/* * IPI management based on arch/arm/kernel/smp.c (Copyright 2002 ARM Limited) * * Copyright 2007-2009 Analog Devices Inc. * Philippe Gerum <rpm@xenomai.org> * * Licensed under the GPL-2. */ #include <linux/module.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/spinlock.h> #include <linux/sched.h> #include <linux/interrupt.h> #include <linux/cache.h> #include <linux/clockchips.h> #include <linux/profile.h> #include <linux/errno.h> #include <linux/mm.h> #include <linux/cpu.h> #include <linux/smp.h> #include <linux/cpumask.h> #include <linux/seq_file.h> #include <linux/irq.h> #include <linux/slab.h> #include <linux/atomic.h> #include <asm/cacheflush.h> #include <asm/irq_handler.h> #include <asm/mmu_context.h> #include <asm/pgtable.h> #include <asm/pgalloc.h> #include <asm/processor.h> #include <asm/ptrace.h> #include <asm/cpu.h> #include <asm/time.h> #include <linux/err.h> /* * Anomaly notes: * 05000120 - we always define corelock as 32-bit integer in L2 */ struct corelock_slot corelock __attribute__ ((__section__(".l2.bss"))); #ifdef CONFIG_ICACHE_FLUSH_L1 unsigned long blackfin_iflush_l1_entry[NR_CPUS]; #endif struct blackfin_initial_pda initial_pda_coreb; enum ipi_message_type { BFIN_IPI_NONE, BFIN_IPI_TIMER, BFIN_IPI_RESCHEDULE, BFIN_IPI_CALL_FUNC, BFIN_IPI_CPU_STOP, }; struct blackfin_flush_data { unsigned long start; unsigned long end; }; void *secondary_stack; static struct blackfin_flush_data smp_flush_data; static DEFINE_SPINLOCK(stop_lock); /* A magic number - stress test shows this is safe for common cases */ #define BFIN_IPI_MSGQ_LEN 5 /* Simple FIFO buffer, overflow leads to panic */ struct ipi_data { atomic_t count; atomic_t bits; }; static DEFINE_PER_CPU(struct ipi_data, bfin_ipi); static void ipi_cpu_stop(unsigned int cpu) { spin_lock(&stop_lock); printk(KERN_CRIT "CPU%u: stopping\n", cpu); dump_stack(); spin_unlock(&stop_lock); set_cpu_online(cpu, false); local_irq_disable(); while (1) SSYNC(); } static void ipi_flush_icache(void *info) { struct blackfin_flush_data *fdata = info; /* Invalidate the memory holding the bounds of the flushed region. */ blackfin_dcache_invalidate_range((unsigned long)fdata, (unsigned long)fdata + sizeof(*fdata)); /* Make sure all write buffers in the data side of the core * are flushed before trying to invalidate the icache. This * needs to be after the data flush and before the icache * flush so that the SSYNC does the right thing in preventing * the instruction prefetcher from hitting things in cached * memory at the wrong time -- it runs much further ahead than * the pipeline. */ SSYNC(); /* ipi_flaush_icache is invoked by generic flush_icache_range, * so call blackfin arch icache flush directly here. */ blackfin_icache_flush_range(fdata->start, fdata->end); } /* Use IRQ_SUPPLE_0 to request reschedule. * When returning from interrupt to user space, * there is chance to reschedule */ static irqreturn_t ipi_handler_int0(int irq, void *dev_instance) { unsigned int cpu = smp_processor_id(); platform_clear_ipi(cpu, IRQ_SUPPLE_0); return IRQ_HANDLED; } DECLARE_PER_CPU(struct clock_event_device, coretmr_events); void ipi_timer(void) { int cpu = smp_processor_id(); struct clock_event_device *evt = &per_cpu(coretmr_events, cpu); evt->event_handler(evt); } static irqreturn_t ipi_handler_int1(int irq, void *dev_instance) { struct ipi_data *bfin_ipi_data; unsigned int cpu = smp_processor_id(); unsigned long pending; unsigned long msg; platform_clear_ipi(cpu, IRQ_SUPPLE_1); smp_rmb(); bfin_ipi_data = this_cpu_ptr(&bfin_ipi); while ((pending = atomic_xchg(&bfin_ipi_data->bits, 0)) != 0) { msg = 0; do { msg = find_next_bit(&pending, BITS_PER_LONG, msg + 1); switch (msg) { case BFIN_IPI_TIMER: ipi_timer(); break; case BFIN_IPI_RESCHEDULE: scheduler_ipi(); break; case BFIN_IPI_CALL_FUNC: generic_smp_call_function_interrupt(); break; case BFIN_IPI_CPU_STOP: ipi_cpu_stop(cpu); break; default: goto out; } atomic_dec(&bfin_ipi_data->count); } while (msg < BITS_PER_LONG); } out: return IRQ_HANDLED; } static void bfin_ipi_init(void) { unsigned int cpu; struct ipi_data *bfin_ipi_data; for_each_possible_cpu(cpu) { bfin_ipi_data = &per_cpu(bfin_ipi, cpu); atomic_set(&bfin_ipi_data->bits, 0); atomic_set(&bfin_ipi_data->count, 0); } } void send_ipi(const struct cpumask *cpumask, enum ipi_message_type msg) { unsigned int cpu; struct ipi_data *bfin_ipi_data; unsigned long flags; local_irq_save(flags); for_each_cpu(cpu, cpumask) { bfin_ipi_data = &per_cpu(bfin_ipi, cpu); atomic_or((1 << msg), &bfin_ipi_data->bits); atomic_inc(&bfin_ipi_data->count); } local_irq_restore(flags); smp_wmb(); for_each_cpu(cpu, cpumask) platform_send_ipi_cpu(cpu, IRQ_SUPPLE_1); } void arch_send_call_function_single_ipi(int cpu) { send_ipi(cpumask_of(cpu), BFIN_IPI_CALL_FUNC); } void arch_send_call_function_ipi_mask(const struct cpumask *mask) { send_ipi(mask, BFIN_IPI_CALL_FUNC); } void smp_send_reschedule(int cpu) { send_ipi(cpumask_of(cpu), BFIN_IPI_RESCHEDULE); return; } void smp_send_msg(const struct cpumask *mask, unsigned long type) { send_ipi(mask, type); } void smp_timer_broadcast(const struct cpumask *mask) { smp_send_msg(mask, BFIN_IPI_TIMER); } void smp_send_stop(void) { cpumask_t callmap; preempt_disable(); cpumask_copy(&callmap, cpu_online_mask); cpumask_clear_cpu(smp_processor_id(), &callmap); if (!cpumask_empty(&callmap)) send_ipi(&callmap, BFIN_IPI_CPU_STOP); preempt_enable(); return; } int __cpu_up(unsigned int cpu, struct task_struct *idle) { int ret; secondary_stack = task_stack_page(idle) + THREAD_SIZE; ret = platform_boot_secondary(cpu, idle); secondary_stack = NULL; return ret; } static void setup_secondary(unsigned int cpu) { unsigned long ilat; bfin_write_IMASK(0); CSYNC(); ilat = bfin_read_ILAT(); CSYNC(); bfin_write_ILAT(ilat); CSYNC(); /* Enable interrupt levels IVG7-15. IARs have been already * programmed by the boot CPU. */ bfin_irq_flags |= IMASK_IVG15 | IMASK_IVG14 | IMASK_IVG13 | IMASK_IVG12 | IMASK_IVG11 | IMASK_IVG10 | IMASK_IVG9 | IMASK_IVG8 | IMASK_IVG7 | IMASK_IVGHW; } void secondary_start_kernel(void) { unsigned int cpu = smp_processor_id(); struct mm_struct *mm = &init_mm; if (_bfin_swrst & SWRST_DBL_FAULT_B) { printk(KERN_EMERG "CoreB Recovering from DOUBLE FAULT event\n"); #ifdef CONFIG_DEBUG_DOUBLEFAULT printk(KERN_EMERG " While handling exception (EXCAUSE = %#x) at %pF\n", initial_pda_coreb.seqstat_doublefault & SEQSTAT_EXCAUSE, initial_pda_coreb.retx_doublefault); printk(KERN_NOTICE " DCPLB_FAULT_ADDR: %pF\n", initial_pda_coreb.dcplb_doublefault_addr); printk(KERN_NOTICE " ICPLB_FAULT_ADDR: %pF\n", initial_pda_coreb.icplb_doublefault_addr); #endif printk(KERN_NOTICE " The instruction at %pF caused a double exception\n", initial_pda_coreb.retx); } /* * We want the D-cache to be enabled early, in case the atomic * support code emulates cache coherence (see * __ARCH_SYNC_CORE_DCACHE). */ init_exception_vectors(); local_irq_disable(); /* Attach the new idle task to the global mm. */ atomic_inc(&mm->mm_users); atomic_inc(&mm->mm_count); current->active_mm = mm; preempt_disable(); setup_secondary(cpu); platform_secondary_init(cpu); /* setup local core timer */ bfin_local_timer_setup(); local_irq_enable(); bfin_setup_caches(cpu); notify_cpu_starting(cpu); /* * Calibrate loops per jiffy value. * IRQs need to be enabled here - D-cache can be invalidated * in timer irq handler, so core B can read correct jiffies. */ calibrate_delay(); /* We are done with local CPU inits, unblock the boot CPU. */ set_cpu_online(cpu, true); cpu_startup_entry(CPUHP_ONLINE); } void __init smp_prepare_boot_cpu(void) { } void __init smp_prepare_cpus(unsigned int max_cpus) { platform_prepare_cpus(max_cpus); bfin_ipi_init(); platform_request_ipi(IRQ_SUPPLE_0, ipi_handler_int0); platform_request_ipi(IRQ_SUPPLE_1, ipi_handler_int1); } void __init smp_cpus_done(unsigned int max_cpus) { unsigned long bogosum = 0; unsigned int cpu; for_each_online_cpu(cpu) bogosum += loops_per_jiffy; printk(KERN_INFO "SMP: Total of %d processors activated " "(%lu.%02lu BogoMIPS).\n", num_online_cpus(), bogosum / (500000/HZ), (bogosum / (5000/HZ)) % 100); } void smp_icache_flush_range_others(unsigned long start, unsigned long end) { smp_flush_data.start = start; smp_flush_data.end = end; preempt_disable(); if (smp_call_function(&ipi_flush_icache, &smp_flush_data, 1)) printk(KERN_WARNING "SMP: failed to run I-cache flush request on other CPUs\n"); preempt_enable(); } EXPORT_SYMBOL_GPL(smp_icache_flush_range_others); #ifdef __ARCH_SYNC_CORE_ICACHE unsigned long icache_invld_count[NR_CPUS]; void resync_core_icache(void) { unsigned int cpu = get_cpu(); blackfin_invalidate_entire_icache(); icache_invld_count[cpu]++; put_cpu(); } EXPORT_SYMBOL(resync_core_icache); #endif #ifdef __ARCH_SYNC_CORE_DCACHE unsigned long dcache_invld_count[NR_CPUS]; unsigned long barrier_mask __attribute__ ((__section__(".l2.bss"))); void resync_core_dcache(void) { unsigned int cpu = get_cpu(); blackfin_invalidate_entire_dcache(); dcache_invld_count[cpu]++; put_cpu(); } EXPORT_SYMBOL(resync_core_dcache); #endif #ifdef CONFIG_HOTPLUG_CPU int __cpu_disable(void) { unsigned int cpu = smp_processor_id(); if (cpu == 0) return -EPERM; set_cpu_online(cpu, false); return 0; } int __cpu_die(unsigned int cpu) { return cpu_wait_death(cpu, 5); } void cpu_die(void) { (void)cpu_report_death(); atomic_dec(&init_mm.mm_users); atomic_dec(&init_mm.mm_count); local_irq_disable(); platform_cpu_die(); } #endif