_rmid < cqm_max_rmid) cqm_max_rmid = c->x86_cache_max_rmid; if (c->x86_cache_occ_scale != cqm_l3_scale) { pr_err("Multiple LLC scale values, disabling\n"); ret = -EINVAL; goto out; } } /* * A reasonable upper limit on the max threshold is the number * of lines tagged per RMID if all RMIDs have the same number of * lines tagged in the LLC. * * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC. */ __intel_cqm_max_threshold = boot_cpu_data.x86_cache_size * 1024 / (cqm_max_rmid + 1); snprintf(scale, sizeof(scale), "%u", cqm_l3_scale); str = kstrdup(scale, GFP_KERNEL); if (!str) { ret = -ENOMEM; goto out; } event_attr_intel_cqm_llc_scale.event_str = str; ret = intel_cqm_setup_rmid_cache(); if (ret) goto out; for_each_online_cpu(i) { intel_cqm_cpu_starting(i); cqm_pick_event_reader(i); } __perf_cpu_notifier(intel_cqm_cpu_notifier); ret = perf_pmu_register(&intel_cqm_pmu, "intel_cqm", -1); if (ret) pr_err("Intel CQM perf registration failed: %d\n", ret); else pr_info("Intel CQM monitoring enabled\n"); out: cpu_notifier_register_done(); return ret; } device_initcall(intel_cqm_init);