/* * Copyright (c) 2003-2012 Broadcom Corporation * All Rights Reserved * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the Broadcom * license below: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY BROADCOM ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <linux/types.h> #include <linux/pci.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/msi.h> #include <linux/mm.h> #include <linux/irq.h> #include <linux/irqdesc.h> #include <linux/console.h> #include <asm/io.h> #include <asm/netlogic/interrupt.h> #include <asm/netlogic/haldefs.h> #include <asm/netlogic/common.h> #include <asm/netlogic/mips-extns.h> #include <asm/netlogic/xlp-hal/iomap.h> #include <asm/netlogic/xlp-hal/xlp.h> #include <asm/netlogic/xlp-hal/pic.h> #include <asm/netlogic/xlp-hal/pcibus.h> #include <asm/netlogic/xlp-hal/bridge.h> #define XLP_MSIVEC_PER_LINK 32 #define XLP_MSIXVEC_TOTAL (cpu_is_xlp9xx() ? 128 : 32) #define XLP_MSIXVEC_PER_LINK (cpu_is_xlp9xx() ? 32 : 8) /* 128 MSI irqs per node, mapped starting at NLM_MSI_VEC_BASE */ static inline int nlm_link_msiirq(int link, int msivec) { return NLM_MSI_VEC_BASE + link * XLP_MSIVEC_PER_LINK + msivec; } /* get the link MSI vector from irq number */ static inline int nlm_irq_msivec(int irq) { return (irq - NLM_MSI_VEC_BASE) % XLP_MSIVEC_PER_LINK; } /* get the link from the irq number */ static inline int nlm_irq_msilink(int irq) { int total_msivec = XLP_MSIVEC_PER_LINK * PCIE_NLINKS; return ((irq - NLM_MSI_VEC_BASE) % total_msivec) / XLP_MSIVEC_PER_LINK; } /* * For XLP 8xx/4xx/3xx/2xx, only 32 MSI-X vectors are possible because * there are only 32 PIC interrupts for MSI. We split them statically * and use 8 MSI-X vectors per link - this keeps the allocation and * lookup simple. * On XLP 9xx, there are 32 vectors per link, and the interrupts are * not routed thru PIC, so we can use all 128 MSI-X vectors. */ static inline int nlm_link_msixirq(int link, int bit) { return NLM_MSIX_VEC_BASE + link * XLP_MSIXVEC_PER_LINK + bit; } /* get the link MSI vector from irq number */ static inline int nlm_irq_msixvec(int irq) { return (irq - NLM_MSIX_VEC_BASE) % XLP_MSIXVEC_TOTAL; } /* get the link from MSIX vec */ static inline int nlm_irq_msixlink(int msixvec) { return msixvec / XLP_MSIXVEC_PER_LINK; } /* * Per link MSI and MSI-X information, set as IRQ handler data for * MSI and MSI-X interrupts. */ struct xlp_msi_data { struct nlm_soc_info *node; uint64_t lnkbase; uint32_t msi_enabled_mask; uint32_t msi_alloc_mask; uint32_t msix_alloc_mask; spinlock_t msi_lock; }; /* * MSI Chip definitions * * On XLP, there is a PIC interrupt associated with each PCIe link on the * chip (which appears as a PCI bridge to us). This gives us 32 MSI irqa * per link and 128 overall. * * When a device connected to the link raises a MSI interrupt, we get a * link interrupt and we then have to look at PCIE_MSI_STATUS register at * the bridge to map it to the IRQ */ static void xlp_msi_enable(struct irq_data *d) { struct xlp_msi_data *md = irq_data_get_irq_chip_data(d); unsigned long flags; int vec; vec = nlm_irq_msivec(d->irq); spin_lock_irqsave(&md->msi_lock, flags); md->msi_enabled_mask |= 1u << vec; if (cpu_is_xlp9xx()) nlm_write_reg(md->lnkbase, PCIE_9XX_MSI_EN, md->msi_enabled_mask); else nlm_write_reg(md->lnkbase, PCIE_MSI_EN, md->msi_enabled_mask); spin_unlock_irqrestore(&md->msi_lock, flags); } static void xlp_msi_disable(struct irq_data *d) { struct xlp_msi_data *md = irq_data_get_irq_chip_data(d); unsigned long flags; int vec; vec = nlm_irq_msivec(d->irq); spin_lock_irqsave(&md->msi_lock, flags); md->msi_enabled_mask &= ~(1u << vec); if (cpu_is_xlp9xx()) nlm_write_reg(md->lnkbase, PCIE_9XX_MSI_EN, md->msi_enabled_mask); else nlm_write_reg(md->lnkbase, PCIE_MSI_EN, md->msi_enabled_mask); spin_unlock_irqrestore(&md->msi_lock, flags); } static void xlp_msi_mask_ack(struct irq_data *d) { struct xlp_msi_data *md = irq_data_get_irq_chip_data(d); int link, vec; link = nlm_irq_msilink(d->irq); vec = nlm_irq_msivec(d->irq); xlp_msi_disable(d); /* Ack MSI on bridge */ if (cpu_is_xlp9xx()) nlm_write_reg(md->lnkbase, PCIE_9XX_MSI_STATUS, 1u << vec); else nlm_write_reg(md->lnkbase, PCIE_MSI_STATUS, 1u << vec); } static struct irq_chip xlp_msi_chip = { .name = "XLP-MSI", .irq_enable = xlp_msi_enable, .irq_disable = xlp_msi_disable, .irq_mask_ack = xlp_msi_mask_ack, .irq_unmask = xlp_msi_enable, }; /* * XLP8XX/4XX/3XX/2XX: * The MSI-X interrupt handling is different from MSI, there are 32 MSI-X * interrupts generated by the PIC and each of these correspond to a MSI-X * vector (0-31) that can be assigned. * * We divide the MSI-X vectors to 8 per link and do a per-link allocation * * XLP9XX: * 32 MSI-X vectors are available per link, and the interrupts are not routed * thru the PIC. PIC ack not needed. * * Enable and disable done using standard MSI functions. */ static void xlp_msix_mask_ack(struct irq_data *d) { struct xlp_msi_data *md; int link, msixvec; uint32_t status_reg, bit; msixvec = nlm_irq_msixvec(d->irq); link = nlm_irq_msixlink(msixvec); pci_msi_mask_irq(d); md = irq_data_get_irq_chip_data(d); /* Ack MSI on bridge */ if (cpu_is_xlp9xx()) { status_reg = PCIE_9XX_MSIX_STATUSX(link); bit = msixvec % XLP_MSIXVEC_PER_LINK; } else { status_reg = PCIE_MSIX_STATUS; bit = msixvec; } nlm_write_reg(md->lnkbase, status_reg, 1u << bit); if (!cpu_is_xlp9xx()) nlm_pic_ack(md->node->picbase, PIC_IRT_PCIE_MSIX_INDEX(msixvec)); } static struct irq_chip xlp_msix_chip = { .name = "XLP-MSIX", .irq_enable = pci_msi_unmask_irq, .irq_disable = pci_msi_mask_irq, .irq_mask_ack = xlp_msix_mask_ack, .irq_unmask = pci_msi_unmask_irq, }; void arch_teardown_msi_irq(unsigned int irq) { } /* * Setup a PCIe link for MSI. By default, the links are in * legacy interrupt mode. We will switch them to MSI mode * at the first MSI request. */ static void xlp_config_link_msi(uint64_t lnkbase, int lirq, uint64_t msiaddr) { u32 val; if (cpu_is_xlp9xx()) { val = nlm_read_reg(lnkbase, PCIE_9XX_INT_EN0); if ((val & 0x200) == 0) { val |= 0x200; /* MSI Interrupt enable */ nlm_write_reg(lnkbase, PCIE_9XX_INT_EN0, val); } } else { val = nlm_read_reg(lnkbase, PCIE_INT_EN0); if ((val & 0x200) == 0) { val |= 0x200; nlm_write_reg(lnkbase, PCIE_INT_EN0, val); } } val = nlm_read_reg(lnkbase, 0x1); /* CMD */ if ((val & 0x0400) == 0) { val |= 0x0400; nlm_write_reg(lnkbase, 0x1, val); } /* Update IRQ in the PCI irq reg */ val = nlm_read_pci_reg(lnkbase, 0xf); val &= ~0x1fu; val |= (1 << 8) | lirq; nlm_write_pci_reg(lnkbase, 0xf, val); /* MSI addr */ nlm_write_reg(lnkbase, PCIE_BRIDGE_MSI_ADDRH, msiaddr >> 32); nlm_write_reg(lnkbase, PCIE_BRIDGE_MSI_ADDRL, msiaddr & 0xffffffff); /* MSI cap for bridge */ val = nlm_read_reg(lnkbase, PCIE_BRIDGE_MSI_CAP); if ((val & (1 << 16)) == 0) { val |= 0xb << 16; /* mmc32, msi enable */ nlm_write_reg(lnkbase, PCIE_BRIDGE_MSI_CAP, val); } } /* * Allocate a MSI vector on a link */ static int xlp_setup_msi(uint64_t lnkbase, int node, int link, struct msi_desc *desc) { struct xlp_msi_data *md; struct msi_msg msg; unsigned long flags; int msivec, irt, lirq, xirq, ret; uint64_t msiaddr; /* Get MSI data for the link */ lirq = PIC_PCIE_LINK_MSI_IRQ(link); xirq = nlm_irq_to_xirq(node, nlm_link_msiirq(link, 0)); md = irq_get_chip_data(xirq); msiaddr = MSI_LINK_ADDR(node, link); spin_lock_irqsave(&md->msi_lock, flags); if (md->msi_alloc_mask == 0) { xlp_config_link_msi(lnkbase, lirq, msiaddr); /* switch the link IRQ to MSI range */ if (cpu_is_xlp9xx()) irt = PIC_9XX_IRT_PCIE_LINK_INDEX(link); else irt = PIC_IRT_PCIE_LINK_INDEX(link); nlm_setup_pic_irq(node, lirq, lirq, irt); nlm_pic_init_irt(nlm_get_node(node)->picbase, irt, lirq, node * nlm_threads_per_node(), 1 /*en */); } /* allocate a MSI vec, and tell the bridge about it */ msivec = fls(md->msi_alloc_mask); if (msivec == XLP_MSIVEC_PER_LINK) { spin_unlock_irqrestore(&md->msi_lock, flags); return -ENOMEM; } md->msi_alloc_mask |= (1u << msivec); spin_unlock_irqrestore(&md->msi_lock, flags); msg.address_hi = msiaddr >> 32; msg.address_lo = msiaddr & 0xffffffff; msg.data = 0xc00 | msivec; xirq = xirq + msivec; /* msi mapped to global irq space */ ret = irq_set_msi_desc(xirq, desc); if (ret < 0) return ret; pci_write_msi_msg(xirq, &msg); return 0; } /* * Switch a link to MSI-X mode */ static void xlp_config_link_msix(uint64_t lnkbase, int lirq, uint64_t msixaddr) { u32 val; val = nlm_read_reg(lnkbase, 0x2C); if ((val & 0x80000000U) == 0) { val |= 0x80000000U; nlm_write_reg(lnkbase, 0x2C, val); } if (cpu_is_xlp9xx()) { val = nlm_read_reg(lnkbase, PCIE_9XX_INT_EN0); if ((val & 0x200) == 0) { val |= 0x200; /* MSI Interrupt enable */ nlm_write_reg(lnkbase, PCIE_9XX_INT_EN0, val); } } else { val = nlm_read_reg(lnkbase, PCIE_INT_EN0); if ((val & 0x200) == 0) { val |= 0x200; /* MSI Interrupt enable */ nlm_write_reg(lnkbase, PCIE_INT_EN0, val); } } val = nlm_read_reg(lnkbase, 0x1); /* CMD */ if ((val & 0x0400) == 0) { val |= 0x0400; nlm_write_reg(lnkbase, 0x1, val); } /* Update IRQ in the PCI irq reg */ val = nlm_read_pci_reg(lnkbase, 0xf); val &= ~0x1fu; val |= (1 << 8) | lirq; nlm_write_pci_reg(lnkbase, 0xf, val); if (cpu_is_xlp9xx()) { /* MSI-X addresses */ nlm_write_reg(lnkbase, PCIE_9XX_BRIDGE_MSIX_ADDR_BASE, msixaddr >> 8); nlm_write_reg(lnkbase, PCIE_9XX_BRIDGE_MSIX_ADDR_LIMIT, (msixaddr + MSI_ADDR_SZ) >> 8); } else { /* MSI-X addresses */ nlm_write_reg(lnkbase, PCIE_BRIDGE_MSIX_ADDR_BASE, msixaddr >> 8); nlm_write_reg(lnkbase, PCIE_BRIDGE_MSIX_ADDR_LIMIT, (msixaddr + MSI_ADDR_SZ) >> 8); } } /* * Allocate a MSI-X vector */ static int xlp_setup_msix(uint64_t lnkbase, int node, int link, struct msi_desc *desc) { struct xlp_msi_data *md; struct msi_msg msg; unsigned long flags; int t, msixvec, lirq, xirq, ret; uint64_t msixaddr; /* Get MSI data for the link */ lirq = PIC_PCIE_MSIX_IRQ(link); xirq = nlm_irq_to_xirq(node, nlm_link_msixirq(link, 0)); md = irq_get_chip_data(xirq); msixaddr = MSIX_LINK_ADDR(node, link); spin_lock_irqsave(&md->msi_lock, flags); /* switch the PCIe link to MSI-X mode at the first alloc */ if (md->msix_alloc_mask == 0) xlp_config_link_msix(lnkbase, lirq, msixaddr); /* allocate a MSI-X vec, and tell the bridge about it */ t = fls(md->msix_alloc_mask); if (t == XLP_MSIXVEC_PER_LINK) { spin_unlock_irqrestore(&md->msi_lock, flags); return -ENOMEM; } md->msix_alloc_mask |= (1u << t); spin_unlock_irqrestore(&md->msi_lock, flags); xirq += t; msixvec = nlm_irq_msixvec(xirq); msg.address_hi = msixaddr >> 32; msg.address_lo = msixaddr & 0xffffffff; msg.data = 0xc00 | msixvec; ret = irq_set_msi_desc(xirq, desc); if (ret < 0) return ret; pci_write_msi_msg(xirq, &msg); return 0; } int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc) { struct pci_dev *lnkdev; uint64_t lnkbase; int node, link, slot; lnkdev = xlp_get_pcie_link(dev); if (lnkdev == NULL) { dev_err(&dev->dev, "Could not find bridge\n"); return 1; } slot = PCI_SLOT(lnkdev->devfn); link = PCI_FUNC(lnkdev->devfn); node = slot / 8; lnkbase = nlm_get_pcie_base(node, link); if (desc->msi_attrib.is_msix) return xlp_setup_msix(lnkbase, node, link, desc); else return xlp_setup_msi(lnkbase, node, link, desc); } void __init xlp_init_node_msi_irqs(int node, int link) { struct nlm_soc_info *nodep; struct xlp_msi_data *md; int irq, i, irt, msixvec, val; pr_info("[%d %d] Init node PCI IRT\n", node, link); nodep = nlm_get_node(node); /* Alloc an MSI block for the link */ md = kzalloc(sizeof(*md), GFP_KERNEL); spin_lock_init(&md->msi_lock); md->msi_enabled_mask = 0; md->msi_alloc_mask = 0; md->msix_alloc_mask = 0; md->node = nodep; md->lnkbase = nlm_get_pcie_base(node, link); /* extended space for MSI interrupts */ irq = nlm_irq_to_xirq(node, nlm_link_msiirq(link, 0)); for (i = irq; i < irq + XLP_MSIVEC_PER_LINK; i++) { irq_set_chip_and_handler(i, &xlp_msi_chip, handle_level_irq); irq_set_chip_data(i, md); } for (i = 0; i < XLP_MSIXVEC_PER_LINK ; i++) { if (cpu_is_xlp9xx()) { val = ((node * nlm_threads_per_node()) << 7 | PIC_PCIE_MSIX_IRQ(link) << 1 | 0 << 0); nlm_write_pcie_reg(md->lnkbase, PCIE_9XX_MSIX_VECX(i + (link * XLP_MSIXVEC_PER_LINK)), val); } else { /* Initialize MSI-X irts to generate one interrupt * per link */ msixvec = link * XLP_MSIXVEC_PER_LINK + i; irt = PIC_IRT_PCIE_MSIX_INDEX(msixvec); nlm_pic_init_irt(nodep->picbase, irt, PIC_PCIE_MSIX_IRQ(link), node * nlm_threads_per_node(), 1); } /* Initialize MSI-X extended irq space for the link */ irq = nlm_irq_to_xirq(node, nlm_link_msixirq(link, i)); irq_set_chip_and_handler(irq, &xlp_msix_chip, handle_level_irq); irq_set_chip_data(irq, md); } } void nlm_dispatch_msi(int node, int lirq) { struct xlp_msi_data *md; int link, i, irqbase; u32 status; link = lirq - PIC_PCIE_LINK_MSI_IRQ_BASE; irqbase = nlm_irq_to_xirq(node, nlm_link_msiirq(link, 0)); md = irq_get_chip_data(irqbase); if (cpu_is_xlp9xx()) status = nlm_read_reg(md->lnkbase, PCIE_9XX_MSI_STATUS) & md->msi_enabled_mask; else status = nlm_read_reg(md->lnkbase, PCIE_MSI_STATUS) & md->msi_enabled_mask; while (status) { i = __ffs(status); do_IRQ(irqbase + i); status &= status - 1; } /* Ack at eirr and PIC */ ack_c0_eirr(PIC_PCIE_LINK_MSI_IRQ(link)); if (cpu_is_xlp9xx()) nlm_pic_ack(md->node->picbase, PIC_9XX_IRT_PCIE_LINK_INDEX(link)); else nlm_pic_ack(md->node->picbase, PIC_IRT_PCIE_LINK_INDEX(link)); } void nlm_dispatch_msix(int node, int lirq) { struct xlp_msi_data *md; int link, i, irqbase; u32 status; link = lirq - PIC_PCIE_MSIX_IRQ_BASE; irqbase = nlm_irq_to_xirq(node, nlm_link_msixirq(link, 0)); md = irq_get_chip_data(irqbase); if (cpu_is_xlp9xx()) status = nlm_read_reg(md->lnkbase, PCIE_9XX_MSIX_STATUSX(link)); else status = nlm_read_reg(md->lnkbase, PCIE_MSIX_STATUS); /* narrow it down to the MSI-x vectors for our link */ if (!cpu_is_xlp9xx()) status = (status >> (link * XLP_MSIXVEC_PER_LINK)) & ((1 << XLP_MSIXVEC_PER_LINK) - 1); while (status) { i = __ffs(status); do_IRQ(irqbase + i); status &= status - 1; } /* Ack at eirr and PIC */ ack_c0_eirr(PIC_PCIE_MSIX_IRQ(link)); }