/* * Copyright (c) 2013, Sony Mobile Communications AB. * Copyright (c) 2013, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pinctrl/machine.h> #include <linux/pinctrl/pinctrl.h> #include <linux/pinctrl/pinmux.h> #include <linux/pinctrl/pinconf.h> #include <linux/pinctrl/pinconf-generic.h> #include <linux/slab.h> #include <linux/gpio.h> #include <linux/interrupt.h> #include <linux/spinlock.h> #include <linux/reboot.h> #include "../core.h" #include "../pinconf.h" #include "pinctrl-msm.h" #include "../pinctrl-utils.h" #define MAX_NR_GPIO 300 #define PS_HOLD_OFFSET 0x820 /** * struct msm_pinctrl - state for a pinctrl-msm device * @dev: device handle. * @pctrl: pinctrl handle. * @chip: gpiochip handle. * @restart_nb: restart notifier block. * @irq: parent irq for the TLMM irq_chip. * @lock: Spinlock to protect register resources as well * as msm_pinctrl data structures. * @enabled_irqs: Bitmap of currently enabled irqs. * @dual_edge_irqs: Bitmap of irqs that need sw emulated dual edge * detection. * @soc; Reference to soc_data of platform specific data. * @regs: Base address for the TLMM register map. */ struct msm_pinctrl { struct device *dev; struct pinctrl_dev *pctrl; struct gpio_chip chip; struct notifier_block restart_nb; int irq; spinlock_t lock; DECLARE_BITMAP(dual_edge_irqs, MAX_NR_GPIO); DECLARE_BITMAP(enabled_irqs, MAX_NR_GPIO); const struct msm_pinctrl_soc_data *soc; void __iomem *regs; }; static inline struct msm_pinctrl *to_msm_pinctrl(struct gpio_chip *gc) { return container_of(gc, struct msm_pinctrl, chip); } static int msm_get_groups_count(struct pinctrl_dev *pctldev) { struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); return pctrl->soc->ngroups; } static const char *msm_get_group_name(struct pinctrl_dev *pctldev, unsigned group) { struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); return pctrl->soc->groups[group].name; } static int msm_get_group_pins(struct pinctrl_dev *pctldev, unsigned group, const unsigned **pins, unsigned *num_pins) { struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); *pins = pctrl->soc->groups[group].pins; *num_pins = pctrl->soc->groups[group].npins; return 0; } static const struct pinctrl_ops msm_pinctrl_ops = { .get_groups_count = msm_get_groups_count, .get_group_name = msm_get_group_name, .get_group_pins = msm_get_group_pins, .dt_node_to_map = pinconf_generic_dt_node_to_map_group, .dt_free_map = pinctrl_utils_dt_free_map, }; static int msm_get_functions_count(struct pinctrl_dev *pctldev) { struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); return pctrl->soc->nfunctions; } static const char *msm_get_function_name(struct pinctrl_dev *pctldev, unsigned function) { struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); return pctrl->soc->functions[function].name; } static int msm_get_function_groups(struct pinctrl_dev *pctldev, unsigned function, const char * const **groups, unsigned * const num_groups) { struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); *groups = pctrl->soc->functions[function].groups; *num_groups = pctrl->soc->functions[function].ngroups; return 0; } static int msm_pinmux_set_mux(struct pinctrl_dev *pctldev, unsigned function, unsigned group) { struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); const struct msm_pingroup *g; unsigned long flags; u32 val; int i; g = &pctrl->soc->groups[group]; for (i = 0; i < g->nfuncs; i++) { if (g->funcs[i] == function) break; } if (WARN_ON(i == g->nfuncs)) return -EINVAL; spin_lock_irqsave(&pctrl->lock, flags); val = readl(pctrl->regs + g->ctl_reg); val &= ~(0x7 << g->mux_bit); val |= i << g->mux_bit; writel(val, pctrl->regs + g->ctl_reg); spin_unlock_irqrestore(&pctrl->lock, flags); return 0; } static const struct pinmux_ops msm_pinmux_ops = { .get_functions_count = msm_get_functions_count, .get_function_name = msm_get_function_name, .get_function_groups = msm_get_function_groups, .set_mux = msm_pinmux_set_mux, }; static int msm_config_reg(struct msm_pinctrl *pctrl, const struct msm_pingroup *g, unsigned param, unsigned *mask, unsigned *bit) { switch (param) { case PIN_CONFIG_BIAS_DISABLE: case PIN_CONFIG_BIAS_PULL_DOWN: case PIN_CONFIG_BIAS_BUS_HOLD: case PIN_CONFIG_BIAS_PULL_UP: *bit = g->pull_bit; *mask = 3; break; case PIN_CONFIG_DRIVE_STRENGTH: *bit = g->drv_bit; *mask = 7; break; case PIN_CONFIG_OUTPUT: case PIN_CONFIG_INPUT_ENABLE: *bit = g->oe_bit; *mask = 1; break; default: return -ENOTSUPP; } return 0; } #define MSM_NO_PULL 0 #define MSM_PULL_DOWN 1 #define MSM_KEEPER 2 #define MSM_PULL_UP 3 static unsigned msm_regval_to_drive(u32 val) { return (val + 1) * 2; } static int msm_config_group_get(struct pinctrl_dev *pctldev, unsigned int group, unsigned long *config) { const struct msm_pingroup *g; struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); unsigned param = pinconf_to_config_param(*config); unsigned mask; unsigned arg; unsigned bit; int ret; u32 val; g = &pctrl->soc->groups[group]; ret = msm_config_reg(pctrl, g, param, &mask, &bit); if (ret < 0) return ret; val = readl(pctrl->regs + g->ctl_reg); arg = (val >> bit) & mask; /* Convert register value to pinconf value */ switch (param) { case PIN_CONFIG_BIAS_DISABLE: arg = arg == MSM_NO_PULL; break; case PIN_CONFIG_BIAS_PULL_DOWN: arg = arg == MSM_PULL_DOWN; break; case PIN_CONFIG_BIAS_BUS_HOLD: arg = arg == MSM_KEEPER; break; case PIN_CONFIG_BIAS_PULL_UP: arg = arg == MSM_PULL_UP; break; case PIN_CONFIG_DRIVE_STRENGTH: arg = msm_regval_to_drive(arg); break; case PIN_CONFIG_OUTPUT: /* Pin is not output */ if (!arg) return -EINVAL; val = readl(pctrl->regs + g->io_reg); arg = !!(val & BIT(g->in_bit)); break; case PIN_CONFIG_INPUT_ENABLE: /* Pin is output */ if (arg) return -EINVAL; arg = 1; break; default: return -ENOTSUPP; } *config = pinconf_to_config_packed(param, arg); return 0; } static int msm_config_group_set(struct pinctrl_dev *pctldev, unsigned group, unsigned long *configs, unsigned num_configs) { const struct msm_pingroup *g; struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); unsigned long flags; unsigned param; unsigned mask; unsigned arg; unsigned bit; int ret; u32 val; int i; g = &pctrl->soc->groups[group]; for (i = 0; i < num_configs; i++) { param = pinconf_to_config_param(configs[i]); arg = pinconf_to_config_argument(configs[i]); ret = msm_config_reg(pctrl, g, param, &mask, &bit); if (ret < 0) return ret; /* Convert pinconf values to register values */ switch (param) { case PIN_CONFIG_BIAS_DISABLE: arg = MSM_NO_PULL; break; case PIN_CONFIG_BIAS_PULL_DOWN: arg = MSM_PULL_DOWN; break; case PIN_CONFIG_BIAS_BUS_HOLD: arg = MSM_KEEPER; break; case PIN_CONFIG_BIAS_PULL_UP: arg = MSM_PULL_UP; break; case PIN_CONFIG_DRIVE_STRENGTH: /* Check for invalid values */ if (arg > 16 || arg < 2 || (arg % 2) != 0) arg = -1; else arg = (arg / 2) - 1; break; case PIN_CONFIG_OUTPUT: /* set output value */ spin_lock_irqsave(&pctrl->lock, flags); val = readl(pctrl->regs + g->io_reg); if (arg) val |= BIT(g->out_bit); else val &= ~BIT(g->out_bit); writel(val, pctrl->regs + g->io_reg); spin_unlock_irqrestore(&pctrl->lock, flags); /* enable output */ arg = 1; break; case PIN_CONFIG_INPUT_ENABLE: /* disable output */ arg = 0; break; default: dev_err(pctrl->dev, "Unsupported config parameter: %x\n", param); return -EINVAL; } /* Range-check user-supplied value */ if (arg & ~mask) { dev_err(pctrl->dev, "config %x: %x is invalid\n", param, arg); return -EINVAL; } spin_lock_irqsave(&pctrl->lock, flags); val = readl(pctrl->regs + g->ctl_reg); val &= ~(mask << bit); val |= arg << bit; writel(val, pctrl->regs + g->ctl_reg); spin_unlock_irqrestore(&pctrl->lock, flags); } return 0; } static const struct pinconf_ops msm_pinconf_ops = { .is_generic = true, .pin_config_group_get = msm_config_group_get, .pin_config_group_set = msm_config_group_set, }; static struct pinctrl_desc msm_pinctrl_desc = { .pctlops = &msm_pinctrl_ops, .pmxops = &msm_pinmux_ops, .confops = &msm_pinconf_ops, .owner = THIS_MODULE, }; static int msm_gpio_direction_input(struct gpio_chip *chip, unsigned offset) { const struct msm_pingroup *g; struct msm_pinctrl *pctrl = container_of(chip, struct msm_pinctrl, chip); unsigned long flags; u32 val; g = &pctrl->soc->groups[offset]; spin_lock_irqsave(&pctrl->lock, flags); val = readl(pctrl->regs + g->ctl_reg); val &= ~BIT(g->oe_bit); writel(val, pctrl->regs + g->ctl_reg); spin_unlock_irqrestore(&pctrl->lock, flags); return 0; } static int msm_gpio_direction_output(struct gpio_chip *chip, unsigned offset, int value) { const struct msm_pingroup *g; struct msm_pinctrl *pctrl = container_of(chip, struct msm_pinctrl, chip); unsigned long flags; u32 val; g = &pctrl->soc->groups[offset]; spin_lock_irqsave(&pctrl->lock, flags); val = readl(pctrl->regs + g->io_reg); if (value) val |= BIT(g->out_bit); else val &= ~BIT(g->out_bit); writel(val, pctrl->regs + g->io_reg); val = readl(pctrl->regs + g->ctl_reg); val |= BIT(g->oe_bit); writel(val, pctrl->regs + g->ctl_reg); spin_unlock_irqrestore(&pctrl->lock, flags); return 0; } static int msm_gpio_get(struct gpio_chip *chip, unsigned offset) { const struct msm_pingroup *g; struct msm_pinctrl *pctrl = container_of(chip, struct msm_pinctrl, chip); u32 val; g = &pctrl->soc->groups[offset]; val = readl(pctrl->regs + g->io_reg); return !!(val & BIT(g->in_bit)); } static void msm_gpio_set(struct gpio_chip *chip, unsigned offset, int value) { const struct msm_pingroup *g; struct msm_pinctrl *pctrl = container_of(chip, struct msm_pinctrl, chip); unsigned long flags; u32 val; g = &pctrl->soc->groups[offset]; spin_lock_irqsave(&pctrl->lock, flags); val = readl(pctrl->regs + g->io_reg); if (value) val |= BIT(g->out_bit); else val &= ~BIT(g->out_bit); writel(val, pctrl->regs + g->io_reg); spin_unlock_irqrestore(&pctrl->lock, flags); } static int msm_gpio_request(struct gpio_chip *chip, unsigned offset) { int gpio = chip->base + offset; return pinctrl_request_gpio(gpio); } static void msm_gpio_free(struct gpio_chip *chip, unsigned offset) { int gpio = chip->base + offset; return pinctrl_free_gpio(gpio); } #ifdef CONFIG_DEBUG_FS #include <linux/seq_file.h> static void msm_gpio_dbg_show_one(struct seq_file *s, struct pinctrl_dev *pctldev, struct gpio_chip *chip, unsigned offset, unsigned gpio) { const struct msm_pingroup *g; struct msm_pinctrl *pctrl = container_of(chip, struct msm_pinctrl, chip); unsigned func; int is_out; int drive; int pull; u32 ctl_reg; static const char * const pulls[] = { "no pull", "pull down", "keeper", "pull up" }; g = &pctrl->soc->groups[offset]; ctl_reg = readl(pctrl->regs + g->ctl_reg); is_out = !!(ctl_reg & BIT(g->oe_bit)); func = (ctl_reg >> g->mux_bit) & 7; drive = (ctl_reg >> g->drv_bit) & 7; pull = (ctl_reg >> g->pull_bit) & 3; seq_printf(s, " %-8s: %-3s %d", g->name, is_out ? "out" : "in", func); seq_printf(s, " %dmA", msm_regval_to_drive(drive)); seq_printf(s, " %s", pulls[pull]); } static void msm_gpio_dbg_show(struct seq_file *s, struct gpio_chip *chip) { unsigned gpio = chip->base; unsigned i; for (i = 0; i < chip->ngpio; i++, gpio++) { msm_gpio_dbg_show_one(s, NULL, chip, i, gpio); seq_puts(s, "\n"); } } #else #define msm_gpio_dbg_show NULL #endif static struct gpio_chip msm_gpio_template = { .direction_input = msm_gpio_direction_input, .direction_output = msm_gpio_direction_output, .get = msm_gpio_get, .set = msm_gpio_set, .request = msm_gpio_request, .free = msm_gpio_free, .dbg_show = msm_gpio_dbg_show, }; /* For dual-edge interrupts in software, since some hardware has no * such support: * * At appropriate moments, this function may be called to flip the polarity * settings of both-edge irq lines to try and catch the next edge. * * The attempt is considered successful if: * - the status bit goes high, indicating that an edge was caught, or * - the input value of the gpio doesn't change during the attempt. * If the value changes twice during the process, that would cause the first * test to fail but would force the second, as two opposite * transitions would cause a detection no matter the polarity setting. * * The do-loop tries to sledge-hammer closed the timing hole between * the initial value-read and the polarity-write - if the line value changes * during that window, an interrupt is lost, the new polarity setting is * incorrect, and the first success test will fail, causing a retry. * * Algorithm comes from Google's msmgpio driver. */ static void msm_gpio_update_dual_edge_pos(struct msm_pinctrl *pctrl, const struct msm_pingroup *g, struct irq_data *d) { int loop_limit = 100; unsigned val, val2, intstat; unsigned pol; do { val = readl(pctrl->regs + g->io_reg) & BIT(g->in_bit); pol = readl(pctrl->regs + g->intr_cfg_reg); pol ^= BIT(g->intr_polarity_bit); writel(pol, pctrl->regs + g->intr_cfg_reg); val2 = readl(pctrl->regs + g->io_reg) & BIT(g->in_bit); intstat = readl(pctrl->regs + g->intr_status_reg); if (intstat || (val == val2)) return; } while (loop_limit-- > 0); dev_err(pctrl->dev, "dual-edge irq failed to stabilize, %#08x != %#08x\n", val, val2); } static void msm_gpio_irq_mask(struct irq_data *d) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct msm_pinctrl *pctrl = to_msm_pinctrl(gc); const struct msm_pingroup *g; unsigned long flags; u32 val; g = &pctrl->soc->groups[d->hwirq]; spin_lock_irqsave(&pctrl->lock, flags); val = readl(pctrl->regs + g->intr_cfg_reg); val &= ~BIT(g->intr_enable_bit); writel(val, pctrl->regs + g->intr_cfg_reg); clear_bit(d->hwirq, pctrl->enabled_irqs); spin_unlock_irqrestore(&pctrl->lock, flags); } static void msm_gpio_irq_unmask(struct irq_data *d) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct msm_pinctrl *pctrl = to_msm_pinctrl(gc); const struct msm_pingroup *g; unsigned long flags; u32 val; g = &pctrl->soc->groups[d->hwirq]; spin_lock_irqsave(&pctrl->lock, flags); val = readl(pctrl->regs + g->intr_status_reg); val &= ~BIT(g->intr_status_bit); writel(val, pctrl->regs + g->intr_status_reg); val = readl(pctrl->regs + g->intr_cfg_reg); val |= BIT(g->intr_enable_bit); writel(val, pctrl->regs + g->intr_cfg_reg); set_bit(d->hwirq, pctrl->enabled_irqs); spin_unlock_irqrestore(&pctrl->lock, flags); } static void msm_gpio_irq_ack(struct irq_data *d) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct msm_pinctrl *pctrl = to_msm_pinctrl(gc); const struct msm_pingroup *g; unsigned long flags; u32 val; g = &pctrl->soc->groups[d->hwirq]; spin_lock_irqsave(&pctrl->lock, flags); val = readl(pctrl->regs + g->intr_status_reg); if (g->intr_ack_high) val |= BIT(g->intr_status_bit); else val &= ~BIT(g->intr_status_bit); writel(val, pctrl->regs + g->intr_status_reg); if (test_bit(d->hwirq, pctrl->dual_edge_irqs)) msm_gpio_update_dual_edge_pos(pctrl, g, d); spin_unlock_irqrestore(&pctrl->lock, flags); } static int msm_gpio_irq_set_type(struct irq_data *d, unsigned int type) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct msm_pinctrl *pctrl = to_msm_pinctrl(gc); const struct msm_pingroup *g; unsigned long flags; u32 val; g = &pctrl->soc->groups[d->hwirq]; spin_lock_irqsave(&pctrl->lock, flags); /* * For hw without possibility of detecting both edges */ if (g->intr_detection_width == 1 && type == IRQ_TYPE_EDGE_BOTH) set_bit(d->hwirq, pctrl->dual_edge_irqs); else clear_bit(d->hwirq, pctrl->dual_edge_irqs); /* Route interrupts to application cpu */ val = readl(pctrl->regs + g->intr_target_reg); val &= ~(7 << g->intr_target_bit); val |= g->intr_target_kpss_val << g->intr_target_bit; writel(val, pctrl->regs + g->intr_target_reg); /* Update configuration for gpio. * RAW_STATUS_EN is left on for all gpio irqs. Due to the * internal circuitry of TLMM, toggling the RAW_STATUS * could cause the INTR_STATUS to be set for EDGE interrupts. */ val = readl(pctrl->regs + g->intr_cfg_reg); val |= BIT(g->intr_raw_status_bit); if (g->intr_detection_width == 2) { val &= ~(3 << g->intr_detection_bit); val &= ~(1 << g->intr_polarity_bit); switch (type) { case IRQ_TYPE_EDGE_RISING: val |= 1 << g->intr_detection_bit; val |= BIT(g->intr_polarity_bit); break; case IRQ_TYPE_EDGE_FALLING: val |= 2 << g->intr_detection_bit; val |= BIT(g->intr_polarity_bit); break; case IRQ_TYPE_EDGE_BOTH: val |= 3 << g->intr_detection_bit; val |= BIT(g->intr_polarity_bit); break; case IRQ_TYPE_LEVEL_LOW: break; case IRQ_TYPE_LEVEL_HIGH: val |= BIT(g->intr_polarity_bit); break; } } else if (g->intr_detection_width == 1) { val &= ~(1 << g->intr_detection_bit); val &= ~(1 << g->intr_polarity_bit); switch (type) { case IRQ_TYPE_EDGE_RISING: val |= BIT(g->intr_detection_bit); val |= BIT(g->intr_polarity_bit); break; case IRQ_TYPE_EDGE_FALLING: val |= BIT(g->intr_detection_bit); break; case IRQ_TYPE_EDGE_BOTH: val |= BIT(g->intr_detection_bit); val |= BIT(g->intr_polarity_bit); break; case IRQ_TYPE_LEVEL_LOW: break; case IRQ_TYPE_LEVEL_HIGH: val |= BIT(g->intr_polarity_bit); break; } } else { BUG(); } writel(val, pctrl->regs + g->intr_cfg_reg); if (test_bit(d->hwirq, pctrl->dual_edge_irqs)) msm_gpio_update_dual_edge_pos(pctrl, g, d); spin_unlock_irqrestore(&pctrl->lock, flags); if (type & (IRQ_TYPE_LEVEL_LOW | IRQ_TYPE_LEVEL_HIGH)) __irq_set_handler_locked(d->irq, handle_level_irq); else if (type & (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_EDGE_RISING)) __irq_set_handler_locked(d->irq, handle_edge_irq); return 0; } static int msm_gpio_irq_set_wake(struct irq_data *d, unsigned int on) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct msm_pinctrl *pctrl = to_msm_pinctrl(gc); unsigned long flags; spin_lock_irqsave(&pctrl->lock, flags); irq_set_irq_wake(pctrl->irq, on); spin_unlock_irqrestore(&pctrl->lock, flags); return 0; } static struct irq_chip msm_gpio_irq_chip = { .name = "msmgpio", .irq_mask = msm_gpio_irq_mask, .irq_unmask = msm_gpio_irq_unmask, .irq_ack = msm_gpio_irq_ack, .irq_set_type = msm_gpio_irq_set_type, .irq_set_wake = msm_gpio_irq_set_wake, }; static void msm_gpio_irq_handler(unsigned int irq, struct irq_desc *desc) { struct gpio_chip *gc = irq_desc_get_handler_data(desc); const struct msm_pingroup *g; struct msm_pinctrl *pctrl = to_msm_pinctrl(gc); struct irq_chip *chip = irq_get_chip(irq); int irq_pin; int handled = 0; u32 val; int i; chained_irq_enter(chip, desc); /* * Each pin has it's own IRQ status register, so use * enabled_irq bitmap to limit the number of reads. */ for_each_set_bit(i, pctrl->enabled_irqs, pctrl->chip.ngpio) { g = &pctrl->soc->groups[i]; val = readl(pctrl->regs + g->intr_status_reg); if (val & BIT(g->intr_status_bit)) { irq_pin = irq_find_mapping(gc->irqdomain, i); generic_handle_irq(irq_pin); handled++; } } /* No interrupts were flagged */ if (handled == 0) handle_bad_irq(irq, desc); chained_irq_exit(chip, desc); } static int msm_gpio_init(struct msm_pinctrl *pctrl) { struct gpio_chip *chip; int ret; unsigned ngpio = pctrl->soc->ngpios; if (WARN_ON(ngpio > MAX_NR_GPIO)) return -EINVAL; chip = &pctrl->chip; chip->base = 0; chip->ngpio = ngpio; chip->label = dev_name(pctrl->dev); chip->dev = pctrl->dev; chip->owner = THIS_MODULE; chip->of_node = pctrl->dev->of_node; ret = gpiochip_add(&pctrl->chip); if (ret) { dev_err(pctrl->dev, "Failed register gpiochip\n"); return ret; } ret = gpiochip_add_pin_range(&pctrl->chip, dev_name(pctrl->dev), 0, 0, chip->ngpio); if (ret) { dev_err(pctrl->dev, "Failed to add pin range\n"); gpiochip_remove(&pctrl->chip); return ret; } ret = gpiochip_irqchip_add(chip, &msm_gpio_irq_chip, 0, handle_edge_irq, IRQ_TYPE_NONE); if (ret) { dev_err(pctrl->dev, "Failed to add irqchip to gpiochip\n"); gpiochip_remove(&pctrl->chip); return -ENOSYS; } gpiochip_set_chained_irqchip(chip, &msm_gpio_irq_chip, pctrl->irq, msm_gpio_irq_handler); return 0; } static int msm_ps_hold_restart(struct notifier_block *nb, unsigned long action, void *data) { struct msm_pinctrl *pctrl = container_of(nb, struct msm_pinctrl, restart_nb); writel(0, pctrl->regs + PS_HOLD_OFFSET); mdelay(1000); return NOTIFY_DONE; } static void msm_pinctrl_setup_pm_reset(struct msm_pinctrl *pctrl) { int i; const struct msm_function *func = pctrl->soc->functions; for (i = 0; i < pctrl->soc->nfunctions; i++) if (!strcmp(func[i].name, "ps_hold")) { pctrl->restart_nb.notifier_call = msm_ps_hold_restart; pctrl->restart_nb.priority = 128; if (register_restart_handler(&pctrl->restart_nb)) dev_err(pctrl->dev, "failed to setup restart handler.\n"); break; } } int msm_pinctrl_probe(struct platform_device *pdev, const struct msm_pinctrl_soc_data *soc_data) { struct msm_pinctrl *pctrl; struct resource *res; int ret; pctrl = devm_kzalloc(&pdev->dev, sizeof(*pctrl), GFP_KERNEL); if (!pctrl) { dev_err(&pdev->dev, "Can't allocate msm_pinctrl\n"); return -ENOMEM; } pctrl->dev = &pdev->dev; pctrl->soc = soc_data; pctrl->chip = msm_gpio_template; spin_lock_init(&pctrl->lock); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); pctrl->regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(pctrl->regs)) return PTR_ERR(pctrl->regs); msm_pinctrl_setup_pm_reset(pctrl); pctrl->irq = platform_get_irq(pdev, 0); if (pctrl->irq < 0) { dev_err(&pdev->dev, "No interrupt defined for msmgpio\n"); return pctrl->irq; } msm_pinctrl_desc.name = dev_name(&pdev->dev); msm_pinctrl_desc.pins = pctrl->soc->pins; msm_pinctrl_desc.npins = pctrl->soc->npins; pctrl->pctrl = pinctrl_register(&msm_pinctrl_desc, &pdev->dev, pctrl); if (!pctrl->pctrl) { dev_err(&pdev->dev, "Couldn't register pinctrl driver\n"); return -ENODEV; } ret = msm_gpio_init(pctrl); if (ret) { pinctrl_unregister(pctrl->pctrl); return ret; } platform_set_drvdata(pdev, pctrl); dev_dbg(&pdev->dev, "Probed Qualcomm pinctrl driver\n"); return 0; } EXPORT_SYMBOL(msm_pinctrl_probe); int msm_pinctrl_remove(struct platform_device *pdev) { struct msm_pinctrl *pctrl = platform_get_drvdata(pdev); gpiochip_remove(&pctrl->chip); pinctrl_unregister(pctrl->pctrl); unregister_restart_handler(&pctrl->restart_nb); return 0; } EXPORT_SYMBOL(msm_pinctrl_remove);