/* * PXA2xx SPI private DMA support. * * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <linux/delay.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/pxa2xx_ssp.h> #include <linux/spi/spi.h> #include <linux/spi/pxa2xx_spi.h> #include <mach/dma.h> #include "spi-pxa2xx.h" #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR) #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK) bool pxa2xx_spi_dma_is_possible(size_t len) { /* Try to map dma buffer and do a dma transfer if successful, but * only if the length is non-zero and less than MAX_DMA_LEN. * * Zero-length non-descriptor DMA is illegal on PXA2xx; force use * of PIO instead. Care is needed above because the transfer may * have have been passed with buffers that are already dma mapped. * A zero-length transfer in PIO mode will not try to write/read * to/from the buffers * * REVISIT large transfers are exactly where we most want to be * using DMA. If this happens much, split those transfers into * multiple DMA segments rather than forcing PIO. */ return len > 0 && len <= MAX_DMA_LEN; } int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data) { struct spi_message *msg = drv_data->cur_msg; struct device *dev = &msg->spi->dev; if (!drv_data->cur_chip->enable_dma) return 0; if (msg->is_dma_mapped) return drv_data->rx_dma && drv_data->tx_dma; if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx)) return 0; /* Modify setup if rx buffer is null */ if (drv_data->rx == NULL) { *drv_data->null_dma_buf = 0; drv_data->rx = drv_data->null_dma_buf; drv_data->rx_map_len = 4; } else drv_data->rx_map_len = drv_data->len; /* Modify setup if tx buffer is null */ if (drv_data->tx == NULL) { *drv_data->null_dma_buf = 0; drv_data->tx = drv_data->null_dma_buf; drv_data->tx_map_len = 4; } else drv_data->tx_map_len = drv_data->len; /* Stream map the tx buffer. Always do DMA_TO_DEVICE first * so we flush the cache *before* invalidating it, in case * the tx and rx buffers overlap. */ drv_data->tx_dma = dma_map_single(dev, drv_data->tx, drv_data->tx_map_len, DMA_TO_DEVICE); if (dma_mapping_error(dev, drv_data->tx_dma)) return 0; /* Stream map the rx buffer */ drv_data->rx_dma = dma_map_single(dev, drv_data->rx, drv_data->rx_map_len, DMA_FROM_DEVICE); if (dma_mapping_error(dev, drv_data->rx_dma)) { dma_unmap_single(dev, drv_data->tx_dma, drv_data->tx_map_len, DMA_TO_DEVICE); return 0; } return 1; } static void pxa2xx_spi_unmap_dma_buffers(struct driver_data *drv_data) { struct device *dev; if (!drv_data->dma_mapped) return; if (!drv_data->cur_msg->is_dma_mapped) { dev = &drv_data->cur_msg->spi->dev; dma_unmap_single(dev, drv_data->rx_dma, drv_data->rx_map_len, DMA_FROM_DEVICE); dma_unmap_single(dev, drv_data->tx_dma, drv_data->tx_map_len, DMA_TO_DEVICE); } drv_data->dma_mapped = 0; } static int wait_ssp_rx_stall(struct driver_data *drv_data) { unsigned long limit = loops_per_jiffy << 1; while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit) cpu_relax(); return limit; } static int wait_dma_channel_stop(int channel) { unsigned long limit = loops_per_jiffy << 1; while (!(DCSR(channel) & DCSR_STOPSTATE) && --limit) cpu_relax(); return limit; } static void pxa2xx_spi_dma_error_stop(struct driver_data *drv_data, const char *msg) { /* Stop and reset */ DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL; DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL; write_SSSR_CS(drv_data, drv_data->clear_sr); pxa2xx_spi_write(drv_data, SSCR1, pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->dma_cr1); if (!pxa25x_ssp_comp(drv_data)) pxa2xx_spi_write(drv_data, SSTO, 0); pxa2xx_spi_flush(drv_data); pxa2xx_spi_write(drv_data, SSCR0, pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE); pxa2xx_spi_unmap_dma_buffers(drv_data); dev_err(&drv_data->pdev->dev, "%s\n", msg); drv_data->cur_msg->state = ERROR_STATE; tasklet_schedule(&drv_data->pump_transfers); } static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data) { struct spi_message *msg = drv_data->cur_msg; /* Clear and disable interrupts on SSP and DMA channels*/ pxa2xx_spi_write(drv_data, SSCR1, pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->dma_cr1); write_SSSR_CS(drv_data, drv_data->clear_sr); DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL; DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL; if (wait_dma_channel_stop(drv_data->rx_channel) == 0) dev_err(&drv_data->pdev->dev, "dma_handler: dma rx channel stop failed\n"); if (wait_ssp_rx_stall(drv_data->ioaddr) == 0) dev_err(&drv_data->pdev->dev, "dma_transfer: ssp rx stall failed\n"); pxa2xx_spi_unmap_dma_buffers(drv_data); /* update the buffer pointer for the amount completed in dma */ drv_data->rx += drv_data->len - (DCMD(drv_data->rx_channel) & DCMD_LENGTH); /* read trailing data from fifo, it does not matter how many * bytes are in the fifo just read until buffer is full * or fifo is empty, which ever occurs first */ drv_data->read(drv_data); /* return count of what was actually read */ msg->actual_length += drv_data->len - (drv_data->rx_end - drv_data->rx); /* Transfer delays and chip select release are * handled in pump_transfers or giveback */ /* Move to next transfer */ msg->state = pxa2xx_spi_next_transfer(drv_data); /* Schedule transfer tasklet */ tasklet_schedule(&drv_data->pump_transfers); } void pxa2xx_spi_dma_handler(int channel, void *data) { struct driver_data *drv_data = data; u32 irq_status = DCSR(channel) & DMA_INT_MASK; if (irq_status & DCSR_BUSERR) { if (channel == drv_data->tx_channel) pxa2xx_spi_dma_error_stop(drv_data, "dma_handler: bad bus address on tx channel"); else pxa2xx_spi_dma_error_stop(drv_data, "dma_handler: bad bus address on rx channel"); return; } /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */ if ((channel == drv_data->tx_channel) && (irq_status & DCSR_ENDINTR) && (drv_data->ssp_type == PXA25x_SSP)) { /* Wait for rx to stall */ if (wait_ssp_rx_stall(drv_data) == 0) dev_err(&drv_data->pdev->dev, "dma_handler: ssp rx stall failed\n"); /* finish this transfer, start the next */ pxa2xx_spi_dma_transfer_complete(drv_data); } } irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data) { u32 irq_status; irq_status = pxa2xx_spi_read(drv_data, SSSR) & drv_data->mask_sr; if (irq_status & SSSR_ROR) { pxa2xx_spi_dma_error_stop(drv_data, "dma_transfer: fifo overrun"); return IRQ_HANDLED; } /* Check for false positive timeout */ if ((irq_status & SSSR_TINT) && (DCSR(drv_data->tx_channel) & DCSR_RUN)) { pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT); return IRQ_HANDLED; } if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) { /* Clear and disable timeout interrupt, do the rest in * dma_transfer_complete */ if (!pxa25x_ssp_comp(drv_data)) pxa2xx_spi_write(drv_data, SSTO, 0); /* finish this transfer, start the next */ pxa2xx_spi_dma_transfer_complete(drv_data); return IRQ_HANDLED; } /* Opps problem detected */ return IRQ_NONE; } int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst) { u32 dma_width; switch (drv_data->n_bytes) { case 1: dma_width = DCMD_WIDTH1; break; case 2: dma_width = DCMD_WIDTH2; break; default: dma_width = DCMD_WIDTH4; break; } /* Setup rx DMA Channel */ DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL; DSADR(drv_data->rx_channel) = drv_data->ssdr_physical; DTADR(drv_data->rx_channel) = drv_data->rx_dma; if (drv_data->rx == drv_data->null_dma_buf) /* No target address increment */ DCMD(drv_data->rx_channel) = DCMD_FLOWSRC | dma_width | dma_burst | drv_data->len; else DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR | DCMD_FLOWSRC | dma_width | dma_burst | drv_data->len; /* Setup tx DMA Channel */ DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL; DSADR(drv_data->tx_channel) = drv_data->tx_dma; DTADR(drv_data->tx_channel) = drv_data->ssdr_physical; if (drv_data->tx == drv_data->null_dma_buf) /* No source address increment */ DCMD(drv_data->tx_channel) = DCMD_FLOWTRG | dma_width | dma_burst | drv_data->len; else DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR | DCMD_FLOWTRG | dma_width | dma_burst | drv_data->len; /* Enable dma end irqs on SSP to detect end of transfer */ if (drv_data->ssp_type == PXA25x_SSP) DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN; return 0; } void pxa2xx_spi_dma_start(struct driver_data *drv_data) { DCSR(drv_data->rx_channel) |= DCSR_RUN; DCSR(drv_data->tx_channel) |= DCSR_RUN; } int pxa2xx_spi_dma_setup(struct driver_data *drv_data) { struct device *dev = &drv_data->pdev->dev; struct ssp_device *ssp = drv_data->ssp; /* Get two DMA channels (rx and tx) */ drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx", DMA_PRIO_HIGH, pxa2xx_spi_dma_handler, drv_data); if (drv_data->rx_channel < 0) { dev_err(dev, "problem (%d) requesting rx channel\n", drv_data->rx_channel); return -ENODEV; } drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx", DMA_PRIO_MEDIUM, pxa2xx_spi_dma_handler, drv_data); if (drv_data->tx_channel < 0) { dev_err(dev, "problem (%d) requesting tx channel\n", drv_data->tx_channel); pxa_free_dma(drv_data->rx_channel); return -ENODEV; } DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel; DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel; return 0; } void pxa2xx_spi_dma_release(struct driver_data *drv_data) { struct ssp_device *ssp = drv_data->ssp; DRCMR(ssp->drcmr_rx) = 0; DRCMR(ssp->drcmr_tx) = 0; if (drv_data->tx_channel != 0) pxa_free_dma(drv_data->tx_channel); if (drv_data->rx_channel != 0) pxa_free_dma(drv_data->rx_channel); } void pxa2xx_spi_dma_resume(struct driver_data *drv_data) { if (drv_data->rx_channel != -1) DRCMR(drv_data->ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel; if (drv_data->tx_channel != -1) DRCMR(drv_data->ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel; } int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip, struct spi_device *spi, u8 bits_per_word, u32 *burst_code, u32 *threshold) { struct pxa2xx_spi_chip *chip_info = (struct pxa2xx_spi_chip *)spi->controller_data; int bytes_per_word; int burst_bytes; int thresh_words; int req_burst_size; int retval = 0; /* Set the threshold (in registers) to equal the same amount of data * as represented by burst size (in bytes). The computation below * is (burst_size rounded up to nearest 8 byte, word or long word) * divided by (bytes/register); the tx threshold is the inverse of * the rx, so that there will always be enough data in the rx fifo * to satisfy a burst, and there will always be enough space in the * tx fifo to accept a burst (a tx burst will overwrite the fifo if * there is not enough space), there must always remain enough empty * space in the rx fifo for any data loaded to the tx fifo. * Whenever burst_size (in bytes) equals bits/word, the fifo threshold * will be 8, or half the fifo; * The threshold can only be set to 2, 4 or 8, but not 16, because * to burst 16 to the tx fifo, the fifo would have to be empty; * however, the minimum fifo trigger level is 1, and the tx will * request service when the fifo is at this level, with only 15 spaces. */ /* find bytes/word */ if (bits_per_word <= 8) bytes_per_word = 1; else if (bits_per_word <= 16) bytes_per_word = 2; else bytes_per_word = 4; /* use struct pxa2xx_spi_chip->dma_burst_size if available */ if (chip_info) req_burst_size = chip_info->dma_burst_size; else { switch (chip->dma_burst_size) { default: /* if the default burst size is not set, * do it now */ chip->dma_burst_size = DCMD_BURST8; case DCMD_BURST8: req_burst_size = 8; break; case DCMD_BURST16: req_burst_size = 16; break; case DCMD_BURST32: req_burst_size = 32; break; } } if (req_burst_size <= 8) { *burst_code = DCMD_BURST8; burst_bytes = 8; } else if (req_burst_size <= 16) { if (bytes_per_word == 1) { /* don't burst more than 1/2 the fifo */ *burst_code = DCMD_BURST8; burst_bytes = 8; retval = 1; } else { *burst_code = DCMD_BURST16; burst_bytes = 16; } } else { if (bytes_per_word == 1) { /* don't burst more than 1/2 the fifo */ *burst_code = DCMD_BURST8; burst_bytes = 8; retval = 1; } else if (bytes_per_word == 2) { /* don't burst more than 1/2 the fifo */ *burst_code = DCMD_BURST16; burst_bytes = 16; retval = 1; } else { *burst_code = DCMD_BURST32; burst_bytes = 32; } } thresh_words = burst_bytes / bytes_per_word; /* thresh_words will be between 2 and 8 */ *threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT) | (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT); return retval; }