/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Unified implementation of memcpy, memmove and the __copy_user backend. * * Copyright (C) 1998, 99, 2000, 01, 2002 Ralf Baechle (ralf@gnu.org) * Copyright (C) 1999, 2000, 01, 2002 Silicon Graphics, Inc. * Copyright (C) 2002 Broadcom, Inc. * memcpy/copy_user author: Mark Vandevoorde * * Mnemonic names for arguments to memcpy/__copy_user */ #include <asm/asm.h> #include <asm/asm-offsets.h> #include <asm/regdef.h> #define dst a0 #define src a1 #define len a2 /* * Spec * * memcpy copies len bytes from src to dst and sets v0 to dst. * It assumes that * - src and dst don't overlap * - src is readable * - dst is writable * memcpy uses the standard calling convention * * __copy_user copies up to len bytes from src to dst and sets a2 (len) to * the number of uncopied bytes due to an exception caused by a read or write. * __copy_user assumes that src and dst don't overlap, and that the call is * implementing one of the following: * copy_to_user * - src is readable (no exceptions when reading src) * copy_from_user * - dst is writable (no exceptions when writing dst) * __copy_user uses a non-standard calling convention; see * arch/mips/include/asm/uaccess.h * * When an exception happens on a load, the handler must # ensure that all of the destination buffer is overwritten to prevent * leaking information to user mode programs. */ /* * Implementation */ /* * The exception handler for loads requires that: * 1- AT contain the address of the byte just past the end of the source * of the copy, * 2- src_entry <= src < AT, and * 3- (dst - src) == (dst_entry - src_entry), * The _entry suffix denotes values when __copy_user was called. * * (1) is set up up by uaccess.h and maintained by not writing AT in copy_user * (2) is met by incrementing src by the number of bytes copied * (3) is met by not doing loads between a pair of increments of dst and src * * The exception handlers for stores adjust len (if necessary) and return. * These handlers do not need to overwrite any data. * * For __rmemcpy and memmove an exception is always a kernel bug, therefore * they're not protected. */ #define EXC(inst_reg,addr,handler) \ 9: inst_reg, addr; \ .section __ex_table,"a"; \ PTR 9b, handler; \ .previous /* * Only on the 64-bit kernel we can made use of 64-bit registers. */ #define LOAD ld #define LOADL ldl #define LOADR ldr #define STOREL sdl #define STORER sdr #define STORE sd #define ADD daddu #define SUB dsubu #define SRL dsrl #define SRA dsra #define SLL dsll #define SLLV dsllv #define SRLV dsrlv #define NBYTES 8 #define LOG_NBYTES 3 /* * As we are sharing code base with the mips32 tree (which use the o32 ABI * register definitions). We need to redefine the register definitions from * the n64 ABI register naming to the o32 ABI register naming. */ #undef t0 #undef t1 #undef t2 #undef t3 #define t0 $8 #define t1 $9 #define t2 $10 #define t3 $11 #define t4 $12 #define t5 $13 #define t6 $14 #define t7 $15 #ifdef CONFIG_CPU_LITTLE_ENDIAN #define LDFIRST LOADR #define LDREST LOADL #define STFIRST STORER #define STREST STOREL #define SHIFT_DISCARD SLLV #else #define LDFIRST LOADL #define LDREST LOADR #define STFIRST STOREL #define STREST STORER #define SHIFT_DISCARD SRLV #endif #define FIRST(unit) ((unit)*NBYTES) #define REST(unit) (FIRST(unit)+NBYTES-1) #define UNIT(unit) FIRST(unit) #define ADDRMASK (NBYTES-1) .text .set noreorder .set noat /* * t7 is used as a flag to note inatomic mode. */ LEAF(__copy_user_inatomic) b __copy_user_common li t7, 1 END(__copy_user_inatomic) /* * A combined memcpy/__copy_user * __copy_user sets len to 0 for success; else to an upper bound of * the number of uncopied bytes. * memcpy sets v0 to dst. */ .align 5 LEAF(memcpy) /* a0=dst a1=src a2=len */ move v0, dst /* return value */ __memcpy: FEXPORT(__copy_user) li t7, 0 /* not inatomic */ __copy_user_common: /* * Note: dst & src may be unaligned, len may be 0 * Temps */ # # Octeon doesn't care if the destination is unaligned. The hardware # can fix it faster than we can special case the assembly. # pref 0, 0(src) sltu t0, len, NBYTES # Check if < 1 word bnez t0, copy_bytes_checklen and t0, src, ADDRMASK # Check if src unaligned bnez t0, src_unaligned sltu t0, len, 4*NBYTES # Check if < 4 words bnez t0, less_than_4units sltu t0, len, 8*NBYTES # Check if < 8 words bnez t0, less_than_8units sltu t0, len, 16*NBYTES # Check if < 16 words bnez t0, cleanup_both_aligned sltu t0, len, 128+1 # Check if len < 129 bnez t0, 1f # Skip prefetch if len is too short sltu t0, len, 256+1 # Check if len < 257 bnez t0, 1f # Skip prefetch if len is too short pref 0, 128(src) # We must not prefetch invalid addresses # # This is where we loop if there is more than 128 bytes left 2: pref 0, 256(src) # We must not prefetch invalid addresses # # This is where we loop if we can't prefetch anymore 1: EXC( LOAD t0, UNIT(0)(src), l_exc) EXC( LOAD t1, UNIT(1)(src), l_exc_copy) EXC( LOAD t2, UNIT(2)(src), l_exc_copy) EXC( LOAD t3, UNIT(3)(src), l_exc_copy) SUB len, len, 16*NBYTES EXC( STORE t0, UNIT(0)(dst), s_exc_p16u) EXC( STORE t1, UNIT(1)(dst), s_exc_p15u) EXC( STORE t2, UNIT(2)(dst), s_exc_p14u) EXC( STORE t3, UNIT(3)(dst), s_exc_p13u) EXC( LOAD t0, UNIT(4)(src), l_exc_copy) EXC( LOAD t1, UNIT(5)(src), l_exc_copy) EXC( LOAD t2, UNIT(6)(src), l_exc_copy) EXC( LOAD t3, UNIT(7)(src), l_exc_copy) EXC( STORE t0, UNIT(4)(dst), s_exc_p12u) EXC( STORE t1, UNIT(5)(dst), s_exc_p11u) EXC( STORE t2, UNIT(6)(dst), s_exc_p10u) ADD src, src, 16*NBYTES EXC( STORE t3, UNIT(7)(dst), s_exc_p9u) ADD dst, dst, 16*NBYTES EXC( LOAD t0, UNIT(-8)(src), l_exc_copy) EXC( LOAD t1, UNIT(-7)(src), l_exc_copy) EXC( LOAD t2, UNIT(-6)(src), l_exc_copy) EXC( LOAD t3, UNIT(-5)(src), l_exc_copy) EXC( STORE t0, UNIT(-8)(dst), s_exc_p8u) EXC( STORE t1, UNIT(-7)(dst), s_exc_p7u) EXC( STORE t2, UNIT(-6)(dst), s_exc_p6u) EXC( STORE t3, UNIT(-5)(dst), s_exc_p5u) EXC( LOAD t0, UNIT(-4)(src), l_exc_copy) EXC( LOAD t1, UNIT(-3)(src), l_exc_copy) EXC( LOAD t2, UNIT(-2)(src), l_exc_copy) EXC( LOAD t3, UNIT(-1)(src), l_exc_copy) EXC( STORE t0, UNIT(-4)(dst), s_exc_p4u) EXC( STORE t1, UNIT(-3)(dst), s_exc_p3u) EXC( STORE t2, UNIT(-2)(dst), s_exc_p2u) EXC( STORE t3, UNIT(-1)(dst), s_exc_p1u) sltu t0, len, 256+1 # See if we can prefetch more beqz t0, 2b sltu t0, len, 128 # See if we can loop more time beqz t0, 1b nop # # Jump here if there are less than 16*NBYTES left. # cleanup_both_aligned: beqz len, done sltu t0, len, 8*NBYTES bnez t0, less_than_8units nop EXC( LOAD t0, UNIT(0)(src), l_exc) EXC( LOAD t1, UNIT(1)(src), l_exc_copy) EXC( LOAD t2, UNIT(2)(src), l_exc_copy) EXC( LOAD t3, UNIT(3)(src), l_exc_copy) SUB len, len, 8*NBYTES EXC( STORE t0, UNIT(0)(dst), s_exc_p8u) EXC( STORE t1, UNIT(1)(dst), s_exc_p7u) EXC( STORE t2, UNIT(2)(dst), s_exc_p6u) EXC( STORE t3, UNIT(3)(dst), s_exc_p5u) EXC( LOAD t0, UNIT(4)(src), l_exc_copy) EXC( LOAD t1, UNIT(5)(src), l_exc_copy) EXC( LOAD t2, UNIT(6)(src), l_exc_copy) EXC( LOAD t3, UNIT(7)(src), l_exc_copy) EXC( STORE t0, UNIT(4)(dst), s_exc_p4u) EXC( STORE t1, UNIT(5)(dst), s_exc_p3u) EXC( STORE t2, UNIT(6)(dst), s_exc_p2u) EXC( STORE t3, UNIT(7)(dst), s_exc_p1u) ADD src, src, 8*NBYTES beqz len, done ADD dst, dst, 8*NBYTES # # Jump here if there are less than 8*NBYTES left. # less_than_8units: sltu t0, len, 4*NBYTES bnez t0, less_than_4units nop EXC( LOAD t0, UNIT(0)(src), l_exc) EXC( LOAD t1, UNIT(1)(src), l_exc_copy) EXC( LOAD t2, UNIT(2)(src), l_exc_copy) EXC( LOAD t3, UNIT(3)(src), l_exc_copy) SUB len, len, 4*NBYTES EXC( STORE t0, UNIT(0)(dst), s_exc_p4u) EXC( STORE t1, UNIT(1)(dst), s_exc_p3u) EXC( STORE t2, UNIT(2)(dst), s_exc_p2u) EXC( STORE t3, UNIT(3)(dst), s_exc_p1u) ADD src, src, 4*NBYTES beqz len, done ADD dst, dst, 4*NBYTES # # Jump here if there are less than 4*NBYTES left. This means # we may need to copy up to 3 NBYTES words. # less_than_4units: sltu t0, len, 1*NBYTES bnez t0, copy_bytes_checklen nop # # 1) Copy NBYTES, then check length again # EXC( LOAD t0, 0(src), l_exc) SUB len, len, NBYTES sltu t1, len, 8 EXC( STORE t0, 0(dst), s_exc_p1u) ADD src, src, NBYTES bnez t1, copy_bytes_checklen ADD dst, dst, NBYTES # # 2) Copy NBYTES, then check length again # EXC( LOAD t0, 0(src), l_exc) SUB len, len, NBYTES sltu t1, len, 8 EXC( STORE t0, 0(dst), s_exc_p1u) ADD src, src, NBYTES bnez t1, copy_bytes_checklen ADD dst, dst, NBYTES # # 3) Copy NBYTES, then check length again # EXC( LOAD t0, 0(src), l_exc) SUB len, len, NBYTES ADD src, src, NBYTES ADD dst, dst, NBYTES b copy_bytes_checklen EXC( STORE t0, -8(dst), s_exc_p1u) src_unaligned: #define rem t8 SRL t0, len, LOG_NBYTES+2 # +2 for 4 units/iter beqz t0, cleanup_src_unaligned and rem, len, (4*NBYTES-1) # rem = len % 4*NBYTES 1: /* * Avoid consecutive LD*'s to the same register since some mips * implementations can't issue them in the same cycle. * It's OK to load FIRST(N+1) before REST(N) because the two addresses * are to the same unit (unless src is aligned, but it's not). */ EXC( LDFIRST t0, FIRST(0)(src), l_exc) EXC( LDFIRST t1, FIRST(1)(src), l_exc_copy) SUB len, len, 4*NBYTES EXC( LDREST t0, REST(0)(src), l_exc_copy) EXC( LDREST t1, REST(1)(src), l_exc_copy) EXC( LDFIRST t2, FIRST(2)(src), l_exc_copy) EXC( LDFIRST t3, FIRST(3)(src), l_exc_copy) EXC( LDREST t2, REST(2)(src), l_exc_copy) EXC( LDREST t3, REST(3)(src), l_exc_copy) ADD src, src, 4*NBYTES EXC( STORE t0, UNIT(0)(dst), s_exc_p4u) EXC( STORE t1, UNIT(1)(dst), s_exc_p3u) EXC( STORE t2, UNIT(2)(dst), s_exc_p2u) EXC( STORE t3, UNIT(3)(dst), s_exc_p1u) bne len, rem, 1b ADD dst, dst, 4*NBYTES cleanup_src_unaligned: beqz len, done and rem, len, NBYTES-1 # rem = len % NBYTES beq rem, len, copy_bytes nop 1: EXC( LDFIRST t0, FIRST(0)(src), l_exc) EXC( LDREST t0, REST(0)(src), l_exc_copy) SUB len, len, NBYTES EXC( STORE t0, 0(dst), s_exc_p1u) ADD src, src, NBYTES bne len, rem, 1b ADD dst, dst, NBYTES copy_bytes_checklen: beqz len, done nop copy_bytes: /* 0 < len < NBYTES */ #define COPY_BYTE(N) \ EXC( lb t0, N(src), l_exc); \ SUB len, len, 1; \ beqz len, done; \ EXC( sb t0, N(dst), s_exc_p1) COPY_BYTE(0) COPY_BYTE(1) COPY_BYTE(2) COPY_BYTE(3) COPY_BYTE(4) COPY_BYTE(5) EXC( lb t0, NBYTES-2(src), l_exc) SUB len, len, 1 jr ra EXC( sb t0, NBYTES-2(dst), s_exc_p1) done: jr ra nop END(memcpy) l_exc_copy: /* * Copy bytes from src until faulting load address (or until a * lb faults) * * When reached by a faulting LDFIRST/LDREST, THREAD_BUADDR($28) * may be more than a byte beyond the last address. * Hence, the lb below may get an exception. * * Assumes src < THREAD_BUADDR($28) */ LOAD t0, TI_TASK($28) LOAD t0, THREAD_BUADDR(t0) 1: EXC( lb t1, 0(src), l_exc) ADD src, src, 1 sb t1, 0(dst) # can't fault -- we're copy_from_user bne src, t0, 1b ADD dst, dst, 1 l_exc: LOAD t0, TI_TASK($28) LOAD t0, THREAD_BUADDR(t0) # t0 is just past last good address SUB len, AT, t0 # len number of uncopied bytes bnez t7, 2f /* Skip the zeroing out part if inatomic */ /* * Here's where we rely on src and dst being incremented in tandem, * See (3) above. * dst += (fault addr - src) to put dst at first byte to clear */ ADD dst, t0 # compute start address in a1 SUB dst, src /* * Clear len bytes starting at dst. Can't call __bzero because it * might modify len. An inefficient loop for these rare times... */ beqz len, done SUB src, len, 1 1: sb zero, 0(dst) ADD dst, dst, 1 bnez src, 1b SUB src, src, 1 2: jr ra nop #define SEXC(n) \ s_exc_p ## n ## u: \ jr ra; \ ADD len, len, n*NBYTES SEXC(16) SEXC(15) SEXC(14) SEXC(13) SEXC(12) SEXC(11) SEXC(10) SEXC(9) SEXC(8) SEXC(7) SEXC(6) SEXC(5) SEXC(4) SEXC(3) SEXC(2) SEXC(1) s_exc_p1: jr ra ADD len, len, 1 s_exc: jr ra nop .align 5 LEAF(memmove) ADD t0, a0, a2 ADD t1, a1, a2 sltu t0, a1, t0 # dst + len <= src -> memcpy sltu t1, a0, t1 # dst >= src + len -> memcpy and t0, t1 beqz t0, __memcpy move v0, a0 /* return value */ beqz a2, r_out END(memmove) /* fall through to __rmemcpy */ LEAF(__rmemcpy) /* a0=dst a1=src a2=len */ sltu t0, a1, a0 beqz t0, r_end_bytes_up # src >= dst nop ADD a0, a2 # dst = dst + len ADD a1, a2 # src = src + len r_end_bytes: lb t0, -1(a1) SUB a2, a2, 0x1 sb t0, -1(a0) SUB a1, a1, 0x1 bnez a2, r_end_bytes SUB a0, a0, 0x1 r_out: jr ra move a2, zero r_end_bytes_up: lb t0, (a1) SUB a2, a2, 0x1 sb t0, (a0) ADD a1, a1, 0x1 bnez a2, r_end_bytes_up ADD a0, a0, 0x1 jr ra move a2, zero END(__rmemcpy)