- 根目录:
- arch
- x86
- power
- cpu.c
/*
* Suspend support specific for i386/x86-64.
*
* Distribute under GPLv2
*
* Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
* Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
* Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
*/
#include <linux/suspend.h>
#include <linux/export.h>
#include <linux/smp.h>
#include <linux/perf_event.h>
#include <asm/pgtable.h>
#include <asm/proto.h>
#include <asm/mtrr.h>
#include <asm/page.h>
#include <asm/mce.h>
#include <asm/xcr.h>
#include <asm/suspend.h>
#include <asm/debugreg.h>
#include <asm/fpu-internal.h> /* pcntxt_mask */
#include <asm/cpu.h>
#ifdef CONFIG_X86_32
__visible unsigned long saved_context_ebx;
__visible unsigned long saved_context_esp, saved_context_ebp;
__visible unsigned long saved_context_esi, saved_context_edi;
__visible unsigned long saved_context_eflags;
#endif
struct saved_context saved_context;
/**
* __save_processor_state - save CPU registers before creating a
* hibernation image and before restoring the memory state from it
* @ctxt - structure to store the registers contents in
*
* NOTE: If there is a CPU register the modification of which by the
* boot kernel (ie. the kernel used for loading the hibernation image)
* might affect the operations of the restored target kernel (ie. the one
* saved in the hibernation image), then its contents must be saved by this
* function. In other words, if kernel A is hibernated and different
* kernel B is used for loading the hibernation image into memory, the
* kernel A's __save_processor_state() function must save all registers
* needed by kernel A, so that it can operate correctly after the resume
* regardless of what kernel B does in the meantime.
*/
static void __save_processor_state(struct saved_context *ctxt)
{
#ifdef CONFIG_X86_32
mtrr_save_fixed_ranges(NULL);
#endif
kernel_fpu_begin();
/*
* descriptor tables
*/
#ifdef CONFIG_X86_32
store_idt(&ctxt->idt);
#else
/* CONFIG_X86_64 */
store_idt((struct desc_ptr *)&ctxt->idt_limit);
#endif
/*
* We save it here, but restore it only in the hibernate case.
* For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
* mode in "secondary_startup_64". In 32-bit mode it is done via
* 'pmode_gdt' in wakeup_start.
*/
ctxt->gdt_desc.size = GDT_SIZE - 1;
ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_table(smp_processor_id());
store_tr(ctxt->tr);
/* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
/*
* segment registers
*/
#ifdef CONFIG_X86_32
savesegment(es, ctxt->es);
savesegment(fs, ctxt->fs);
savesegment(gs, ctxt->gs);
savesegment(ss, ctxt->ss);
#else
/* CONFIG_X86_64 */
asm volatile ("movw %%ds, %0" : "=m" (ctxt->ds));
asm volatile ("movw %%es, %0" : "=m" (ctxt->es));
asm volatile ("movw %%fs, %0" : "=m" (ctxt->fs));
asm volatile ("movw %%gs, %0" : "=m" (ctxt->gs));
asm volatile ("movw %%ss, %0" : "=m" (ctxt->ss));
rdmsrl(MSR_FS_BASE, ctxt->fs_base);
rdmsrl(MSR_GS_BASE, ctxt->gs_base);
rdmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
mtrr_save_fixed_ranges(NULL);
rdmsrl(MSR_EFER, ctxt->efer);
#endif
/*
* control registers
*/
ctxt->cr0 = read_cr0();
ctxt->cr2 = read_cr2();
ctxt->cr3 = read_cr3();
ctxt->cr4 = __read_cr4_safe();
#ifdef CONFIG_X86_64
ctxt->cr8 = read_cr8();
#endif
ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
&ctxt->misc_enable);
}
/* Needed by apm.c */
void save_processor_state(void)
{
__save_processor_state(&saved_context);
x86_platform.save_sched_clock_state();
}
#ifdef CONFIG_X86_32
EXPORT_SYMBOL(save_processor_state);
#endif
static void do_fpu_end(void)
{
/*
* Restore FPU regs if necessary.
*/
kernel_fpu_end();
}
static void fix_processor_context(void)
{
int cpu = smp_processor_id();
struct tss_struct *t = &per_cpu(cpu_tss, cpu);
#ifdef CONFIG_X86_64
struct desc_struct *desc = get_cpu_gdt_table(cpu);
tss_desc tss;
#endif
set_tss_desc(cpu, t); /*
* This just modifies memory; should not be
* necessary. But... This is necessary, because
* 386 hardware has concept of busy TSS or some
* similar stupidity.
*/
#ifdef CONFIG_X86_64
memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
syscall_init(); /* This sets MSR_*STAR and related */
#endif
load_TR_desc(); /* This does ltr */
load_LDT(¤t->active_mm->context); /* This does lldt */
}
/**
* __restore_processor_state - restore the contents of CPU registers saved
* by __save_processor_state()
* @ctxt - structure to load the registers contents from
*/
static void notrace __restore_processor_state(struct saved_context *ctxt)
{
if (ctxt->misc_enable_saved)
wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
/*
* control registers
*/
/* cr4 was introduced in the Pentium CPU */
#ifdef CONFIG_X86_32
if (ctxt->cr4)
__write_cr4(ctxt->cr4);
#else
/* CONFIG X86_64 */
wrmsrl(MSR_EFER, ctxt->efer);
write_cr8(ctxt->cr8);
__write_cr4(ctxt->cr4);
#endif
write_cr3(ctxt->cr3);
write_cr2(ctxt->cr2);
write_cr0(ctxt->cr0);
/*
* now restore the descriptor tables to their proper values
* ltr is done i fix_processor_context().
*/
#ifdef CONFIG_X86_32
load_idt(&ctxt->idt);
#else
/* CONFIG_X86_64 */
load_idt((const struct desc_ptr *)&ctxt->idt_limit);
#endif
/*
* segment registers
*/
#ifdef CONFIG_X86_32
loadsegment(es, ctxt->es);
loadsegment(fs, ctxt->fs);
loadsegment(gs, ctxt->gs);
loadsegment(ss, ctxt->ss);
/*
* sysenter MSRs
*/
if (boot_cpu_has(X86_FEATURE_SEP))
enable_sep_cpu();
#else
/* CONFIG_X86_64 */
asm volatile ("movw %0, %%ds" :: "r" (ctxt->ds));
asm volatile ("movw %0, %%es" :: "r" (ctxt->es));
asm volatile ("movw %0, %%fs" :: "r" (ctxt->fs));
load_gs_index(ctxt->gs);
asm volatile ("movw %0, %%ss" :: "r" (ctxt->ss));
wrmsrl(MSR_FS_BASE, ctxt->fs_base);
wrmsrl(MSR_GS_BASE, ctxt->gs_base);
wrmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
#endif
/*
* restore XCR0 for xsave capable cpu's.
*/
if (cpu_has_xsave)
xsetbv(XCR_XFEATURE_ENABLED_MASK, pcntxt_mask);
fix_processor_context();
do_fpu_end();
x86_platform.restore_sched_clock_state();
mtrr_bp_restore();
perf_restore_debug_store();
}
/* Needed by apm.c */
void notrace restore_processor_state(void)
{
__restore_processor_state(&saved_context);
}
#ifdef CONFIG_X86_32
EXPORT_SYMBOL(restore_processor_state);
#endif
/*
* When bsp_check() is called in hibernate and suspend, cpu hotplug
* is disabled already. So it's unnessary to handle race condition between
* cpumask query and cpu hotplug.
*/
static int bsp_check(void)
{
if (cpumask_first(cpu_online_mask) != 0) {
pr_warn("CPU0 is offline.\n");
return -ENODEV;
}
return 0;
}
static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
void *ptr)
{
int ret = 0;
switch (action) {
case PM_SUSPEND_PREPARE:
case PM_HIBERNATION_PREPARE:
ret = bsp_check();
break;
#ifdef CONFIG_DEBUG_HOTPLUG_CPU0
case PM_RESTORE_PREPARE:
/*
* When system resumes from hibernation, online CPU0 because
* 1. it's required for resume and
* 2. the CPU was online before hibernation
*/
if (!cpu_online(0))
_debug_hotplug_cpu(0, 1);
break;
case PM_POST_RESTORE:
/*
* When a resume really happens, this code won't be called.
*
* This code is called only when user space hibernation software
* prepares for snapshot device during boot time. So we just
* call _debug_hotplug_cpu() to restore to CPU0's state prior to
* preparing the snapshot device.
*
* This works for normal boot case in our CPU0 hotplug debug
* mode, i.e. CPU0 is offline and user mode hibernation
* software initializes during boot time.
*
* If CPU0 is online and user application accesses snapshot
* device after boot time, this will offline CPU0 and user may
* see different CPU0 state before and after accessing
* the snapshot device. But hopefully this is not a case when
* user debugging CPU0 hotplug. Even if users hit this case,
* they can easily online CPU0 back.
*
* To simplify this debug code, we only consider normal boot
* case. Otherwise we need to remember CPU0's state and restore
* to that state and resolve racy conditions etc.
*/
_debug_hotplug_cpu(0, 0);
break;
#endif
default:
break;
}
return notifier_from_errno(ret);
}
static int __init bsp_pm_check_init(void)
{
/*
* Set this bsp_pm_callback as lower priority than
* cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
* earlier to disable cpu hotplug before bsp online check.
*/
pm_notifier(bsp_pm_callback, -INT_MAX);
return 0;
}
core_initcall(bsp_pm_check_init);