/* * aes-ce-cipher.c - core AES cipher using ARMv8 Crypto Extensions * * Copyright (C) 2013 - 2014 Linaro Ltd <ard.biesheuvel@linaro.org> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <asm/neon.h> #include <crypto/aes.h> #include <linux/cpufeature.h> #include <linux/crypto.h> #include <linux/module.h> #include "aes-ce-setkey.h" MODULE_DESCRIPTION("Synchronous AES cipher using ARMv8 Crypto Extensions"); MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>"); MODULE_LICENSE("GPL v2"); struct aes_block { u8 b[AES_BLOCK_SIZE]; }; static int num_rounds(struct crypto_aes_ctx *ctx) { /* * # of rounds specified by AES: * 128 bit key 10 rounds * 192 bit key 12 rounds * 256 bit key 14 rounds * => n byte key => 6 + (n/4) rounds */ return 6 + ctx->key_length / 4; } static void aes_cipher_encrypt(struct crypto_tfm *tfm, u8 dst[], u8 const src[]) { struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm); struct aes_block *out = (struct aes_block *)dst; struct aes_block const *in = (struct aes_block *)src; void *dummy0; int dummy1; kernel_neon_begin_partial(4); __asm__(" ld1 {v0.16b}, %[in] ;" " ld1 {v1.2d}, [%[key]], #16 ;" " cmp %w[rounds], #10 ;" " bmi 0f ;" " bne 3f ;" " mov v3.16b, v1.16b ;" " b 2f ;" "0: mov v2.16b, v1.16b ;" " ld1 {v3.2d}, [%[key]], #16 ;" "1: aese v0.16b, v2.16b ;" " aesmc v0.16b, v0.16b ;" "2: ld1 {v1.2d}, [%[key]], #16 ;" " aese v0.16b, v3.16b ;" " aesmc v0.16b, v0.16b ;" "3: ld1 {v2.2d}, [%[key]], #16 ;" " subs %w[rounds], %w[rounds], #3 ;" " aese v0.16b, v1.16b ;" " aesmc v0.16b, v0.16b ;" " ld1 {v3.2d}, [%[key]], #16 ;" " bpl 1b ;" " aese v0.16b, v2.16b ;" " eor v0.16b, v0.16b, v3.16b ;" " st1 {v0.16b}, %[out] ;" : [out] "=Q"(*out), [key] "=r"(dummy0), [rounds] "=r"(dummy1) : [in] "Q"(*in), "1"(ctx->key_enc), "2"(num_rounds(ctx) - 2) : "cc"); kernel_neon_end(); } static void aes_cipher_decrypt(struct crypto_tfm *tfm, u8 dst[], u8 const src[]) { struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm); struct aes_block *out = (struct aes_block *)dst; struct aes_block const *in = (struct aes_block *)src; void *dummy0; int dummy1; kernel_neon_begin_partial(4); __asm__(" ld1 {v0.16b}, %[in] ;" " ld1 {v1.2d}, [%[key]], #16 ;" " cmp %w[rounds], #10 ;" " bmi 0f ;" " bne 3f ;" " mov v3.16b, v1.16b ;" " b 2f ;" "0: mov v2.16b, v1.16b ;" " ld1 {v3.2d}, [%[key]], #16 ;" "1: aesd v0.16b, v2.16b ;" " aesimc v0.16b, v0.16b ;" "2: ld1 {v1.2d}, [%[key]], #16 ;" " aesd v0.16b, v3.16b ;" " aesimc v0.16b, v0.16b ;" "3: ld1 {v2.2d}, [%[key]], #16 ;" " subs %w[rounds], %w[rounds], #3 ;" " aesd v0.16b, v1.16b ;" " aesimc v0.16b, v0.16b ;" " ld1 {v3.2d}, [%[key]], #16 ;" " bpl 1b ;" " aesd v0.16b, v2.16b ;" " eor v0.16b, v0.16b, v3.16b ;" " st1 {v0.16b}, %[out] ;" : [out] "=Q"(*out), [key] "=r"(dummy0), [rounds] "=r"(dummy1) : [in] "Q"(*in), "1"(ctx->key_dec), "2"(num_rounds(ctx) - 2) : "cc"); kernel_neon_end(); } /* * aes_sub() - use the aese instruction to perform the AES sbox substitution * on each byte in 'input' */ static u32 aes_sub(u32 input) { u32 ret; __asm__("dup v1.4s, %w[in] ;" "movi v0.16b, #0 ;" "aese v0.16b, v1.16b ;" "umov %w[out], v0.4s[0] ;" : [out] "=r"(ret) : [in] "r"(input) : "v0","v1"); return ret; } int ce_aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key, unsigned int key_len) { /* * The AES key schedule round constants */ static u8 const rcon[] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, }; u32 kwords = key_len / sizeof(u32); struct aes_block *key_enc, *key_dec; int i, j; if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 && key_len != AES_KEYSIZE_256) return -EINVAL; memcpy(ctx->key_enc, in_key, key_len); ctx->key_length = key_len; kernel_neon_begin_partial(2); for (i = 0; i < sizeof(rcon); i++) { u32 *rki = ctx->key_enc + (i * kwords); u32 *rko = rki + kwords; rko[0] = ror32(aes_sub(rki[kwords - 1]), 8) ^ rcon[i] ^ rki[0]; rko[1] = rko[0] ^ rki[1]; rko[2] = rko[1] ^ rki[2]; rko[3] = rko[2] ^ rki[3]; if (key_len == AES_KEYSIZE_192) { if (i >= 7) break; rko[4] = rko[3] ^ rki[4]; rko[5] = rko[4] ^ rki[5]; } else if (key_len == AES_KEYSIZE_256) { if (i >= 6) break; rko[4] = aes_sub(rko[3]) ^ rki[4]; rko[5] = rko[4] ^ rki[5]; rko[6] = rko[5] ^ rki[6]; rko[7] = rko[6] ^ rki[7]; } } /* * Generate the decryption keys for the Equivalent Inverse Cipher. * This involves reversing the order of the round keys, and applying * the Inverse Mix Columns transformation on all but the first and * the last one. */ key_enc = (struct aes_block *)ctx->key_enc; key_dec = (struct aes_block *)ctx->key_dec; j = num_rounds(ctx); key_dec[0] = key_enc[j]; for (i = 1, j--; j > 0; i++, j--) __asm__("ld1 {v0.16b}, %[in] ;" "aesimc v1.16b, v0.16b ;" "st1 {v1.16b}, %[out] ;" : [out] "=Q"(key_dec[i]) : [in] "Q"(key_enc[j]) : "v0","v1"); key_dec[i] = key_enc[0]; kernel_neon_end(); return 0; } EXPORT_SYMBOL(ce_aes_expandkey); int ce_aes_setkey(struct crypto_tfm *tfm, const u8 *in_key, unsigned int key_len) { struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm); int ret; ret = ce_aes_expandkey(ctx, in_key, key_len); if (!ret) return 0; tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; return -EINVAL; } EXPORT_SYMBOL(ce_aes_setkey); static struct crypto_alg aes_alg = { .cra_name = "aes", .cra_driver_name = "aes-ce", .cra_priority = 250, .cra_flags = CRYPTO_ALG_TYPE_CIPHER, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct crypto_aes_ctx), .cra_module = THIS_MODULE, .cra_cipher = { .cia_min_keysize = AES_MIN_KEY_SIZE, .cia_max_keysize = AES_MAX_KEY_SIZE, .cia_setkey = ce_aes_setkey, .cia_encrypt = aes_cipher_encrypt, .cia_decrypt = aes_cipher_decrypt } }; static int __init aes_mod_init(void) { return crypto_register_alg(&aes_alg); } static void __exit aes_mod_exit(void) { crypto_unregister_alg(&aes_alg); } module_cpu_feature_match(AES, aes_mod_init); module_exit(aes_mod_exit);