- 根目录:
- drivers
- gpu
- drm
- amd
- amdkfd
- kfd_device.c
/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/amd-iommu.h>
#include <linux/bsearch.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include "kfd_priv.h"
#include "kfd_device_queue_manager.h"
#include "kfd_pm4_headers.h"
#define MQD_SIZE_ALIGNED 768
static const struct kfd_device_info kaveri_device_info = {
.asic_family = CHIP_KAVERI,
.max_pasid_bits = 16,
.ih_ring_entry_size = 4 * sizeof(uint32_t),
.mqd_size_aligned = MQD_SIZE_ALIGNED
};
static const struct kfd_device_info carrizo_device_info = {
.asic_family = CHIP_CARRIZO,
.max_pasid_bits = 16,
.ih_ring_entry_size = 4 * sizeof(uint32_t),
.num_of_watch_points = 4,
.mqd_size_aligned = MQD_SIZE_ALIGNED
};
struct kfd_deviceid {
unsigned short did;
const struct kfd_device_info *device_info;
};
/* Please keep this sorted by increasing device id. */
static const struct kfd_deviceid supported_devices[] = {
{ 0x1304, &kaveri_device_info }, /* Kaveri */
{ 0x1305, &kaveri_device_info }, /* Kaveri */
{ 0x1306, &kaveri_device_info }, /* Kaveri */
{ 0x1307, &kaveri_device_info }, /* Kaveri */
{ 0x1309, &kaveri_device_info }, /* Kaveri */
{ 0x130A, &kaveri_device_info }, /* Kaveri */
{ 0x130B, &kaveri_device_info }, /* Kaveri */
{ 0x130C, &kaveri_device_info }, /* Kaveri */
{ 0x130D, &kaveri_device_info }, /* Kaveri */
{ 0x130E, &kaveri_device_info }, /* Kaveri */
{ 0x130F, &kaveri_device_info }, /* Kaveri */
{ 0x1310, &kaveri_device_info }, /* Kaveri */
{ 0x1311, &kaveri_device_info }, /* Kaveri */
{ 0x1312, &kaveri_device_info }, /* Kaveri */
{ 0x1313, &kaveri_device_info }, /* Kaveri */
{ 0x1315, &kaveri_device_info }, /* Kaveri */
{ 0x1316, &kaveri_device_info }, /* Kaveri */
{ 0x1317, &kaveri_device_info }, /* Kaveri */
{ 0x1318, &kaveri_device_info }, /* Kaveri */
{ 0x131B, &kaveri_device_info }, /* Kaveri */
{ 0x131C, &kaveri_device_info }, /* Kaveri */
{ 0x131D, &kaveri_device_info } /* Kaveri */
};
static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
unsigned int chunk_size);
static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
static const struct kfd_device_info *lookup_device_info(unsigned short did)
{
size_t i;
for (i = 0; i < ARRAY_SIZE(supported_devices); i++) {
if (supported_devices[i].did == did) {
BUG_ON(supported_devices[i].device_info == NULL);
return supported_devices[i].device_info;
}
}
return NULL;
}
struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
struct pci_dev *pdev, const struct kfd2kgd_calls *f2g)
{
struct kfd_dev *kfd;
const struct kfd_device_info *device_info =
lookup_device_info(pdev->device);
if (!device_info)
return NULL;
kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
if (!kfd)
return NULL;
kfd->kgd = kgd;
kfd->device_info = device_info;
kfd->pdev = pdev;
kfd->init_complete = false;
kfd->kfd2kgd = f2g;
mutex_init(&kfd->doorbell_mutex);
memset(&kfd->doorbell_available_index, 0,
sizeof(kfd->doorbell_available_index));
return kfd;
}
static bool device_iommu_pasid_init(struct kfd_dev *kfd)
{
const u32 required_iommu_flags = AMD_IOMMU_DEVICE_FLAG_ATS_SUP |
AMD_IOMMU_DEVICE_FLAG_PRI_SUP |
AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
struct amd_iommu_device_info iommu_info;
unsigned int pasid_limit;
int err;
err = amd_iommu_device_info(kfd->pdev, &iommu_info);
if (err < 0) {
dev_err(kfd_device,
"error getting iommu info. is the iommu enabled?\n");
return false;
}
if ((iommu_info.flags & required_iommu_flags) != required_iommu_flags) {
dev_err(kfd_device, "error required iommu flags ats(%i), pri(%i), pasid(%i)\n",
(iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP) != 0,
(iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) != 0,
(iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP) != 0);
return false;
}
pasid_limit = min_t(unsigned int,
(unsigned int)1 << kfd->device_info->max_pasid_bits,
iommu_info.max_pasids);
/*
* last pasid is used for kernel queues doorbells
* in the future the last pasid might be used for a kernel thread.
*/
pasid_limit = min_t(unsigned int,
pasid_limit,
kfd->doorbell_process_limit - 1);
err = amd_iommu_init_device(kfd->pdev, pasid_limit);
if (err < 0) {
dev_err(kfd_device, "error initializing iommu device\n");
return false;
}
if (!kfd_set_pasid_limit(pasid_limit)) {
dev_err(kfd_device, "error setting pasid limit\n");
amd_iommu_free_device(kfd->pdev);
return false;
}
return true;
}
static void iommu_pasid_shutdown_callback(struct pci_dev *pdev, int pasid)
{
struct kfd_dev *dev = kfd_device_by_pci_dev(pdev);
if (dev)
kfd_unbind_process_from_device(dev, pasid);
}
bool kgd2kfd_device_init(struct kfd_dev *kfd,
const struct kgd2kfd_shared_resources *gpu_resources)
{
unsigned int size;
kfd->shared_resources = *gpu_resources;
/* calculate max size of mqds needed for queues */
size = max_num_of_queues_per_device *
kfd->device_info->mqd_size_aligned;
/*
* calculate max size of runlist packet.
* There can be only 2 packets at once
*/
size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_map_process) +
max_num_of_queues_per_device *
sizeof(struct pm4_map_queues) + sizeof(struct pm4_runlist)) * 2;
/* Add size of HIQ & DIQ */
size += KFD_KERNEL_QUEUE_SIZE * 2;
/* add another 512KB for all other allocations on gart (HPD, fences) */
size += 512 * 1024;
if (kfd->kfd2kgd->init_gtt_mem_allocation(
kfd->kgd, size, &kfd->gtt_mem,
&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr)){
dev_err(kfd_device,
"Could not allocate %d bytes for device (%x:%x)\n",
size, kfd->pdev->vendor, kfd->pdev->device);
goto out;
}
dev_info(kfd_device,
"Allocated %d bytes on gart for device(%x:%x)\n",
size, kfd->pdev->vendor, kfd->pdev->device);
/* Initialize GTT sa with 512 byte chunk size */
if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
dev_err(kfd_device,
"Error initializing gtt sub-allocator\n");
goto kfd_gtt_sa_init_error;
}
kfd_doorbell_init(kfd);
if (kfd_topology_add_device(kfd) != 0) {
dev_err(kfd_device,
"Error adding device (%x:%x) to topology\n",
kfd->pdev->vendor, kfd->pdev->device);
goto kfd_topology_add_device_error;
}
if (!device_iommu_pasid_init(kfd)) {
dev_err(kfd_device,
"Error initializing iommuv2 for device (%x:%x)\n",
kfd->pdev->vendor, kfd->pdev->device);
goto device_iommu_pasid_error;
}
amd_iommu_set_invalidate_ctx_cb(kfd->pdev,
iommu_pasid_shutdown_callback);
kfd->dqm = device_queue_manager_init(kfd);
if (!kfd->dqm) {
dev_err(kfd_device,
"Error initializing queue manager for device (%x:%x)\n",
kfd->pdev->vendor, kfd->pdev->device);
goto device_queue_manager_error;
}
if (kfd->dqm->ops.start(kfd->dqm) != 0) {
dev_err(kfd_device,
"Error starting queuen manager for device (%x:%x)\n",
kfd->pdev->vendor, kfd->pdev->device);
goto dqm_start_error;
}
kfd->init_complete = true;
dev_info(kfd_device, "added device (%x:%x)\n", kfd->pdev->vendor,
kfd->pdev->device);
pr_debug("kfd: Starting kfd with the following scheduling policy %d\n",
sched_policy);
goto out;
dqm_start_error:
device_queue_manager_uninit(kfd->dqm);
device_queue_manager_error:
amd_iommu_free_device(kfd->pdev);
device_iommu_pasid_error:
kfd_topology_remove_device(kfd);
kfd_topology_add_device_error:
kfd_gtt_sa_fini(kfd);
kfd_gtt_sa_init_error:
kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
dev_err(kfd_device,
"device (%x:%x) NOT added due to errors\n",
kfd->pdev->vendor, kfd->pdev->device);
out:
return kfd->init_complete;
}
void kgd2kfd_device_exit(struct kfd_dev *kfd)
{
if (kfd->init_complete) {
device_queue_manager_uninit(kfd->dqm);
amd_iommu_free_device(kfd->pdev);
kfd_topology_remove_device(kfd);
kfd_gtt_sa_fini(kfd);
kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
}
kfree(kfd);
}
void kgd2kfd_suspend(struct kfd_dev *kfd)
{
BUG_ON(kfd == NULL);
if (kfd->init_complete) {
kfd->dqm->ops.stop(kfd->dqm);
amd_iommu_set_invalidate_ctx_cb(kfd->pdev, NULL);
amd_iommu_free_device(kfd->pdev);
}
}
int kgd2kfd_resume(struct kfd_dev *kfd)
{
unsigned int pasid_limit;
int err;
BUG_ON(kfd == NULL);
pasid_limit = kfd_get_pasid_limit();
if (kfd->init_complete) {
err = amd_iommu_init_device(kfd->pdev, pasid_limit);
if (err < 0)
return -ENXIO;
amd_iommu_set_invalidate_ctx_cb(kfd->pdev,
iommu_pasid_shutdown_callback);
kfd->dqm->ops.start(kfd->dqm);
}
return 0;
}
/* This is called directly from KGD at ISR. */
void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
{
/* Process interrupts / schedule work as necessary */
}
static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
unsigned int chunk_size)
{
unsigned int num_of_bits;
BUG_ON(!kfd);
BUG_ON(!kfd->gtt_mem);
BUG_ON(buf_size < chunk_size);
BUG_ON(buf_size == 0);
BUG_ON(chunk_size == 0);
kfd->gtt_sa_chunk_size = chunk_size;
kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
num_of_bits = kfd->gtt_sa_num_of_chunks / BITS_PER_BYTE;
BUG_ON(num_of_bits == 0);
kfd->gtt_sa_bitmap = kzalloc(num_of_bits, GFP_KERNEL);
if (!kfd->gtt_sa_bitmap)
return -ENOMEM;
pr_debug("kfd: gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
mutex_init(&kfd->gtt_sa_lock);
return 0;
}
static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
{
mutex_destroy(&kfd->gtt_sa_lock);
kfree(kfd->gtt_sa_bitmap);
}
static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
unsigned int bit_num,
unsigned int chunk_size)
{
return start_addr + bit_num * chunk_size;
}
static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
unsigned int bit_num,
unsigned int chunk_size)
{
return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
}
int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
struct kfd_mem_obj **mem_obj)
{
unsigned int found, start_search, cur_size;
BUG_ON(!kfd);
if (size == 0)
return -EINVAL;
if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
return -ENOMEM;
*mem_obj = kmalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
if ((*mem_obj) == NULL)
return -ENOMEM;
pr_debug("kfd: allocated mem_obj = %p for size = %d\n", *mem_obj, size);
start_search = 0;
mutex_lock(&kfd->gtt_sa_lock);
kfd_gtt_restart_search:
/* Find the first chunk that is free */
found = find_next_zero_bit(kfd->gtt_sa_bitmap,
kfd->gtt_sa_num_of_chunks,
start_search);
pr_debug("kfd: found = %d\n", found);
/* If there wasn't any free chunk, bail out */
if (found == kfd->gtt_sa_num_of_chunks)
goto kfd_gtt_no_free_chunk;
/* Update fields of mem_obj */
(*mem_obj)->range_start = found;
(*mem_obj)->range_end = found;
(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
kfd->gtt_start_gpu_addr,
found,
kfd->gtt_sa_chunk_size);
(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
kfd->gtt_start_cpu_ptr,
found,
kfd->gtt_sa_chunk_size);
pr_debug("kfd: gpu_addr = %p, cpu_addr = %p\n",
(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
/* If we need only one chunk, mark it as allocated and get out */
if (size <= kfd->gtt_sa_chunk_size) {
pr_debug("kfd: single bit\n");
set_bit(found, kfd->gtt_sa_bitmap);
goto kfd_gtt_out;
}
/* Otherwise, try to see if we have enough contiguous chunks */
cur_size = size - kfd->gtt_sa_chunk_size;
do {
(*mem_obj)->range_end =
find_next_zero_bit(kfd->gtt_sa_bitmap,
kfd->gtt_sa_num_of_chunks, ++found);
/*
* If next free chunk is not contiguous than we need to
* restart our search from the last free chunk we found (which
* wasn't contiguous to the previous ones
*/
if ((*mem_obj)->range_end != found) {
start_search = found;
goto kfd_gtt_restart_search;
}
/*
* If we reached end of buffer, bail out with error
*/
if (found == kfd->gtt_sa_num_of_chunks)
goto kfd_gtt_no_free_chunk;
/* Check if we don't need another chunk */
if (cur_size <= kfd->gtt_sa_chunk_size)
cur_size = 0;
else
cur_size -= kfd->gtt_sa_chunk_size;
} while (cur_size > 0);
pr_debug("kfd: range_start = %d, range_end = %d\n",
(*mem_obj)->range_start, (*mem_obj)->range_end);
/* Mark the chunks as allocated */
for (found = (*mem_obj)->range_start;
found <= (*mem_obj)->range_end;
found++)
set_bit(found, kfd->gtt_sa_bitmap);
kfd_gtt_out:
mutex_unlock(&kfd->gtt_sa_lock);
return 0;
kfd_gtt_no_free_chunk:
pr_debug("kfd: allocation failed with mem_obj = %p\n", mem_obj);
mutex_unlock(&kfd->gtt_sa_lock);
kfree(mem_obj);
return -ENOMEM;
}
int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
{
unsigned int bit;
BUG_ON(!kfd);
/* Act like kfree when trying to free a NULL object */
if (!mem_obj)
return 0;
pr_debug("kfd: free mem_obj = %p, range_start = %d, range_end = %d\n",
mem_obj, mem_obj->range_start, mem_obj->range_end);
mutex_lock(&kfd->gtt_sa_lock);
/* Mark the chunks as free */
for (bit = mem_obj->range_start;
bit <= mem_obj->range_end;
bit++)
clear_bit(bit, kfd->gtt_sa_bitmap);
mutex_unlock(&kfd->gtt_sa_lock);
kfree(mem_obj);
return 0;
}