/* * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> * * Parts came from builtin-{top,stat,record}.c, see those files for further * copyright notes. * * Released under the GPL v2. (and only v2, not any later version) */ #include <byteswap.h> #include <linux/bitops.h> #include <api/fs/debugfs.h> #include <traceevent/event-parse.h> #include <linux/hw_breakpoint.h> #include <linux/perf_event.h> #include <sys/resource.h> #include "asm/bug.h" #include "callchain.h" #include "cgroup.h" #include "evsel.h" #include "evlist.h" #include "util.h" #include "cpumap.h" #include "thread_map.h" #include "target.h" #include "perf_regs.h" #include "debug.h" #include "trace-event.h" static struct { bool sample_id_all; bool exclude_guest; bool mmap2; bool cloexec; bool clockid; bool clockid_wrong; } perf_missing_features; static clockid_t clockid; static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) { return 0; } static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) { } static struct { size_t size; int (*init)(struct perf_evsel *evsel); void (*fini)(struct perf_evsel *evsel); } perf_evsel__object = { .size = sizeof(struct perf_evsel), .init = perf_evsel__no_extra_init, .fini = perf_evsel__no_extra_fini, }; int perf_evsel__object_config(size_t object_size, int (*init)(struct perf_evsel *evsel), void (*fini)(struct perf_evsel *evsel)) { if (object_size == 0) goto set_methods; if (perf_evsel__object.size > object_size) return -EINVAL; perf_evsel__object.size = object_size; set_methods: if (init != NULL) perf_evsel__object.init = init; if (fini != NULL) perf_evsel__object.fini = fini; return 0; } #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) int __perf_evsel__sample_size(u64 sample_type) { u64 mask = sample_type & PERF_SAMPLE_MASK; int size = 0; int i; for (i = 0; i < 64; i++) { if (mask & (1ULL << i)) size++; } size *= sizeof(u64); return size; } /** * __perf_evsel__calc_id_pos - calculate id_pos. * @sample_type: sample type * * This function returns the position of the event id (PERF_SAMPLE_ID or * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct * sample_event. */ static int __perf_evsel__calc_id_pos(u64 sample_type) { int idx = 0; if (sample_type & PERF_SAMPLE_IDENTIFIER) return 0; if (!(sample_type & PERF_SAMPLE_ID)) return -1; if (sample_type & PERF_SAMPLE_IP) idx += 1; if (sample_type & PERF_SAMPLE_TID) idx += 1; if (sample_type & PERF_SAMPLE_TIME) idx += 1; if (sample_type & PERF_SAMPLE_ADDR) idx += 1; return idx; } /** * __perf_evsel__calc_is_pos - calculate is_pos. * @sample_type: sample type * * This function returns the position (counting backwards) of the event id * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if * sample_id_all is used there is an id sample appended to non-sample events. */ static int __perf_evsel__calc_is_pos(u64 sample_type) { int idx = 1; if (sample_type & PERF_SAMPLE_IDENTIFIER) return 1; if (!(sample_type & PERF_SAMPLE_ID)) return -1; if (sample_type & PERF_SAMPLE_CPU) idx += 1; if (sample_type & PERF_SAMPLE_STREAM_ID) idx += 1; return idx; } void perf_evsel__calc_id_pos(struct perf_evsel *evsel) { evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); } void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, enum perf_event_sample_format bit) { if (!(evsel->attr.sample_type & bit)) { evsel->attr.sample_type |= bit; evsel->sample_size += sizeof(u64); perf_evsel__calc_id_pos(evsel); } } void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, enum perf_event_sample_format bit) { if (evsel->attr.sample_type & bit) { evsel->attr.sample_type &= ~bit; evsel->sample_size -= sizeof(u64); perf_evsel__calc_id_pos(evsel); } } void perf_evsel__set_sample_id(struct perf_evsel *evsel, bool can_sample_identifier) { if (can_sample_identifier) { perf_evsel__reset_sample_bit(evsel, ID); perf_evsel__set_sample_bit(evsel, IDENTIFIER); } else { perf_evsel__set_sample_bit(evsel, ID); } evsel->attr.read_format |= PERF_FORMAT_ID; } void perf_evsel__init(struct perf_evsel *evsel, struct perf_event_attr *attr, int idx) { evsel->idx = idx; evsel->tracking = !idx; evsel->attr = *attr; evsel->leader = evsel; evsel->unit = ""; evsel->scale = 1.0; INIT_LIST_HEAD(&evsel->node); perf_evsel__object.init(evsel); evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); perf_evsel__calc_id_pos(evsel); } struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) { struct perf_evsel *evsel = zalloc(perf_evsel__object.size); if (evsel != NULL) perf_evsel__init(evsel, attr, idx); return evsel; } struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) { struct perf_evsel *evsel = zalloc(perf_evsel__object.size); if (evsel != NULL) { struct perf_event_attr attr = { .type = PERF_TYPE_TRACEPOINT, .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), }; if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) goto out_free; evsel->tp_format = trace_event__tp_format(sys, name); if (evsel->tp_format == NULL) goto out_free; event_attr_init(&attr); attr.config = evsel->tp_format->id; attr.sample_period = 1; perf_evsel__init(evsel, &attr, idx); } return evsel; out_free: zfree(&evsel->name); free(evsel); return NULL; } const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { "cycles", "instructions", "cache-references", "cache-misses", "branches", "branch-misses", "bus-cycles", "stalled-cycles-frontend", "stalled-cycles-backend", "ref-cycles", }; static const char *__perf_evsel__hw_name(u64 config) { if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) return perf_evsel__hw_names[config]; return "unknown-hardware"; } static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) { int colon = 0, r = 0; struct perf_event_attr *attr = &evsel->attr; bool exclude_guest_default = false; #define MOD_PRINT(context, mod) do { \ if (!attr->exclude_##context) { \ if (!colon) colon = ++r; \ r += scnprintf(bf + r, size - r, "%c", mod); \ } } while(0) if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { MOD_PRINT(kernel, 'k'); MOD_PRINT(user, 'u'); MOD_PRINT(hv, 'h'); exclude_guest_default = true; } if (attr->precise_ip) { if (!colon) colon = ++r; r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); exclude_guest_default = true; } if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { MOD_PRINT(host, 'H'); MOD_PRINT(guest, 'G'); } #undef MOD_PRINT if (colon) bf[colon - 1] = ':'; return r; } static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) { int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); } const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { "cpu-clock", "task-clock", "page-faults", "context-switches", "cpu-migrations", "minor-faults", "major-faults", "alignment-faults", "emulation-faults", "dummy", }; static const char *__perf_evsel__sw_name(u64 config) { if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) return perf_evsel__sw_names[config]; return "unknown-software"; } static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) { int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); } static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) { int r; r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); if (type & HW_BREAKPOINT_R) r += scnprintf(bf + r, size - r, "r"); if (type & HW_BREAKPOINT_W) r += scnprintf(bf + r, size - r, "w"); if (type & HW_BREAKPOINT_X) r += scnprintf(bf + r, size - r, "x"); return r; } static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) { struct perf_event_attr *attr = &evsel->attr; int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); } const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] [PERF_EVSEL__MAX_ALIASES] = { { "L1-dcache", "l1-d", "l1d", "L1-data", }, { "L1-icache", "l1-i", "l1i", "L1-instruction", }, { "LLC", "L2", }, { "dTLB", "d-tlb", "Data-TLB", }, { "iTLB", "i-tlb", "Instruction-TLB", }, { "branch", "branches", "bpu", "btb", "bpc", }, { "node", }, }; const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] [PERF_EVSEL__MAX_ALIASES] = { { "load", "loads", "read", }, { "store", "stores", "write", }, { "prefetch", "prefetches", "speculative-read", "speculative-load", }, }; const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] [PERF_EVSEL__MAX_ALIASES] = { { "refs", "Reference", "ops", "access", }, { "misses", "miss", }, }; #define C(x) PERF_COUNT_HW_CACHE_##x #define CACHE_READ (1 << C(OP_READ)) #define CACHE_WRITE (1 << C(OP_WRITE)) #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) #define COP(x) (1 << x) /* * cache operartion stat * L1I : Read and prefetch only * ITLB and BPU : Read-only */ static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), [C(ITLB)] = (CACHE_READ), [C(BPU)] = (CACHE_READ), [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), }; bool perf_evsel__is_cache_op_valid(u8 type, u8 op) { if (perf_evsel__hw_cache_stat[type] & COP(op)) return true; /* valid */ else return false; /* invalid */ } int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, char *bf, size_t size) { if (result) { return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], perf_evsel__hw_cache_op[op][0], perf_evsel__hw_cache_result[result][0]); } return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], perf_evsel__hw_cache_op[op][1]); } static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) { u8 op, result, type = (config >> 0) & 0xff; const char *err = "unknown-ext-hardware-cache-type"; if (type > PERF_COUNT_HW_CACHE_MAX) goto out_err; op = (config >> 8) & 0xff; err = "unknown-ext-hardware-cache-op"; if (op > PERF_COUNT_HW_CACHE_OP_MAX) goto out_err; result = (config >> 16) & 0xff; err = "unknown-ext-hardware-cache-result"; if (result > PERF_COUNT_HW_CACHE_RESULT_MAX) goto out_err; err = "invalid-cache"; if (!perf_evsel__is_cache_op_valid(type, op)) goto out_err; return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); out_err: return scnprintf(bf, size, "%s", err); } static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) { int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); } static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) { int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); } const char *perf_evsel__name(struct perf_evsel *evsel) { char bf[128]; if (evsel->name) return evsel->name; switch (evsel->attr.type) { case PERF_TYPE_RAW: perf_evsel__raw_name(evsel, bf, sizeof(bf)); break; case PERF_TYPE_HARDWARE: perf_evsel__hw_name(evsel, bf, sizeof(bf)); break; case PERF_TYPE_HW_CACHE: perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); break; case PERF_TYPE_SOFTWARE: perf_evsel__sw_name(evsel, bf, sizeof(bf)); break; case PERF_TYPE_TRACEPOINT: scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); break; case PERF_TYPE_BREAKPOINT: perf_evsel__bp_name(evsel, bf, sizeof(bf)); break; default: scnprintf(bf, sizeof(bf), "unknown attr type: %d", evsel->attr.type); break; } evsel->name = strdup(bf); return evsel->name ?: "unknown"; } const char *perf_evsel__group_name(struct perf_evsel *evsel) { return evsel->group_name ?: "anon group"; } int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) { int ret; struct perf_evsel *pos; const char *group_name = perf_evsel__group_name(evsel); ret = scnprintf(buf, size, "%s", group_name); ret += scnprintf(buf + ret, size - ret, " { %s", perf_evsel__name(evsel)); for_each_group_member(pos, evsel) ret += scnprintf(buf + ret, size - ret, ", %s", perf_evsel__name(pos)); ret += scnprintf(buf + ret, size - ret, " }"); return ret; } static void perf_evsel__config_callgraph(struct perf_evsel *evsel, struct record_opts *opts) { bool function = perf_evsel__is_function_event(evsel); struct perf_event_attr *attr = &evsel->attr; perf_evsel__set_sample_bit(evsel, CALLCHAIN); if (callchain_param.record_mode == CALLCHAIN_LBR) { if (!opts->branch_stack) { if (attr->exclude_user) { pr_warning("LBR callstack option is only available " "to get user callchain information. " "Falling back to framepointers.\n"); } else { perf_evsel__set_sample_bit(evsel, BRANCH_STACK); attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | PERF_SAMPLE_BRANCH_CALL_STACK; } } else pr_warning("Cannot use LBR callstack with branch stack. " "Falling back to framepointers.\n"); } if (callchain_param.record_mode == CALLCHAIN_DWARF) { if (!function) { perf_evsel__set_sample_bit(evsel, REGS_USER); perf_evsel__set_sample_bit(evsel, STACK_USER); attr->sample_regs_user = PERF_REGS_MASK; attr->sample_stack_user = callchain_param.dump_size; attr->exclude_callchain_user = 1; } else { pr_info("Cannot use DWARF unwind for function trace event," " falling back to framepointers.\n"); } } if (function) { pr_info("Disabling user space callchains for function trace event.\n"); attr->exclude_callchain_user = 1; } } /* * The enable_on_exec/disabled value strategy: * * 1) For any type of traced program: * - all independent events and group leaders are disabled * - all group members are enabled * * Group members are ruled by group leaders. They need to * be enabled, because the group scheduling relies on that. * * 2) For traced programs executed by perf: * - all independent events and group leaders have * enable_on_exec set * - we don't specifically enable or disable any event during * the record command * * Independent events and group leaders are initially disabled * and get enabled by exec. Group members are ruled by group * leaders as stated in 1). * * 3) For traced programs attached by perf (pid/tid): * - we specifically enable or disable all events during * the record command * * When attaching events to already running traced we * enable/disable events specifically, as there's no * initial traced exec call. */ void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts) { struct perf_evsel *leader = evsel->leader; struct perf_event_attr *attr = &evsel->attr; int track = evsel->tracking; bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; attr->inherit = !opts->no_inherit; perf_evsel__set_sample_bit(evsel, IP); perf_evsel__set_sample_bit(evsel, TID); if (evsel->sample_read) { perf_evsel__set_sample_bit(evsel, READ); /* * We need ID even in case of single event, because * PERF_SAMPLE_READ process ID specific data. */ perf_evsel__set_sample_id(evsel, false); /* * Apply group format only if we belong to group * with more than one members. */ if (leader->nr_members > 1) { attr->read_format |= PERF_FORMAT_GROUP; attr->inherit = 0; } } /* * We default some events to have a default interval. But keep * it a weak assumption overridable by the user. */ if (!attr->sample_period || (opts->user_freq != UINT_MAX || opts->user_interval != ULLONG_MAX)) { if (opts->freq) { perf_evsel__set_sample_bit(evsel, PERIOD); attr->freq = 1; attr->sample_freq = opts->freq; } else { attr->sample_period = opts->default_interval; } } /* * Disable sampling for all group members other * than leader in case leader 'leads' the sampling. */ if ((leader != evsel) && leader->sample_read) { attr->sample_freq = 0; attr->sample_period = 0; } if (opts->no_samples) attr->sample_freq = 0; if (opts->inherit_stat) attr->inherit_stat = 1; if (opts->sample_address) { perf_evsel__set_sample_bit(evsel, ADDR); attr->mmap_data = track; } /* * We don't allow user space callchains for function trace * event, due to issues with page faults while tracing page * fault handler and its overall trickiness nature. */ if (perf_evsel__is_function_event(evsel)) evsel->attr.exclude_callchain_user = 1; if (callchain_param.enabled && !evsel->no_aux_samples) perf_evsel__config_callgraph(evsel, opts); if (opts->sample_intr_regs) { attr->sample_regs_intr = PERF_REGS_MASK; perf_evsel__set_sample_bit(evsel, REGS_INTR); } if (target__has_cpu(&opts->target)) perf_evsel__set_sample_bit(evsel, CPU); if (opts->period) perf_evsel__set_sample_bit(evsel, PERIOD); /* * When the user explicitely disabled time don't force it here. */ if (opts->sample_time && (!perf_missing_features.sample_id_all && (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu))) perf_evsel__set_sample_bit(evsel, TIME); if (opts->raw_samples && !evsel->no_aux_samples) { perf_evsel__set_sample_bit(evsel, TIME); perf_evsel__set_sample_bit(evsel, RAW); perf_evsel__set_sample_bit(evsel, CPU); } if (opts->sample_address) perf_evsel__set_sample_bit(evsel, DATA_SRC); if (opts->no_buffering) { attr->watermark = 0; attr->wakeup_events = 1; } if (opts->branch_stack && !evsel->no_aux_samples) { perf_evsel__set_sample_bit(evsel, BRANCH_STACK); attr->branch_sample_type = opts->branch_stack; } if (opts->sample_weight) perf_evsel__set_sample_bit(evsel, WEIGHT); attr->task = track; attr->mmap = track; attr->mmap2 = track && !perf_missing_features.mmap2; attr->comm = track; if (opts->sample_transaction) perf_evsel__set_sample_bit(evsel, TRANSACTION); if (opts->running_time) { evsel->attr.read_format |= PERF_FORMAT_TOTAL_TIME_ENABLED | PERF_FORMAT_TOTAL_TIME_RUNNING; } /* * XXX see the function comment above * * Disabling only independent events or group leaders, * keeping group members enabled. */ if (perf_evsel__is_group_leader(evsel)) attr->disabled = 1; /* * Setting enable_on_exec for independent events and * group leaders for traced executed by perf. */ if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && !opts->initial_delay) attr->enable_on_exec = 1; if (evsel->immediate) { attr->disabled = 0; attr->enable_on_exec = 0; } clockid = opts->clockid; if (opts->use_clockid) { attr->use_clockid = 1; attr->clockid = opts->clockid; } } static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) { int cpu, thread; if (evsel->system_wide) nthreads = 1; evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); if (evsel->fd) { for (cpu = 0; cpu < ncpus; cpu++) { for (thread = 0; thread < nthreads; thread++) { FD(evsel, cpu, thread) = -1; } } } return evsel->fd != NULL ? 0 : -ENOMEM; } static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads, int ioc, void *arg) { int cpu, thread; if (evsel->system_wide) nthreads = 1; for (cpu = 0; cpu < ncpus; cpu++) { for (thread = 0; thread < nthreads; thread++) { int fd = FD(evsel, cpu, thread), err = ioctl(fd, ioc, arg); if (err) return err; } } return 0; } int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads, const char *filter) { return perf_evsel__run_ioctl(evsel, ncpus, nthreads, PERF_EVENT_IOC_SET_FILTER, (void *)filter); } int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads) { return perf_evsel__run_ioctl(evsel, ncpus, nthreads, PERF_EVENT_IOC_ENABLE, 0); } int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) { if (ncpus == 0 || nthreads == 0) return 0; if (evsel->system_wide) nthreads = 1; evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); if (evsel->sample_id == NULL) return -ENOMEM; evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); if (evsel->id == NULL) { xyarray__delete(evsel->sample_id); evsel->sample_id = NULL; return -ENOMEM; } return 0; } void perf_evsel__reset_counts(struct perf_evsel *evsel, int ncpus) { memset(evsel->counts, 0, (sizeof(*evsel->counts) + (ncpus * sizeof(struct perf_counts_values)))); } int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus) { evsel->counts = zalloc((sizeof(*evsel->counts) + (ncpus * sizeof(struct perf_counts_values)))); return evsel->counts != NULL ? 0 : -ENOMEM; } static void perf_evsel__free_fd(struct perf_evsel *evsel) { xyarray__delete(evsel->fd); evsel->fd = NULL; } static void perf_evsel__free_id(struct perf_evsel *evsel) { xyarray__delete(evsel->sample_id); evsel->sample_id = NULL; zfree(&evsel->id); } void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads) { int cpu, thread; if (evsel->system_wide) nthreads = 1; for (cpu = 0; cpu < ncpus; cpu++) for (thread = 0; thread < nthreads; ++thread) { close(FD(evsel, cpu, thread)); FD(evsel, cpu, thread) = -1; } } void perf_evsel__free_counts(struct perf_evsel *evsel) { zfree(&evsel->counts); } void perf_evsel__exit(struct perf_evsel *evsel) { assert(list_empty(&evsel->node)); perf_evsel__free_fd(evsel); perf_evsel__free_id(evsel); close_cgroup(evsel->cgrp); zfree(&evsel->group_name); zfree(&evsel->name); perf_evsel__object.fini(evsel); } void perf_evsel__delete(struct perf_evsel *evsel) { perf_evsel__exit(evsel); free(evsel); } void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, struct perf_counts_values *count) { struct perf_counts_values tmp; if (!evsel->prev_raw_counts) return; if (cpu == -1) { tmp = evsel->prev_raw_counts->aggr; evsel->prev_raw_counts->aggr = *count; } else { tmp = evsel->prev_raw_counts->cpu[cpu]; evsel->prev_raw_counts->cpu[cpu] = *count; } count->val = count->val - tmp.val; count->ena = count->ena - tmp.ena; count->run = count->run - tmp.run; } void perf_counts_values__scale(struct perf_counts_values *count, bool scale, s8 *pscaled) { s8 scaled = 0; if (scale) { if (count->run == 0) { scaled = -1; count->val = 0; } else if (count->run < count->ena) { scaled = 1; count->val = (u64)((double) count->val * count->ena / count->run + 0.5); } } else count->ena = count->run = 0; if (pscaled) *pscaled = scaled; } int perf_evsel__read_cb(struct perf_evsel *evsel, int cpu, int thread, perf_evsel__read_cb_t cb) { struct perf_counts_values count; memset(&count, 0, sizeof(count)); if (FD(evsel, cpu, thread) < 0) return -EINVAL; if (readn(FD(evsel, cpu, thread), &count, sizeof(count)) < 0) return -errno; return cb(evsel, cpu, thread, &count); } int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, int cpu, int thread, bool scale) { struct perf_counts_values count; size_t nv = scale ? 3 : 1; if (FD(evsel, cpu, thread) < 0) return -EINVAL; if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0) return -ENOMEM; if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0) return -errno; perf_evsel__compute_deltas(evsel, cpu, &count); perf_counts_values__scale(&count, scale, NULL); evsel->counts->cpu[cpu] = count; return 0; } static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) { struct perf_evsel *leader = evsel->leader; int fd; if (perf_evsel__is_group_leader(evsel)) return -1; /* * Leader must be already processed/open, * if not it's a bug. */ BUG_ON(!leader->fd); fd = FD(leader, cpu, thread); BUG_ON(fd == -1); return fd; } struct bit_names { int bit; const char *name; }; static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) { bool first_bit = true; int i = 0; do { if (value & bits[i].bit) { buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); first_bit = false; } } while (bits[++i].name != NULL); } static void __p_sample_type(char *buf, size_t size, u64 value) { #define bit_name(n) { PERF_SAMPLE_##n, #n } struct bit_names bits[] = { bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), bit_name(IDENTIFIER), bit_name(REGS_INTR), { .name = NULL, } }; #undef bit_name __p_bits(buf, size, value, bits); } static void __p_read_format(char *buf, size_t size, u64 value) { #define bit_name(n) { PERF_FORMAT_##n, #n } struct bit_names bits[] = { bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), bit_name(ID), bit_name(GROUP), { .name = NULL, } }; #undef bit_name __p_bits(buf, size, value, bits); } #define BUF_SIZE 1024 #define p_hex(val) snprintf(buf, BUF_SIZE, "%"PRIx64, (uint64_t)(val)) #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) #define PRINT_ATTRn(_n, _f, _p) \ do { \ if (attr->_f) { \ _p(attr->_f); \ ret += attr__fprintf(fp, _n, buf, priv);\ } \ } while (0) #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, attr__fprintf_f attr__fprintf, void *priv) { char buf[BUF_SIZE]; int ret = 0; PRINT_ATTRf(type, p_unsigned); PRINT_ATTRf(size, p_unsigned); PRINT_ATTRf(config, p_hex); PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); PRINT_ATTRf(sample_type, p_sample_type); PRINT_ATTRf(read_format, p_read_format); PRINT_ATTRf(disabled, p_unsigned); PRINT_ATTRf(inherit, p_unsigned); PRINT_ATTRf(pinned, p_unsigned); PRINT_ATTRf(exclusive, p_unsigned); PRINT_ATTRf(exclude_user, p_unsigned); PRINT_ATTRf(exclude_kernel, p_unsigned); PRINT_ATTRf(exclude_hv, p_unsigned); PRINT_ATTRf(exclude_idle, p_unsigned); PRINT_ATTRf(mmap, p_unsigned); PRINT_ATTRf(comm, p_unsigned); PRINT_ATTRf(freq, p_unsigned); PRINT_ATTRf(inherit_stat, p_unsigned); PRINT_ATTRf(enable_on_exec, p_unsigned); PRINT_ATTRf(task, p_unsigned); PRINT_ATTRf(watermark, p_unsigned); PRINT_ATTRf(precise_ip, p_unsigned); PRINT_ATTRf(mmap_data, p_unsigned); PRINT_ATTRf(sample_id_all, p_unsigned); PRINT_ATTRf(exclude_host, p_unsigned); PRINT_ATTRf(exclude_guest, p_unsigned); PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); PRINT_ATTRf(exclude_callchain_user, p_unsigned); PRINT_ATTRf(mmap2, p_unsigned); PRINT_ATTRf(comm_exec, p_unsigned); PRINT_ATTRf(use_clockid, p_unsigned); PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); PRINT_ATTRf(bp_type, p_unsigned); PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); PRINT_ATTRf(sample_regs_user, p_hex); PRINT_ATTRf(sample_stack_user, p_unsigned); PRINT_ATTRf(clockid, p_signed); PRINT_ATTRf(sample_regs_intr, p_hex); return ret; } static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, void *priv __attribute__((unused))) { return fprintf(fp, " %-32s %s\n", name, val); } static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, struct thread_map *threads) { int cpu, thread, nthreads; unsigned long flags = PERF_FLAG_FD_CLOEXEC; int pid = -1, err; enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; if (evsel->system_wide) nthreads = 1; else nthreads = threads->nr; if (evsel->fd == NULL && perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) return -ENOMEM; if (evsel->cgrp) { flags |= PERF_FLAG_PID_CGROUP; pid = evsel->cgrp->fd; } fallback_missing_features: if (perf_missing_features.clockid_wrong) evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */ if (perf_missing_features.clockid) { evsel->attr.use_clockid = 0; evsel->attr.clockid = 0; } if (perf_missing_features.cloexec) flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; if (perf_missing_features.mmap2) evsel->attr.mmap2 = 0; if (perf_missing_features.exclude_guest) evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; retry_sample_id: if (perf_missing_features.sample_id_all) evsel->attr.sample_id_all = 0; if (verbose >= 2) { fprintf(stderr, "%.60s\n", graph_dotted_line); fprintf(stderr, "perf_event_attr:\n"); perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL); fprintf(stderr, "%.60s\n", graph_dotted_line); } for (cpu = 0; cpu < cpus->nr; cpu++) { for (thread = 0; thread < nthreads; thread++) { int group_fd; if (!evsel->cgrp && !evsel->system_wide) pid = threads->map[thread]; group_fd = get_group_fd(evsel, cpu, thread); retry_open: pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx\n", pid, cpus->map[cpu], group_fd, flags); FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu], group_fd, flags); if (FD(evsel, cpu, thread) < 0) { err = -errno; pr_debug2("sys_perf_event_open failed, error %d\n", err); goto try_fallback; } set_rlimit = NO_CHANGE; /* * If we succeeded but had to kill clockid, fail and * have perf_evsel__open_strerror() print us a nice * error. */ if (perf_missing_features.clockid || perf_missing_features.clockid_wrong) { err = -EINVAL; goto out_close; } } } return 0; try_fallback: /* * perf stat needs between 5 and 22 fds per CPU. When we run out * of them try to increase the limits. */ if (err == -EMFILE && set_rlimit < INCREASED_MAX) { struct rlimit l; int old_errno = errno; if (getrlimit(RLIMIT_NOFILE, &l) == 0) { if (set_rlimit == NO_CHANGE) l.rlim_cur = l.rlim_max; else { l.rlim_cur = l.rlim_max + 1000; l.rlim_max = l.rlim_cur; } if (setrlimit(RLIMIT_NOFILE, &l) == 0) { set_rlimit++; errno = old_errno; goto retry_open; } } errno = old_errno; } if (err != -EINVAL || cpu > 0 || thread > 0) goto out_close; /* * Must probe features in the order they were added to the * perf_event_attr interface. */ if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) { perf_missing_features.clockid_wrong = true; goto fallback_missing_features; } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) { perf_missing_features.clockid = true; goto fallback_missing_features; } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { perf_missing_features.cloexec = true; goto fallback_missing_features; } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { perf_missing_features.mmap2 = true; goto fallback_missing_features; } else if (!perf_missing_features.exclude_guest && (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { perf_missing_features.exclude_guest = true; goto fallback_missing_features; } else if (!perf_missing_features.sample_id_all) { perf_missing_features.sample_id_all = true; goto retry_sample_id; } out_close: do { while (--thread >= 0) { close(FD(evsel, cpu, thread)); FD(evsel, cpu, thread) = -1; } thread = nthreads; } while (--cpu >= 0); return err; } void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads) { if (evsel->fd == NULL) return; perf_evsel__close_fd(evsel, ncpus, nthreads); perf_evsel__free_fd(evsel); } static struct { struct cpu_map map; int cpus[1]; } empty_cpu_map = { .map.nr = 1, .cpus = { -1, }, }; static struct { struct thread_map map; int threads[1]; } empty_thread_map = { .map.nr = 1, .threads = { -1, }, }; int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, struct thread_map *threads) { if (cpus == NULL) { /* Work around old compiler warnings about strict aliasing */ cpus = &empty_cpu_map.map; } if (threads == NULL) threads = &empty_thread_map.map; return __perf_evsel__open(evsel, cpus, threads); } int perf_evsel__open_per_cpu(struct perf_evsel *evsel, struct cpu_map *cpus) { return __perf_evsel__open(evsel, cpus, &empty_thread_map.map); } int perf_evsel__open_per_thread(struct perf_evsel *evsel, struct thread_map *threads) { return __perf_evsel__open(evsel, &empty_cpu_map.map, threads); } static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, const union perf_event *event, struct perf_sample *sample) { u64 type = evsel->attr.sample_type; const u64 *array = event->sample.array; bool swapped = evsel->needs_swap; union u64_swap u; array += ((event->header.size - sizeof(event->header)) / sizeof(u64)) - 1; if (type & PERF_SAMPLE_IDENTIFIER) { sample->id = *array; array--; } if (type & PERF_SAMPLE_CPU) { u.val64 = *array; if (swapped) { /* undo swap of u64, then swap on individual u32s */ u.val64 = bswap_64(u.val64); u.val32[0] = bswap_32(u.val32[0]); } sample->cpu = u.val32[0]; array--; } if (type & PERF_SAMPLE_STREAM_ID) { sample->stream_id = *array; array--; } if (type & PERF_SAMPLE_ID) { sample->id = *array; array--; } if (type & PERF_SAMPLE_TIME) { sample->time = *array; array--; } if (type & PERF_SAMPLE_TID) { u.val64 = *array; if (swapped) { /* undo swap of u64, then swap on individual u32s */ u.val64 = bswap_64(u.val64); u.val32[0] = bswap_32(u.val32[0]); u.val32[1] = bswap_32(u.val32[1]); } sample->pid = u.val32[0]; sample->tid = u.val32[1]; array--; } return 0; } static inline bool overflow(const void *endp, u16 max_size, const void *offset, u64 size) { return size > max_size || offset + size > endp; } #define OVERFLOW_CHECK(offset, size, max_size) \ do { \ if (overflow(endp, (max_size), (offset), (size))) \ return -EFAULT; \ } while (0) #define OVERFLOW_CHECK_u64(offset) \ OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, struct perf_sample *data) { u64 type = evsel->attr.sample_type; bool swapped = evsel->needs_swap; const u64 *array; u16 max_size = event->header.size; const void *endp = (void *)event + max_size; u64 sz; /* * used for cross-endian analysis. See git commit 65014ab3 * for why this goofiness is needed. */ union u64_swap u; memset(data, 0, sizeof(*data)); data->cpu = data->pid = data->tid = -1; data->stream_id = data->id = data->time = -1ULL; data->period = evsel->attr.sample_period; data->weight = 0; if (event->header.type != PERF_RECORD_SAMPLE) { if (!evsel->attr.sample_id_all) return 0; return perf_evsel__parse_id_sample(evsel, event, data); } array = event->sample.array; /* * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to * check the format does not go past the end of the event. */ if (evsel->sample_size + sizeof(event->header) > event->header.size) return -EFAULT; data->id = -1ULL; if (type & PERF_SAMPLE_IDENTIFIER) { data->id = *array; array++; } if (type & PERF_SAMPLE_IP) { data->ip = *array; array++; } if (type & PERF_SAMPLE_TID) { u.val64 = *array; if (swapped) { /* undo swap of u64, then swap on individual u32s */ u.val64 = bswap_64(u.val64); u.val32[0] = bswap_32(u.val32[0]); u.val32[1] = bswap_32(u.val32[1]); } data->pid = u.val32[0]; data->tid = u.val32[1]; array++; } if (type & PERF_SAMPLE_TIME) { data->time = *array; array++; } data->addr = 0; if (type & PERF_SAMPLE_ADDR) { data->addr = *array; array++; } if (type & PERF_SAMPLE_ID) { data->id = *array; array++; } if (type & PERF_SAMPLE_STREAM_ID) { data->stream_id = *array; array++; } if (type & PERF_SAMPLE_CPU) { u.val64 = *array; if (swapped) { /* undo swap of u64, then swap on individual u32s */ u.val64 = bswap_64(u.val64); u.val32[0] = bswap_32(u.val32[0]); } data->cpu = u.val32[0]; array++; } if (type & PERF_SAMPLE_PERIOD) { data->period = *array; array++; } if (type & PERF_SAMPLE_READ) { u64 read_format = evsel->attr.read_format; OVERFLOW_CHECK_u64(array); if (read_format & PERF_FORMAT_GROUP) data->read.group.nr = *array; else data->read.one.value = *array; array++; if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { OVERFLOW_CHECK_u64(array); data->read.time_enabled = *array; array++; } if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { OVERFLOW_CHECK_u64(array); data->read.time_running = *array; array++; } /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ if (read_format & PERF_FORMAT_GROUP) { const u64 max_group_nr = UINT64_MAX / sizeof(struct sample_read_value); if (data->read.group.nr > max_group_nr) return -EFAULT; sz = data->read.group.nr * sizeof(struct sample_read_value); OVERFLOW_CHECK(array, sz, max_size); data->read.group.values = (struct sample_read_value *)array; array = (void *)array + sz; } else { OVERFLOW_CHECK_u64(array); data->read.one.id = *array; array++; } } if (type & PERF_SAMPLE_CALLCHAIN) { const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); OVERFLOW_CHECK_u64(array); data->callchain = (struct ip_callchain *)array++; if (data->callchain->nr > max_callchain_nr) return -EFAULT; sz = data->callchain->nr * sizeof(u64); OVERFLOW_CHECK(array, sz, max_size); array = (void *)array + sz; } if (type & PERF_SAMPLE_RAW) { OVERFLOW_CHECK_u64(array); u.val64 = *array; if (WARN_ONCE(swapped, "Endianness of raw data not corrected!\n")) { /* undo swap of u64, then swap on individual u32s */ u.val64 = bswap_64(u.val64); u.val32[0] = bswap_32(u.val32[0]); u.val32[1] = bswap_32(u.val32[1]); } data->raw_size = u.val32[0]; array = (void *)array + sizeof(u32); OVERFLOW_CHECK(array, data->raw_size, max_size); data->raw_data = (void *)array; array = (void *)array + data->raw_size; } if (type & PERF_SAMPLE_BRANCH_STACK) { const u64 max_branch_nr = UINT64_MAX / sizeof(struct branch_entry); OVERFLOW_CHECK_u64(array); data->branch_stack = (struct branch_stack *)array++; if (data->branch_stack->nr > max_branch_nr) return -EFAULT; sz = data->branch_stack->nr * sizeof(struct branch_entry); OVERFLOW_CHECK(array, sz, max_size); array = (void *)array + sz; } if (type & PERF_SAMPLE_REGS_USER) { OVERFLOW_CHECK_u64(array); data->user_regs.abi = *array; array++; if (data->user_regs.abi) { u64 mask = evsel->attr.sample_regs_user; sz = hweight_long(mask) * sizeof(u64); OVERFLOW_CHECK(array, sz, max_size); data->user_regs.mask = mask; data->user_regs.regs = (u64 *)array; array = (void *)array + sz; } } if (type & PERF_SAMPLE_STACK_USER) { OVERFLOW_CHECK_u64(array); sz = *array++; data->user_stack.offset = ((char *)(array - 1) - (char *) event); if (!sz) { data->user_stack.size = 0; } else { OVERFLOW_CHECK(array, sz, max_size); data->user_stack.data = (char *)array; array = (void *)array + sz; OVERFLOW_CHECK_u64(array); data->user_stack.size = *array++; if (WARN_ONCE(data->user_stack.size > sz, "user stack dump failure\n")) return -EFAULT; } } data->weight = 0; if (type & PERF_SAMPLE_WEIGHT) { OVERFLOW_CHECK_u64(array); data->weight = *array; array++; } data->data_src = PERF_MEM_DATA_SRC_NONE; if (type & PERF_SAMPLE_DATA_SRC) { OVERFLOW_CHECK_u64(array); data->data_src = *array; array++; } data->transaction = 0; if (type & PERF_SAMPLE_TRANSACTION) { OVERFLOW_CHECK_u64(array); data->transaction = *array; array++; } data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; if (type & PERF_SAMPLE_REGS_INTR) { OVERFLOW_CHECK_u64(array); data->intr_regs.abi = *array; array++; if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { u64 mask = evsel->attr.sample_regs_intr; sz = hweight_long(mask) * sizeof(u64); OVERFLOW_CHECK(array, sz, max_size); data->intr_regs.mask = mask; data->intr_regs.regs = (u64 *)array; array = (void *)array + sz; } } return 0; } size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, u64 read_format) { size_t sz, result = sizeof(struct sample_event); if (type & PERF_SAMPLE_IDENTIFIER) result += sizeof(u64); if (type & PERF_SAMPLE_IP) result += sizeof(u64); if (type & PERF_SAMPLE_TID) result += sizeof(u64); if (type & PERF_SAMPLE_TIME) result += sizeof(u64); if (type & PERF_SAMPLE_ADDR) result += sizeof(u64); if (type & PERF_SAMPLE_ID) result += sizeof(u64); if (type & PERF_SAMPLE_STREAM_ID) result += sizeof(u64); if (type & PERF_SAMPLE_CPU) result += sizeof(u64); if (type & PERF_SAMPLE_PERIOD) result += sizeof(u64); if (type & PERF_SAMPLE_READ) { result += sizeof(u64); if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) result += sizeof(u64); if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) result += sizeof(u64); /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ if (read_format & PERF_FORMAT_GROUP) { sz = sample->read.group.nr * sizeof(struct sample_read_value); result += sz; } else { result += sizeof(u64); } } if (type & PERF_SAMPLE_CALLCHAIN) { sz = (sample->callchain->nr + 1) * sizeof(u64); result += sz; } if (type & PERF_SAMPLE_RAW) { result += sizeof(u32); result += sample->raw_size; } if (type & PERF_SAMPLE_BRANCH_STACK) { sz = sample->branch_stack->nr * sizeof(struct branch_entry); sz += sizeof(u64); result += sz; } if (type & PERF_SAMPLE_REGS_USER) { if (sample->user_regs.abi) { result += sizeof(u64); sz = hweight_long(sample->user_regs.mask) * sizeof(u64); result += sz; } else { result += sizeof(u64); } } if (type & PERF_SAMPLE_STACK_USER) { sz = sample->user_stack.size; result += sizeof(u64); if (sz) { result += sz; result += sizeof(u64); } } if (type & PERF_SAMPLE_WEIGHT) result += sizeof(u64); if (type & PERF_SAMPLE_DATA_SRC) result += sizeof(u64); if (type & PERF_SAMPLE_TRANSACTION) result += sizeof(u64); if (type & PERF_SAMPLE_REGS_INTR) { if (sample->intr_regs.abi) { result += sizeof(u64); sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); result += sz; } else { result += sizeof(u64); } } return result; } int perf_event__synthesize_sample(union perf_event *event, u64 type, u64 read_format, const struct perf_sample *sample, bool swapped) { u64 *array; size_t sz; /* * used for cross-endian analysis. See git commit 65014ab3 * for why this goofiness is needed. */ union u64_swap u; array = event->sample.array; if (type & PERF_SAMPLE_IDENTIFIER) { *array = sample->id; array++; } if (type & PERF_SAMPLE_IP) { *array = sample->ip; array++; } if (type & PERF_SAMPLE_TID) { u.val32[0] = sample->pid; u.val32[1] = sample->tid; if (swapped) { /* * Inverse of what is done in perf_evsel__parse_sample */ u.val32[0] = bswap_32(u.val32[0]); u.val32[1] = bswap_32(u.val32[1]); u.val64 = bswap_64(u.val64); } *array = u.val64; array++; } if (type & PERF_SAMPLE_TIME) { *array = sample->time; array++; } if (type & PERF_SAMPLE_ADDR) { *array = sample->addr; array++; } if (type & PERF_SAMPLE_ID) { *array = sample->id; array++; } if (type & PERF_SAMPLE_STREAM_ID) { *array = sample->stream_id; array++; } if (type & PERF_SAMPLE_CPU) { u.val32[0] = sample->cpu; if (swapped) { /* * Inverse of what is done in perf_evsel__parse_sample */ u.val32[0] = bswap_32(u.val32[0]); u.val64 = bswap_64(u.val64); } *array = u.val64; array++; } if (type & PERF_SAMPLE_PERIOD) { *array = sample->period; array++; } if (type & PERF_SAMPLE_READ) { if (read_format & PERF_FORMAT_GROUP) *array = sample->read.group.nr; else *array = sample->read.one.value; array++; if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { *array = sample->read.time_enabled; array++; } if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { *array = sample->read.time_running; array++; } /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ if (read_format & PERF_FORMAT_GROUP) { sz = sample->read.group.nr * sizeof(struct sample_read_value); memcpy(array, sample->read.group.values, sz); array = (void *)array + sz; } else { *array = sample->read.one.id; array++; } } if (type & PERF_SAMPLE_CALLCHAIN) { sz = (sample->callchain->nr + 1) * sizeof(u64); memcpy(array, sample->callchain, sz); array = (void *)array + sz; } if (type & PERF_SAMPLE_RAW) { u.val32[0] = sample->raw_size; if (WARN_ONCE(swapped, "Endianness of raw data not corrected!\n")) { /* * Inverse of what is done in perf_evsel__parse_sample */ u.val32[0] = bswap_32(u.val32[0]); u.val32[1] = bswap_32(u.val32[1]); u.val64 = bswap_64(u.val64); } *array = u.val64; array = (void *)array + sizeof(u32); memcpy(array, sample->raw_data, sample->raw_size); array = (void *)array + sample->raw_size; } if (type & PERF_SAMPLE_BRANCH_STACK) { sz = sample->branch_stack->nr * sizeof(struct branch_entry); sz += sizeof(u64); memcpy(array, sample->branch_stack, sz); array = (void *)array + sz; } if (type & PERF_SAMPLE_REGS_USER) { if (sample->user_regs.abi) { *array++ = sample->user_regs.abi; sz = hweight_long(sample->user_regs.mask) * sizeof(u64); memcpy(array, sample->user_regs.regs, sz); array = (void *)array + sz; } else { *array++ = 0; } } if (type & PERF_SAMPLE_STACK_USER) { sz = sample->user_stack.size; *array++ = sz; if (sz) { memcpy(array, sample->user_stack.data, sz); array = (void *)array + sz; *array++ = sz; } } if (type & PERF_SAMPLE_WEIGHT) { *array = sample->weight; array++; } if (type & PERF_SAMPLE_DATA_SRC) { *array = sample->data_src; array++; } if (type & PERF_SAMPLE_TRANSACTION) { *array = sample->transaction; array++; } if (type & PERF_SAMPLE_REGS_INTR) { if (sample->intr_regs.abi) { *array++ = sample->intr_regs.abi; sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); memcpy(array, sample->intr_regs.regs, sz); array = (void *)array + sz; } else { *array++ = 0; } } return 0; } struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) { return pevent_find_field(evsel->tp_format, name); } void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, const char *name) { struct format_field *field = perf_evsel__field(evsel, name); int offset; if (!field) return NULL; offset = field->offset; if (field->flags & FIELD_IS_DYNAMIC) { offset = *(int *)(sample->raw_data + field->offset); offset &= 0xffff; } return sample->raw_data + offset; } u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, const char *name) { struct format_field *field = perf_evsel__field(evsel, name); void *ptr; u64 value; if (!field) return 0; ptr = sample->raw_data + field->offset; switch (field->size) { case 1: return *(u8 *)ptr; case 2: value = *(u16 *)ptr; break; case 4: value = *(u32 *)ptr; break; case 8: memcpy(&value, ptr, sizeof(u64)); break; default: return 0; } if (!evsel->needs_swap) return value; switch (field->size) { case 2: return bswap_16(value); case 4: return bswap_32(value); case 8: return bswap_64(value); default: return 0; } return 0; } static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...) { va_list args; int ret = 0; if (!*first) { ret += fprintf(fp, ","); } else { ret += fprintf(fp, ":"); *first = false; } va_start(args, fmt); ret += vfprintf(fp, fmt, args); va_end(args); return ret; } static int __print_attr__fprintf(FILE *fp, const char *name, const char *val, void *priv) { return comma_fprintf(fp, (bool *)priv, " %s: %s", name, val); } int perf_evsel__fprintf(struct perf_evsel *evsel, struct perf_attr_details *details, FILE *fp) { bool first = true; int printed = 0; if (details->event_group) { struct perf_evsel *pos; if (!perf_evsel__is_group_leader(evsel)) return 0; if (evsel->nr_members > 1) printed += fprintf(fp, "%s{", evsel->group_name ?: ""); printed += fprintf(fp, "%s", perf_evsel__name(evsel)); for_each_group_member(pos, evsel) printed += fprintf(fp, ",%s", perf_evsel__name(pos)); if (evsel->nr_members > 1) printed += fprintf(fp, "}"); goto out; } printed += fprintf(fp, "%s", perf_evsel__name(evsel)); if (details->verbose) { printed += perf_event_attr__fprintf(fp, &evsel->attr, __print_attr__fprintf, &first); } else if (details->freq) { printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64, (u64)evsel->attr.sample_freq); } out: fputc('\n', fp); return ++printed; } bool perf_evsel__fallback(struct perf_evsel *evsel, int err, char *msg, size_t msgsize) { if ((err == ENOENT || err == ENXIO || err == ENODEV) && evsel->attr.type == PERF_TYPE_HARDWARE && evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { /* * If it's cycles then fall back to hrtimer based * cpu-clock-tick sw counter, which is always available even if * no PMU support. * * PPC returns ENXIO until 2.6.37 (behavior changed with commit * b0a873e). */ scnprintf(msg, msgsize, "%s", "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); evsel->attr.type = PERF_TYPE_SOFTWARE; evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; zfree(&evsel->name); return true; } return false; } int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, int err, char *msg, size_t size) { char sbuf[STRERR_BUFSIZE]; switch (err) { case EPERM: case EACCES: return scnprintf(msg, size, "You may not have permission to collect %sstats.\n" "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n" " -1 - Not paranoid at all\n" " 0 - Disallow raw tracepoint access for unpriv\n" " 1 - Disallow cpu events for unpriv\n" " 2 - Disallow kernel profiling for unpriv", target->system_wide ? "system-wide " : ""); case ENOENT: return scnprintf(msg, size, "The %s event is not supported.", perf_evsel__name(evsel)); case EMFILE: return scnprintf(msg, size, "%s", "Too many events are opened.\n" "Try again after reducing the number of events."); case ENODEV: if (target->cpu_list) return scnprintf(msg, size, "%s", "No such device - did you specify an out-of-range profile CPU?\n"); break; case EOPNOTSUPP: if (evsel->attr.precise_ip) return scnprintf(msg, size, "%s", "\'precise\' request may not be supported. Try removing 'p' modifier."); #if defined(__i386__) || defined(__x86_64__) if (evsel->attr.type == PERF_TYPE_HARDWARE) return scnprintf(msg, size, "%s", "No hardware sampling interrupt available.\n" "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it."); #endif break; case EBUSY: if (find_process("oprofiled")) return scnprintf(msg, size, "The PMU counters are busy/taken by another profiler.\n" "We found oprofile daemon running, please stop it and try again."); break; case EINVAL: if (perf_missing_features.clockid) return scnprintf(msg, size, "clockid feature not supported."); if (perf_missing_features.clockid_wrong) return scnprintf(msg, size, "wrong clockid (%d).", clockid); break; default: break; } return scnprintf(msg, size, "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" "/bin/dmesg may provide additional information.\n" "No CONFIG_PERF_EVENTS=y kernel support configured?\n", err, strerror_r(err, sbuf, sizeof(sbuf)), perf_evsel__name(evsel)); }