/* * Copyright 2007-2009 Analog Devices Inc. * Philippe Gerum <rpm@xenomai.org> * * Licensed under the GPL-2 or later. */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/delay.h> #include <asm/smp.h> #include <asm/dma.h> #include <asm/time.h> static DEFINE_SPINLOCK(boot_lock); /* * platform_init_cpus() - Tell the world about how many cores we * have. This is called while setting up the architecture support * (setup_arch()), so don't be too demanding here with respect to * available kernel services. */ void __init platform_init_cpus(void) { struct cpumask mask; cpumask_set_cpu(0, &mask); /* CoreA */ cpumask_set_cpu(1, &mask); /* CoreB */ init_cpu_possible(&mask); } void __init platform_prepare_cpus(unsigned int max_cpus) { struct cpumask mask; bfin_relocate_coreb_l1_mem(); /* Both cores ought to be present on a bf561! */ cpumask_set_cpu(0, &mask); /* CoreA */ cpumask_set_cpu(1, &mask); /* CoreB */ init_cpu_present(&mask); } int __init setup_profiling_timer(unsigned int multiplier) /* not supported */ { return -EINVAL; } void platform_secondary_init(unsigned int cpu) { /* Clone setup for peripheral interrupt sources from CoreA. */ bfin_write_SICB_IMASK0(bfin_read_SIC_IMASK0()); bfin_write_SICB_IMASK1(bfin_read_SIC_IMASK1()); SSYNC(); /* Clone setup for IARs from CoreA. */ bfin_write_SICB_IAR0(bfin_read_SIC_IAR0()); bfin_write_SICB_IAR1(bfin_read_SIC_IAR1()); bfin_write_SICB_IAR2(bfin_read_SIC_IAR2()); bfin_write_SICB_IAR3(bfin_read_SIC_IAR3()); bfin_write_SICB_IAR4(bfin_read_SIC_IAR4()); bfin_write_SICB_IAR5(bfin_read_SIC_IAR5()); bfin_write_SICB_IAR6(bfin_read_SIC_IAR6()); bfin_write_SICB_IAR7(bfin_read_SIC_IAR7()); bfin_write_SICB_IWR0(IWR_DISABLE_ALL); bfin_write_SICB_IWR1(IWR_DISABLE_ALL); SSYNC(); /* We are done with local CPU inits, unblock the boot CPU. */ spin_lock(&boot_lock); spin_unlock(&boot_lock); } int platform_boot_secondary(unsigned int cpu, struct task_struct *idle) { unsigned long timeout; printk(KERN_INFO "Booting Core B.\n"); spin_lock(&boot_lock); if ((bfin_read_SYSCR() & COREB_SRAM_INIT) == 0) { /* CoreB already running, sending ipi to wakeup it */ smp_send_reschedule(cpu); } else { /* Kick CoreB, which should start execution from CORE_SRAM_BASE. */ bfin_write_SYSCR(bfin_read_SYSCR() & ~COREB_SRAM_INIT); SSYNC(); } timeout = jiffies + HZ; /* release the lock and let coreb run */ spin_unlock(&boot_lock); while (time_before(jiffies, timeout)) { if (cpu_online(cpu)) break; udelay(100); barrier(); } if (cpu_online(cpu)) { return 0; } else panic("CPU%u: processor failed to boot\n", cpu); } static const char supple0[] = "IRQ_SUPPLE_0"; static const char supple1[] = "IRQ_SUPPLE_1"; void __init platform_request_ipi(int irq, void *handler) { int ret; const char *name = (irq == IRQ_SUPPLE_0) ? supple0 : supple1; ret = request_irq(irq, handler, IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_FORCE_RESUME, name, handler); if (ret) panic("Cannot request %s for IPI service", name); } void platform_send_ipi(cpumask_t callmap, int irq) { unsigned int cpu; int offset = (irq == IRQ_SUPPLE_0) ? 6 : 8; for_each_cpu(cpu, &callmap) { BUG_ON(cpu >= 2); SSYNC(); bfin_write_SICB_SYSCR(bfin_read_SICB_SYSCR() | (1 << (offset + cpu))); SSYNC(); } } void platform_send_ipi_cpu(unsigned int cpu, int irq) { int offset = (irq == IRQ_SUPPLE_0) ? 6 : 8; BUG_ON(cpu >= 2); SSYNC(); bfin_write_SICB_SYSCR(bfin_read_SICB_SYSCR() | (1 << (offset + cpu))); SSYNC(); } void platform_clear_ipi(unsigned int cpu, int irq) { int offset = (irq == IRQ_SUPPLE_0) ? 10 : 12; BUG_ON(cpu >= 2); SSYNC(); bfin_write_SICB_SYSCR(bfin_read_SICB_SYSCR() | (1 << (offset + cpu))); SSYNC(); } /* * Setup core B's local core timer. * In SMP, core timer is used for clock event device. */ void bfin_local_timer_setup(void) { #if defined(CONFIG_TICKSOURCE_CORETMR) struct irq_data *data = irq_get_irq_data(IRQ_CORETMR); struct irq_chip *chip = irq_data_get_irq_chip(data); bfin_coretmr_init(); bfin_coretmr_clockevent_init(); chip->irq_unmask(data); #else /* Power down the core timer, just to play safe. */ bfin_write_TCNTL(0); #endif }