/* * BCM47XX MTD partitioning * * Copyright © 2012 Rafał Miłecki <zajec5@gmail.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/mtd/mtd.h> #include <linux/mtd/partitions.h> #include <uapi/linux/magic.h> /* * NAND flash on Netgear R6250 was verified to contain 15 partitions. * This will result in allocating too big array for some old devices, but the * memory will be freed soon anyway (see mtd_device_parse_register). */ #define BCM47XXPART_MAX_PARTS 20 /* * Amount of bytes we read when analyzing each block of flash memory. * Set it big enough to allow detecting partition and reading important data. */ #define BCM47XXPART_BYTES_TO_READ 0x4e8 /* Magics */ #define BOARD_DATA_MAGIC 0x5246504D /* MPFR */ #define BOARD_DATA_MAGIC2 0xBD0D0BBD #define CFE_MAGIC 0x43464531 /* 1EFC */ #define FACTORY_MAGIC 0x59544346 /* FCTY */ #define NVRAM_HEADER 0x48534C46 /* FLSH */ #define POT_MAGIC1 0x54544f50 /* POTT */ #define POT_MAGIC2 0x504f /* OP */ #define ML_MAGIC1 0x39685a42 #define ML_MAGIC2 0x26594131 #define TRX_MAGIC 0x30524448 #define SHSQ_MAGIC 0x71736873 /* shsq (weird ZTE H218N endianness) */ #define UBI_EC_MAGIC 0x23494255 /* UBI# */ struct trx_header { uint32_t magic; uint32_t length; uint32_t crc32; uint16_t flags; uint16_t version; uint32_t offset[3]; } __packed; static void bcm47xxpart_add_part(struct mtd_partition *part, const char *name, u64 offset, uint32_t mask_flags) { part->name = name; part->offset = offset; part->mask_flags = mask_flags; } static const char *bcm47xxpart_trx_data_part_name(struct mtd_info *master, size_t offset) { uint32_t buf; size_t bytes_read; if (mtd_read(master, offset, sizeof(buf), &bytes_read, (uint8_t *)&buf) < 0) { pr_err("mtd_read error while parsing (offset: 0x%X)!\n", offset); goto out_default; } if (buf == UBI_EC_MAGIC) return "ubi"; out_default: return "rootfs"; } static int bcm47xxpart_parse(struct mtd_info *master, struct mtd_partition **pparts, struct mtd_part_parser_data *data) { struct mtd_partition *parts; uint8_t i, curr_part = 0; uint32_t *buf; size_t bytes_read; uint32_t offset; uint32_t blocksize = master->erasesize; struct trx_header *trx; int trx_part = -1; int last_trx_part = -1; int possible_nvram_sizes[] = { 0x8000, 0xF000, 0x10000, }; /* * Some really old flashes (like AT45DB*) had smaller erasesize-s, but * partitions were aligned to at least 0x1000 anyway. */ if (blocksize < 0x1000) blocksize = 0x1000; /* Alloc */ parts = kzalloc(sizeof(struct mtd_partition) * BCM47XXPART_MAX_PARTS, GFP_KERNEL); if (!parts) return -ENOMEM; buf = kzalloc(BCM47XXPART_BYTES_TO_READ, GFP_KERNEL); if (!buf) { kfree(parts); return -ENOMEM; } /* Parse block by block looking for magics */ for (offset = 0; offset <= master->size - blocksize; offset += blocksize) { /* Nothing more in higher memory */ if (offset >= 0x2000000) break; if (curr_part >= BCM47XXPART_MAX_PARTS) { pr_warn("Reached maximum number of partitions, scanning stopped!\n"); break; } /* Read beginning of the block */ if (mtd_read(master, offset, BCM47XXPART_BYTES_TO_READ, &bytes_read, (uint8_t *)buf) < 0) { pr_err("mtd_read error while parsing (offset: 0x%X)!\n", offset); continue; } /* Magic or small NVRAM at 0x400 */ if ((buf[0x4e0 / 4] == CFE_MAGIC && buf[0x4e4 / 4] == CFE_MAGIC) || (buf[0x400 / 4] == NVRAM_HEADER)) { bcm47xxpart_add_part(&parts[curr_part++], "boot", offset, MTD_WRITEABLE); continue; } /* * board_data starts with board_id which differs across boards, * but we can use 'MPFR' (hopefully) magic at 0x100 */ if (buf[0x100 / 4] == BOARD_DATA_MAGIC) { bcm47xxpart_add_part(&parts[curr_part++], "board_data", offset, MTD_WRITEABLE); continue; } /* Found on Huawei E970 */ if (buf[0x000 / 4] == FACTORY_MAGIC) { bcm47xxpart_add_part(&parts[curr_part++], "factory", offset, MTD_WRITEABLE); continue; } /* POT(TOP) */ if (buf[0x000 / 4] == POT_MAGIC1 && (buf[0x004 / 4] & 0xFFFF) == POT_MAGIC2) { bcm47xxpart_add_part(&parts[curr_part++], "POT", offset, MTD_WRITEABLE); continue; } /* ML */ if (buf[0x010 / 4] == ML_MAGIC1 && buf[0x014 / 4] == ML_MAGIC2) { bcm47xxpart_add_part(&parts[curr_part++], "ML", offset, MTD_WRITEABLE); continue; } /* TRX */ if (buf[0x000 / 4] == TRX_MAGIC) { if (BCM47XXPART_MAX_PARTS - curr_part < 4) { pr_warn("Not enough partitions left to register trx, scanning stopped!\n"); break; } trx = (struct trx_header *)buf; trx_part = curr_part; bcm47xxpart_add_part(&parts[curr_part++], "firmware", offset, 0); i = 0; /* We have LZMA loader if offset[2] points to sth */ if (trx->offset[2]) { bcm47xxpart_add_part(&parts[curr_part++], "loader", offset + trx->offset[i], 0); i++; } if (trx->offset[i]) { bcm47xxpart_add_part(&parts[curr_part++], "linux", offset + trx->offset[i], 0); i++; } /* * Pure rootfs size is known and can be calculated as: * trx->length - trx->offset[i]. We don't fill it as * we want to have jffs2 (overlay) in the same mtd. */ if (trx->offset[i]) { const char *name; name = bcm47xxpart_trx_data_part_name(master, offset + trx->offset[i]); bcm47xxpart_add_part(&parts[curr_part++], name, offset + trx->offset[i], 0); i++; } last_trx_part = curr_part - 1; /* * We have whole TRX scanned, skip to the next part. Use * roundown (not roundup), as the loop will increase * offset in next step. */ offset = rounddown(offset + trx->length, blocksize); continue; } /* Squashfs on devices not using TRX */ if (le32_to_cpu(buf[0x000 / 4]) == SQUASHFS_MAGIC || buf[0x000 / 4] == SHSQ_MAGIC) { bcm47xxpart_add_part(&parts[curr_part++], "rootfs", offset, 0); continue; } /* * New (ARM?) devices may have NVRAM in some middle block. Last * block will be checked later, so skip it. */ if (offset != master->size - blocksize && buf[0x000 / 4] == NVRAM_HEADER) { bcm47xxpart_add_part(&parts[curr_part++], "nvram", offset, 0); continue; } /* Read middle of the block */ if (mtd_read(master, offset + 0x8000, 0x4, &bytes_read, (uint8_t *)buf) < 0) { pr_err("mtd_read error while parsing (offset: 0x%X)!\n", offset); continue; } /* Some devices (ex. WNDR3700v3) don't have a standard 'MPFR' */ if (buf[0x000 / 4] == BOARD_DATA_MAGIC2) { bcm47xxpart_add_part(&parts[curr_part++], "board_data", offset, MTD_WRITEABLE); continue; } } /* Look for NVRAM at the end of the last block. */ for (i = 0; i < ARRAY_SIZE(possible_nvram_sizes); i++) { if (curr_part >= BCM47XXPART_MAX_PARTS) { pr_warn("Reached maximum number of partitions, scanning stopped!\n"); break; } offset = master->size - possible_nvram_sizes[i]; if (mtd_read(master, offset, 0x4, &bytes_read, (uint8_t *)buf) < 0) { pr_err("mtd_read error while reading at offset 0x%X!\n", offset); continue; } /* Standard NVRAM */ if (buf[0] == NVRAM_HEADER) { bcm47xxpart_add_part(&parts[curr_part++], "nvram", master->size - blocksize, 0); break; } } kfree(buf); /* * Assume that partitions end at the beginning of the one they are * followed by. */ for (i = 0; i < curr_part; i++) { u64 next_part_offset = (i < curr_part - 1) ? parts[i + 1].offset : master->size; parts[i].size = next_part_offset - parts[i].offset; if (i == last_trx_part && trx_part >= 0) parts[trx_part].size = next_part_offset - parts[trx_part].offset; } *pparts = parts; return curr_part; }; static struct mtd_part_parser bcm47xxpart_mtd_parser = { .owner = THIS_MODULE, .parse_fn = bcm47xxpart_parse, .name = "bcm47xxpart", }; static int __init bcm47xxpart_init(void) { register_mtd_parser(&bcm47xxpart_mtd_parser); return 0; } static void __exit bcm47xxpart_exit(void) { deregister_mtd_parser(&bcm47xxpart_mtd_parser); } module_init(bcm47xxpart_init); module_exit(bcm47xxpart_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("MTD partitioning for BCM47XX flash memories");