/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2004-2011 Cavium Networks * Copyright (C) 2008 Wind River Systems */ #include <linux/delay.h> #include <linux/init.h> #include <linux/irq.h> #include <linux/i2c.h> #include <linux/usb.h> #include <linux/dma-mapping.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/slab.h> #include <linux/platform_device.h> #include <linux/of_platform.h> #include <linux/of_fdt.h> #include <linux/libfdt.h> #include <linux/usb/ehci_pdriver.h> #include <linux/usb/ohci_pdriver.h> #include <asm/octeon/octeon.h> #include <asm/octeon/cvmx-rnm-defs.h> #include <asm/octeon/cvmx-helper.h> #include <asm/octeon/cvmx-helper-board.h> #include <asm/octeon/cvmx-uctlx-defs.h> /* Octeon Random Number Generator. */ static int __init octeon_rng_device_init(void) { struct platform_device *pd; int ret = 0; struct resource rng_resources[] = { { .flags = IORESOURCE_MEM, .start = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS), .end = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS) + 0xf }, { .flags = IORESOURCE_MEM, .start = cvmx_build_io_address(8, 0), .end = cvmx_build_io_address(8, 0) + 0x7 } }; pd = platform_device_alloc("octeon_rng", -1); if (!pd) { ret = -ENOMEM; goto out; } ret = platform_device_add_resources(pd, rng_resources, ARRAY_SIZE(rng_resources)); if (ret) goto fail; ret = platform_device_add(pd); if (ret) goto fail; return ret; fail: platform_device_put(pd); out: return ret; } device_initcall(octeon_rng_device_init); #ifdef CONFIG_USB static DEFINE_MUTEX(octeon2_usb_clocks_mutex); static int octeon2_usb_clock_start_cnt; static void octeon2_usb_clocks_start(struct device *dev) { u64 div; union cvmx_uctlx_if_ena if_ena; union cvmx_uctlx_clk_rst_ctl clk_rst_ctl; union cvmx_uctlx_uphy_ctl_status uphy_ctl_status; union cvmx_uctlx_uphy_portx_ctl_status port_ctl_status; int i; unsigned long io_clk_64_to_ns; u32 clock_rate = 12000000; bool is_crystal_clock = false; mutex_lock(&octeon2_usb_clocks_mutex); octeon2_usb_clock_start_cnt++; if (octeon2_usb_clock_start_cnt != 1) goto exit; io_clk_64_to_ns = 64000000000ull / octeon_get_io_clock_rate(); if (dev->of_node) { struct device_node *uctl_node; const char *clock_type; uctl_node = of_get_parent(dev->of_node); if (!uctl_node) { dev_err(dev, "No UCTL device node\n"); goto exit; } i = of_property_read_u32(uctl_node, "refclk-frequency", &clock_rate); if (i) { dev_err(dev, "No UCTL \"refclk-frequency\"\n"); goto exit; } i = of_property_read_string(uctl_node, "refclk-type", &clock_type); if (!i && strcmp("crystal", clock_type) == 0) is_crystal_clock = true; } /* * Step 1: Wait for voltages stable. That surely happened * before starting the kernel. * * Step 2: Enable SCLK of UCTL by writing UCTL0_IF_ENA[EN] = 1 */ if_ena.u64 = 0; if_ena.s.en = 1; cvmx_write_csr(CVMX_UCTLX_IF_ENA(0), if_ena.u64); /* Step 3: Configure the reference clock, PHY, and HCLK */ clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0)); /* * If the UCTL looks like it has already been started, skip * the initialization, otherwise bus errors are obtained. */ if (clk_rst_ctl.s.hrst) goto end_clock; /* 3a */ clk_rst_ctl.s.p_por = 1; clk_rst_ctl.s.hrst = 0; clk_rst_ctl.s.p_prst = 0; clk_rst_ctl.s.h_clkdiv_rst = 0; clk_rst_ctl.s.o_clkdiv_rst = 0; clk_rst_ctl.s.h_clkdiv_en = 0; clk_rst_ctl.s.o_clkdiv_en = 0; cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); /* 3b */ clk_rst_ctl.s.p_refclk_sel = is_crystal_clock ? 0 : 1; switch (clock_rate) { default: pr_err("Invalid UCTL clock rate of %u, using 12000000 instead\n", clock_rate); /* Fall through */ case 12000000: clk_rst_ctl.s.p_refclk_div = 0; break; case 24000000: clk_rst_ctl.s.p_refclk_div = 1; break; case 48000000: clk_rst_ctl.s.p_refclk_div = 2; break; } cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); /* 3c */ div = octeon_get_io_clock_rate() / 130000000ull; switch (div) { case 0: div = 1; break; case 1: case 2: case 3: case 4: break; case 5: div = 4; break; case 6: case 7: div = 6; break; case 8: case 9: case 10: case 11: div = 8; break; default: div = 12; break; } clk_rst_ctl.s.h_div = div; cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); /* Read it back, */ clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0)); clk_rst_ctl.s.h_clkdiv_en = 1; cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); /* 3d */ clk_rst_ctl.s.h_clkdiv_rst = 1; cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); /* 3e: delay 64 io clocks */ ndelay(io_clk_64_to_ns); /* * Step 4: Program the power-on reset field in the UCTL * clock-reset-control register. */ clk_rst_ctl.s.p_por = 0; cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); /* Step 5: Wait 1 ms for the PHY clock to start. */ mdelay(1); /* * Step 6: Program the reset input from automatic test * equipment field in the UPHY CSR */ uphy_ctl_status.u64 = cvmx_read_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0)); uphy_ctl_status.s.ate_reset = 1; cvmx_write_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0), uphy_ctl_status.u64); /* Step 7: Wait for at least 10ns. */ ndelay(10); /* Step 8: Clear the ATE_RESET field in the UPHY CSR. */ uphy_ctl_status.s.ate_reset = 0; cvmx_write_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0), uphy_ctl_status.u64); /* * Step 9: Wait for at least 20ns for UPHY to output PHY clock * signals and OHCI_CLK48 */ ndelay(20); /* Step 10: Configure the OHCI_CLK48 and OHCI_CLK12 clocks. */ /* 10a */ clk_rst_ctl.s.o_clkdiv_rst = 1; cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); /* 10b */ clk_rst_ctl.s.o_clkdiv_en = 1; cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); /* 10c */ ndelay(io_clk_64_to_ns); /* * Step 11: Program the PHY reset field: * UCTL0_CLK_RST_CTL[P_PRST] = 1 */ clk_rst_ctl.s.p_prst = 1; cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); /* Step 12: Wait 1 uS. */ udelay(1); /* Step 13: Program the HRESET_N field: UCTL0_CLK_RST_CTL[HRST] = 1 */ clk_rst_ctl.s.hrst = 1; cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); end_clock: /* Now we can set some other registers. */ for (i = 0; i <= 1; i++) { port_ctl_status.u64 = cvmx_read_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0)); /* Set txvreftune to 15 to obtain compliant 'eye' diagram. */ port_ctl_status.s.txvreftune = 15; port_ctl_status.s.txrisetune = 1; port_ctl_status.s.txpreemphasistune = 1; cvmx_write_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0), port_ctl_status.u64); } /* Set uSOF cycle period to 60,000 bits. */ cvmx_write_csr(CVMX_UCTLX_EHCI_FLA(0), 0x20ull); exit: mutex_unlock(&octeon2_usb_clocks_mutex); } static void octeon2_usb_clocks_stop(void) { mutex_lock(&octeon2_usb_clocks_mutex); octeon2_usb_clock_start_cnt--; mutex_unlock(&octeon2_usb_clocks_mutex); } static int octeon_ehci_power_on(struct platform_device *pdev) { octeon2_usb_clocks_start(&pdev->dev); return 0; } static void octeon_ehci_power_off(struct platform_device *pdev) { octeon2_usb_clocks_stop(); } static struct usb_ehci_pdata octeon_ehci_pdata = { /* Octeon EHCI matches CPU endianness. */ #ifdef __BIG_ENDIAN .big_endian_mmio = 1, #endif .dma_mask_64 = 1, .power_on = octeon_ehci_power_on, .power_off = octeon_ehci_power_off, }; static void __init octeon_ehci_hw_start(struct device *dev) { union cvmx_uctlx_ehci_ctl ehci_ctl; octeon2_usb_clocks_start(dev); ehci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_EHCI_CTL(0)); /* Use 64-bit addressing. */ ehci_ctl.s.ehci_64b_addr_en = 1; ehci_ctl.s.l2c_addr_msb = 0; #ifdef __BIG_ENDIAN ehci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */ ehci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */ #else ehci_ctl.s.l2c_buff_emod = 0; /* not swapped. */ ehci_ctl.s.l2c_desc_emod = 0; /* not swapped. */ ehci_ctl.s.inv_reg_a2 = 1; #endif cvmx_write_csr(CVMX_UCTLX_EHCI_CTL(0), ehci_ctl.u64); octeon2_usb_clocks_stop(); } static int __init octeon_ehci_device_init(void) { struct platform_device *pd; struct device_node *ehci_node; int ret = 0; ehci_node = of_find_node_by_name(NULL, "ehci"); if (!ehci_node) return 0; pd = of_find_device_by_node(ehci_node); if (!pd) return 0; pd->dev.platform_data = &octeon_ehci_pdata; octeon_ehci_hw_start(&pd->dev); return ret; } device_initcall(octeon_ehci_device_init); static int octeon_ohci_power_on(struct platform_device *pdev) { octeon2_usb_clocks_start(&pdev->dev); return 0; } static void octeon_ohci_power_off(struct platform_device *pdev) { octeon2_usb_clocks_stop(); } static struct usb_ohci_pdata octeon_ohci_pdata = { /* Octeon OHCI matches CPU endianness. */ #ifdef __BIG_ENDIAN .big_endian_mmio = 1, #endif .power_on = octeon_ohci_power_on, .power_off = octeon_ohci_power_off, }; static void __init octeon_ohci_hw_start(struct device *dev) { union cvmx_uctlx_ohci_ctl ohci_ctl; octeon2_usb_clocks_start(dev); ohci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_OHCI_CTL(0)); ohci_ctl.s.l2c_addr_msb = 0; #ifdef __BIG_ENDIAN ohci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */ ohci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */ #else ohci_ctl.s.l2c_buff_emod = 0; /* not swapped. */ ohci_ctl.s.l2c_desc_emod = 0; /* not swapped. */ ohci_ctl.s.inv_reg_a2 = 1; #endif cvmx_write_csr(CVMX_UCTLX_OHCI_CTL(0), ohci_ctl.u64); octeon2_usb_clocks_stop(); } static int __init octeon_ohci_device_init(void) { struct platform_device *pd; struct device_node *ohci_node; int ret = 0; ohci_node = of_find_node_by_name(NULL, "ohci"); if (!ohci_node) return 0; pd = of_find_device_by_node(ohci_node); if (!pd) return 0; pd->dev.platform_data = &octeon_ohci_pdata; octeon_ohci_hw_start(&pd->dev); return ret; } device_initcall(octeon_ohci_device_init); #endif /* CONFIG_USB */ static struct of_device_id __initdata octeon_ids[] = { { .compatible = "simple-bus", }, { .compatible = "cavium,octeon-6335-uctl", }, { .compatible = "cavium,octeon-5750-usbn", }, { .compatible = "cavium,octeon-3860-bootbus", }, { .compatible = "cavium,mdio-mux", }, { .compatible = "gpio-leds", }, {}, }; static bool __init octeon_has_88e1145(void) { return !OCTEON_IS_MODEL(OCTEON_CN52XX) && !OCTEON_IS_MODEL(OCTEON_CN6XXX) && !OCTEON_IS_MODEL(OCTEON_CN56XX); } static void __init octeon_fdt_set_phy(int eth, int phy_addr) { const __be32 *phy_handle; const __be32 *alt_phy_handle; const __be32 *reg; u32 phandle; int phy; int alt_phy; const char *p; int current_len; char new_name[20]; phy_handle = fdt_getprop(initial_boot_params, eth, "phy-handle", NULL); if (!phy_handle) return; phandle = be32_to_cpup(phy_handle); phy = fdt_node_offset_by_phandle(initial_boot_params, phandle); alt_phy_handle = fdt_getprop(initial_boot_params, eth, "cavium,alt-phy-handle", NULL); if (alt_phy_handle) { u32 alt_phandle = be32_to_cpup(alt_phy_handle); alt_phy = fdt_node_offset_by_phandle(initial_boot_params, alt_phandle); } else { alt_phy = -1; } if (phy_addr < 0 || phy < 0) { /* Delete the PHY things */ fdt_nop_property(initial_boot_params, eth, "phy-handle"); /* This one may fail */ fdt_nop_property(initial_boot_params, eth, "cavium,alt-phy-handle"); if (phy >= 0) fdt_nop_node(initial_boot_params, phy); if (alt_phy >= 0) fdt_nop_node(initial_boot_params, alt_phy); return; } if (phy_addr >= 256 && alt_phy > 0) { const struct fdt_property *phy_prop; struct fdt_property *alt_prop; u32 phy_handle_name; /* Use the alt phy node instead.*/ phy_prop = fdt_get_property(initial_boot_params, eth, "phy-handle", NULL); phy_handle_name = phy_prop->nameoff; fdt_nop_node(initial_boot_params, phy); fdt_nop_property(initial_boot_params, eth, "phy-handle"); alt_prop = fdt_get_property_w(initial_boot_params, eth, "cavium,alt-phy-handle", NULL); alt_prop->nameoff = phy_handle_name; phy = alt_phy; } phy_addr &= 0xff; if (octeon_has_88e1145()) { fdt_nop_property(initial_boot_params, phy, "marvell,reg-init"); memset(new_name, 0, sizeof(new_name)); strcpy(new_name, "marvell,88e1145"); p = fdt_getprop(initial_boot_params, phy, "compatible", ¤t_len); if (p && current_len >= strlen(new_name)) fdt_setprop_inplace(initial_boot_params, phy, "compatible", new_name, current_len); } reg = fdt_getprop(initial_boot_params, phy, "reg", NULL); if (phy_addr == be32_to_cpup(reg)) return; fdt_setprop_inplace_cell(initial_boot_params, phy, "reg", phy_addr); snprintf(new_name, sizeof(new_name), "ethernet-phy@%x", phy_addr); p = fdt_get_name(initial_boot_params, phy, ¤t_len); if (p && current_len == strlen(new_name)) fdt_set_name(initial_boot_params, phy, new_name); else pr_err("Error: could not rename ethernet phy: <%s>", p); } static void __init octeon_fdt_set_mac_addr(int n, u64 *pmac) { u8 new_mac[6]; u64 mac = *pmac; int r; new_mac[0] = (mac >> 40) & 0xff; new_mac[1] = (mac >> 32) & 0xff; new_mac[2] = (mac >> 24) & 0xff; new_mac[3] = (mac >> 16) & 0xff; new_mac[4] = (mac >> 8) & 0xff; new_mac[5] = mac & 0xff; r = fdt_setprop_inplace(initial_boot_params, n, "local-mac-address", new_mac, sizeof(new_mac)); if (r) { pr_err("Setting \"local-mac-address\" failed %d", r); return; } *pmac = mac + 1; } static void __init octeon_fdt_rm_ethernet(int node) { const __be32 *phy_handle; phy_handle = fdt_getprop(initial_boot_params, node, "phy-handle", NULL); if (phy_handle) { u32 ph = be32_to_cpup(phy_handle); int p = fdt_node_offset_by_phandle(initial_boot_params, ph); if (p >= 0) fdt_nop_node(initial_boot_params, p); } fdt_nop_node(initial_boot_params, node); } static void __init octeon_fdt_pip_port(int iface, int i, int p, int max, u64 *pmac) { char name_buffer[20]; int eth; int phy_addr; int ipd_port; snprintf(name_buffer, sizeof(name_buffer), "ethernet@%x", p); eth = fdt_subnode_offset(initial_boot_params, iface, name_buffer); if (eth < 0) return; if (p > max) { pr_debug("Deleting port %x:%x\n", i, p); octeon_fdt_rm_ethernet(eth); return; } if (OCTEON_IS_MODEL(OCTEON_CN68XX)) ipd_port = (0x100 * i) + (0x10 * p) + 0x800; else ipd_port = 16 * i + p; phy_addr = cvmx_helper_board_get_mii_address(ipd_port); octeon_fdt_set_phy(eth, phy_addr); octeon_fdt_set_mac_addr(eth, pmac); } static void __init octeon_fdt_pip_iface(int pip, int idx, u64 *pmac) { char name_buffer[20]; int iface; int p; int count = 0; snprintf(name_buffer, sizeof(name_buffer), "interface@%d", idx); iface = fdt_subnode_offset(initial_boot_params, pip, name_buffer); if (iface < 0) return; if (cvmx_helper_interface_enumerate(idx) == 0) count = cvmx_helper_ports_on_interface(idx); for (p = 0; p < 16; p++) octeon_fdt_pip_port(iface, idx, p, count - 1, pmac); } int __init octeon_prune_device_tree(void) { int i, max_port, uart_mask; const char *pip_path; const char *alias_prop; char name_buffer[20]; int aliases; u64 mac_addr_base; if (fdt_check_header(initial_boot_params)) panic("Corrupt Device Tree."); aliases = fdt_path_offset(initial_boot_params, "/aliases"); if (aliases < 0) { pr_err("Error: No /aliases node in device tree."); return -EINVAL; } mac_addr_base = ((octeon_bootinfo->mac_addr_base[0] & 0xffull)) << 40 | ((octeon_bootinfo->mac_addr_base[1] & 0xffull)) << 32 | ((octeon_bootinfo->mac_addr_base[2] & 0xffull)) << 24 | ((octeon_bootinfo->mac_addr_base[3] & 0xffull)) << 16 | ((octeon_bootinfo->mac_addr_base[4] & 0xffull)) << 8 | (octeon_bootinfo->mac_addr_base[5] & 0xffull); if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX)) max_port = 2; else if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN68XX)) max_port = 1; else max_port = 0; if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E) max_port = 0; for (i = 0; i < 2; i++) { int mgmt; snprintf(name_buffer, sizeof(name_buffer), "mix%d", i); alias_prop = fdt_getprop(initial_boot_params, aliases, name_buffer, NULL); if (alias_prop) { mgmt = fdt_path_offset(initial_boot_params, alias_prop); if (mgmt < 0) continue; if (i >= max_port) { pr_debug("Deleting mix%d\n", i); octeon_fdt_rm_ethernet(mgmt); fdt_nop_property(initial_boot_params, aliases, name_buffer); } else { int phy_addr = cvmx_helper_board_get_mii_address(CVMX_HELPER_BOARD_MGMT_IPD_PORT + i); octeon_fdt_set_phy(mgmt, phy_addr); octeon_fdt_set_mac_addr(mgmt, &mac_addr_base); } } } pip_path = fdt_getprop(initial_boot_params, aliases, "pip", NULL); if (pip_path) { int pip = fdt_path_offset(initial_boot_params, pip_path); if (pip >= 0) for (i = 0; i <= 4; i++) octeon_fdt_pip_iface(pip, i, &mac_addr_base); } /* I2C */ if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CN56XX)) max_port = 2; else max_port = 1; for (i = 0; i < 2; i++) { int i2c; snprintf(name_buffer, sizeof(name_buffer), "twsi%d", i); alias_prop = fdt_getprop(initial_boot_params, aliases, name_buffer, NULL); if (alias_prop) { i2c = fdt_path_offset(initial_boot_params, alias_prop); if (i2c < 0) continue; if (i >= max_port) { pr_debug("Deleting twsi%d\n", i); fdt_nop_node(initial_boot_params, i2c); fdt_nop_property(initial_boot_params, aliases, name_buffer); } } } /* SMI/MDIO */ if (OCTEON_IS_MODEL(OCTEON_CN68XX)) max_port = 4; else if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN56XX)) max_port = 2; else max_port = 1; for (i = 0; i < 2; i++) { int i2c; snprintf(name_buffer, sizeof(name_buffer), "smi%d", i); alias_prop = fdt_getprop(initial_boot_params, aliases, name_buffer, NULL); if (alias_prop) { i2c = fdt_path_offset(initial_boot_params, alias_prop); if (i2c < 0) continue; if (i >= max_port) { pr_debug("Deleting smi%d\n", i); fdt_nop_node(initial_boot_params, i2c); fdt_nop_property(initial_boot_params, aliases, name_buffer); } } } /* Serial */ uart_mask = 3; /* Right now CN52XX is the only chip with a third uart */ if (OCTEON_IS_MODEL(OCTEON_CN52XX)) uart_mask |= 4; /* uart2 */ for (i = 0; i < 3; i++) { int uart; snprintf(name_buffer, sizeof(name_buffer), "uart%d", i); alias_prop = fdt_getprop(initial_boot_params, aliases, name_buffer, NULL); if (alias_prop) { uart = fdt_path_offset(initial_boot_params, alias_prop); if (uart_mask & (1 << i)) { __be32 f; f = cpu_to_be32(octeon_get_io_clock_rate()); fdt_setprop_inplace(initial_boot_params, uart, "clock-frequency", &f, sizeof(f)); continue; } pr_debug("Deleting uart%d\n", i); fdt_nop_node(initial_boot_params, uart); fdt_nop_property(initial_boot_params, aliases, name_buffer); } } /* Compact Flash */ alias_prop = fdt_getprop(initial_boot_params, aliases, "cf0", NULL); if (alias_prop) { union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg; unsigned long base_ptr, region_base, region_size; unsigned long region1_base = 0; unsigned long region1_size = 0; int cs, bootbus; bool is_16bit = false; bool is_true_ide = false; __be32 new_reg[6]; __be32 *ranges; int len; int cf = fdt_path_offset(initial_boot_params, alias_prop); base_ptr = 0; if (octeon_bootinfo->major_version == 1 && octeon_bootinfo->minor_version >= 1) { if (octeon_bootinfo->compact_flash_common_base_addr) base_ptr = octeon_bootinfo->compact_flash_common_base_addr; } else { base_ptr = 0x1d000800; } if (!base_ptr) goto no_cf; /* Find CS0 region. */ for (cs = 0; cs < 8; cs++) { mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs)); region_base = mio_boot_reg_cfg.s.base << 16; region_size = (mio_boot_reg_cfg.s.size + 1) << 16; if (mio_boot_reg_cfg.s.en && base_ptr >= region_base && base_ptr < region_base + region_size) { is_16bit = mio_boot_reg_cfg.s.width; break; } } if (cs >= 7) { /* cs and cs + 1 are CS0 and CS1, both must be less than 8. */ goto no_cf; } if (!(base_ptr & 0xfffful)) { /* * Boot loader signals availability of DMA (true_ide * mode) by setting low order bits of base_ptr to * zero. */ /* Asume that CS1 immediately follows. */ mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs + 1)); region1_base = mio_boot_reg_cfg.s.base << 16; region1_size = (mio_boot_reg_cfg.s.size + 1) << 16; if (!mio_boot_reg_cfg.s.en) goto no_cf; is_true_ide = true; } else { fdt_nop_property(initial_boot_params, cf, "cavium,true-ide"); fdt_nop_property(initial_boot_params, cf, "cavium,dma-engine-handle"); if (!is_16bit) { __be32 width = cpu_to_be32(8); fdt_setprop_inplace(initial_boot_params, cf, "cavium,bus-width", &width, sizeof(width)); } } new_reg[0] = cpu_to_be32(cs); new_reg[1] = cpu_to_be32(0); new_reg[2] = cpu_to_be32(0x10000); new_reg[3] = cpu_to_be32(cs + 1); new_reg[4] = cpu_to_be32(0); new_reg[5] = cpu_to_be32(0x10000); fdt_setprop_inplace(initial_boot_params, cf, "reg", new_reg, sizeof(new_reg)); bootbus = fdt_parent_offset(initial_boot_params, cf); if (bootbus < 0) goto no_cf; ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len); if (!ranges || len < (5 * 8 * sizeof(__be32))) goto no_cf; ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32); ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff); ranges[(cs * 5) + 4] = cpu_to_be32(region_size); if (is_true_ide) { cs++; ranges[(cs * 5) + 2] = cpu_to_be32(region1_base >> 32); ranges[(cs * 5) + 3] = cpu_to_be32(region1_base & 0xffffffff); ranges[(cs * 5) + 4] = cpu_to_be32(region1_size); } goto end_cf; no_cf: fdt_nop_node(initial_boot_params, cf); end_cf: ; } /* 8 char LED */ alias_prop = fdt_getprop(initial_boot_params, aliases, "led0", NULL); if (alias_prop) { union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg; unsigned long base_ptr, region_base, region_size; int cs, bootbus; __be32 new_reg[6]; __be32 *ranges; int len; int led = fdt_path_offset(initial_boot_params, alias_prop); base_ptr = octeon_bootinfo->led_display_base_addr; if (base_ptr == 0) goto no_led; /* Find CS0 region. */ for (cs = 0; cs < 8; cs++) { mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs)); region_base = mio_boot_reg_cfg.s.base << 16; region_size = (mio_boot_reg_cfg.s.size + 1) << 16; if (mio_boot_reg_cfg.s.en && base_ptr >= region_base && base_ptr < region_base + region_size) break; } if (cs > 7) goto no_led; new_reg[0] = cpu_to_be32(cs); new_reg[1] = cpu_to_be32(0x20); new_reg[2] = cpu_to_be32(0x20); new_reg[3] = cpu_to_be32(cs); new_reg[4] = cpu_to_be32(0); new_reg[5] = cpu_to_be32(0x20); fdt_setprop_inplace(initial_boot_params, led, "reg", new_reg, sizeof(new_reg)); bootbus = fdt_parent_offset(initial_boot_params, led); if (bootbus < 0) goto no_led; ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len); if (!ranges || len < (5 * 8 * sizeof(__be32))) goto no_led; ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32); ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff); ranges[(cs * 5) + 4] = cpu_to_be32(region_size); goto end_led; no_led: fdt_nop_node(initial_boot_params, led); end_led: ; } /* OHCI/UHCI USB */ alias_prop = fdt_getprop(initial_boot_params, aliases, "uctl", NULL); if (alias_prop) { int uctl = fdt_path_offset(initial_boot_params, alias_prop); if (uctl >= 0 && (!OCTEON_IS_MODEL(OCTEON_CN6XXX) || octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC2E)) { pr_debug("Deleting uctl\n"); fdt_nop_node(initial_boot_params, uctl); fdt_nop_property(initial_boot_params, aliases, "uctl"); } else if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E || octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC4E) { /* Missing "refclk-type" defaults to crystal. */ fdt_nop_property(initial_boot_params, uctl, "refclk-type"); } } /* DWC2 USB */ alias_prop = fdt_getprop(initial_boot_params, aliases, "usbn", NULL); if (alias_prop) { int usbn = fdt_path_offset(initial_boot_params, alias_prop); if (usbn >= 0 && (current_cpu_type() == CPU_CAVIUM_OCTEON2 || !octeon_has_feature(OCTEON_FEATURE_USB))) { pr_debug("Deleting usbn\n"); fdt_nop_node(initial_boot_params, usbn); fdt_nop_property(initial_boot_params, aliases, "usbn"); } else { __be32 new_f[1]; enum cvmx_helper_board_usb_clock_types c; c = __cvmx_helper_board_usb_get_clock_type(); switch (c) { case USB_CLOCK_TYPE_REF_48: new_f[0] = cpu_to_be32(48000000); fdt_setprop_inplace(initial_boot_params, usbn, "refclk-frequency", new_f, sizeof(new_f)); /* Fall through ...*/ case USB_CLOCK_TYPE_REF_12: /* Missing "refclk-type" defaults to external. */ fdt_nop_property(initial_boot_params, usbn, "refclk-type"); break; default: break; } } } if (octeon_bootinfo->board_type != CVMX_BOARD_TYPE_CUST_DSR1000N) { int dsr1000n_leds = fdt_path_offset(initial_boot_params, "/dsr1000n-leds"); if (dsr1000n_leds >= 0) fdt_nop_node(initial_boot_params, dsr1000n_leds); } return 0; } static int __init octeon_publish_devices(void) { return of_platform_bus_probe(NULL, octeon_ids, NULL); } device_initcall(octeon_publish_devices); MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Platform driver for Octeon SOC");