/* * vivid-kthread-cap.h - video/vbi capture thread support functions. * * Copyright 2014 Cisco Systems, Inc. and/or its affiliates. All rights reserved. * * This program is free software; you may redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/module.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/font.h> #include <linux/mutex.h> #include <linux/videodev2.h> #include <linux/kthread.h> #include <linux/freezer.h> #include <linux/random.h> #include <linux/v4l2-dv-timings.h> #include <asm/div64.h> #include <media/videobuf2-vmalloc.h> #include <media/v4l2-dv-timings.h> #include <media/v4l2-ioctl.h> #include <media/v4l2-fh.h> #include <media/v4l2-event.h> #include "vivid-core.h" #include "vivid-vid-common.h" #include "vivid-vid-cap.h" #include "vivid-vid-out.h" #include "vivid-radio-common.h" #include "vivid-radio-rx.h" #include "vivid-radio-tx.h" #include "vivid-sdr-cap.h" #include "vivid-vbi-cap.h" #include "vivid-vbi-out.h" #include "vivid-osd.h" #include "vivid-ctrls.h" #include "vivid-kthread-cap.h" static inline v4l2_std_id vivid_get_std_cap(const struct vivid_dev *dev) { if (vivid_is_sdtv_cap(dev)) return dev->std_cap; return 0; } static void copy_pix(struct vivid_dev *dev, int win_y, int win_x, u16 *cap, const u16 *osd) { u16 out; int left = dev->overlay_out_left; int top = dev->overlay_out_top; int fb_x = win_x + left; int fb_y = win_y + top; int i; out = *cap; *cap = *osd; if (dev->bitmap_out) { const u8 *p = dev->bitmap_out; unsigned stride = (dev->compose_out.width + 7) / 8; win_x -= dev->compose_out.left; win_y -= dev->compose_out.top; if (!(p[stride * win_y + win_x / 8] & (1 << (win_x & 7)))) return; } for (i = 0; i < dev->clipcount_out; i++) { struct v4l2_rect *r = &dev->clips_out[i].c; if (fb_y >= r->top && fb_y < r->top + r->height && fb_x >= r->left && fb_x < r->left + r->width) return; } if ((dev->fbuf_out_flags & V4L2_FBUF_FLAG_CHROMAKEY) && *osd != dev->chromakey_out) return; if ((dev->fbuf_out_flags & V4L2_FBUF_FLAG_SRC_CHROMAKEY) && out == dev->chromakey_out) return; if (dev->fmt_cap->alpha_mask) { if ((dev->fbuf_out_flags & V4L2_FBUF_FLAG_GLOBAL_ALPHA) && dev->global_alpha_out) return; if ((dev->fbuf_out_flags & V4L2_FBUF_FLAG_LOCAL_ALPHA) && *cap & dev->fmt_cap->alpha_mask) return; if ((dev->fbuf_out_flags & V4L2_FBUF_FLAG_LOCAL_INV_ALPHA) && !(*cap & dev->fmt_cap->alpha_mask)) return; } *cap = out; } static void blend_line(struct vivid_dev *dev, unsigned y_offset, unsigned x_offset, u8 *vcapbuf, const u8 *vosdbuf, unsigned width, unsigned pixsize) { unsigned x; for (x = 0; x < width; x++, vcapbuf += pixsize, vosdbuf += pixsize) { copy_pix(dev, y_offset, x_offset + x, (u16 *)vcapbuf, (const u16 *)vosdbuf); } } static void scale_line(const u8 *src, u8 *dst, unsigned srcw, unsigned dstw, unsigned twopixsize) { /* Coarse scaling with Bresenham */ unsigned int_part; unsigned fract_part; unsigned src_x = 0; unsigned error = 0; unsigned x; /* * We always combine two pixels to prevent color bleed in the packed * yuv case. */ srcw /= 2; dstw /= 2; int_part = srcw / dstw; fract_part = srcw % dstw; for (x = 0; x < dstw; x++, dst += twopixsize) { memcpy(dst, src + src_x * twopixsize, twopixsize); src_x += int_part; error += fract_part; if (error >= dstw) { error -= dstw; src_x++; } } } /* * Precalculate the rectangles needed to perform video looping: * * The nominal pipeline is that the video output buffer is cropped by * crop_out, scaled to compose_out, overlaid with the output overlay, * cropped on the capture side by crop_cap and scaled again to the video * capture buffer using compose_cap. * * To keep things efficient we calculate the intersection of compose_out * and crop_cap (since that's the only part of the video that will * actually end up in the capture buffer), determine which part of the * video output buffer that is and which part of the video capture buffer * so we can scale the video straight from the output buffer to the capture * buffer without any intermediate steps. * * If we need to deal with an output overlay, then there is no choice and * that intermediate step still has to be taken. For the output overlay * support we calculate the intersection of the framebuffer and the overlay * window (which may be partially or wholly outside of the framebuffer * itself) and the intersection of that with loop_vid_copy (i.e. the part of * the actual looped video that will be overlaid). The result is calculated * both in framebuffer coordinates (loop_fb_copy) and compose_out coordinates * (loop_vid_overlay). Finally calculate the part of the capture buffer that * will receive that overlaid video. */ static void vivid_precalc_copy_rects(struct vivid_dev *dev) { /* Framebuffer rectangle */ struct v4l2_rect r_fb = { 0, 0, dev->display_width, dev->display_height }; /* Overlay window rectangle in framebuffer coordinates */ struct v4l2_rect r_overlay = { dev->overlay_out_left, dev->overlay_out_top, dev->compose_out.width, dev->compose_out.height }; dev->loop_vid_copy = rect_intersect(&dev->crop_cap, &dev->compose_out); dev->loop_vid_out = dev->loop_vid_copy; rect_scale(&dev->loop_vid_out, &dev->compose_out, &dev->crop_out); dev->loop_vid_out.left += dev->crop_out.left; dev->loop_vid_out.top += dev->crop_out.top; dev->loop_vid_cap = dev->loop_vid_copy; rect_scale(&dev->loop_vid_cap, &dev->crop_cap, &dev->compose_cap); dprintk(dev, 1, "loop_vid_copy: %dx%d@%dx%d loop_vid_out: %dx%d@%dx%d loop_vid_cap: %dx%d@%dx%d\n", dev->loop_vid_copy.width, dev->loop_vid_copy.height, dev->loop_vid_copy.left, dev->loop_vid_copy.top, dev->loop_vid_out.width, dev->loop_vid_out.height, dev->loop_vid_out.left, dev->loop_vid_out.top, dev->loop_vid_cap.width, dev->loop_vid_cap.height, dev->loop_vid_cap.left, dev->loop_vid_cap.top); r_overlay = rect_intersect(&r_fb, &r_overlay); /* shift r_overlay to the same origin as compose_out */ r_overlay.left += dev->compose_out.left - dev->overlay_out_left; r_overlay.top += dev->compose_out.top - dev->overlay_out_top; dev->loop_vid_overlay = rect_intersect(&r_overlay, &dev->loop_vid_copy); dev->loop_fb_copy = dev->loop_vid_overlay; /* shift dev->loop_fb_copy back again to the fb origin */ dev->loop_fb_copy.left -= dev->compose_out.left - dev->overlay_out_left; dev->loop_fb_copy.top -= dev->compose_out.top - dev->overlay_out_top; dev->loop_vid_overlay_cap = dev->loop_vid_overlay; rect_scale(&dev->loop_vid_overlay_cap, &dev->crop_cap, &dev->compose_cap); dprintk(dev, 1, "loop_fb_copy: %dx%d@%dx%d loop_vid_overlay: %dx%d@%dx%d loop_vid_overlay_cap: %dx%d@%dx%d\n", dev->loop_fb_copy.width, dev->loop_fb_copy.height, dev->loop_fb_copy.left, dev->loop_fb_copy.top, dev->loop_vid_overlay.width, dev->loop_vid_overlay.height, dev->loop_vid_overlay.left, dev->loop_vid_overlay.top, dev->loop_vid_overlay_cap.width, dev->loop_vid_overlay_cap.height, dev->loop_vid_overlay_cap.left, dev->loop_vid_overlay_cap.top); } static void *plane_vaddr(struct tpg_data *tpg, struct vivid_buffer *buf, unsigned p, unsigned bpl[TPG_MAX_PLANES], unsigned h) { unsigned i; void *vbuf; if (p == 0 || tpg_g_buffers(tpg) > 1) return vb2_plane_vaddr(&buf->vb, p); vbuf = vb2_plane_vaddr(&buf->vb, 0); for (i = 0; i < p; i++) vbuf += bpl[i] * h / tpg->vdownsampling[i]; return vbuf; } static int vivid_copy_buffer(struct vivid_dev *dev, unsigned p, u8 *vcapbuf, struct vivid_buffer *vid_cap_buf) { bool blank = dev->must_blank[vid_cap_buf->vb.v4l2_buf.index]; struct tpg_data *tpg = &dev->tpg; struct vivid_buffer *vid_out_buf = NULL; unsigned vdiv = dev->fmt_out->vdownsampling[p]; unsigned twopixsize = tpg_g_twopixelsize(tpg, p); unsigned img_width = tpg_hdiv(tpg, p, dev->compose_cap.width); unsigned img_height = dev->compose_cap.height; unsigned stride_cap = tpg->bytesperline[p]; unsigned stride_out = dev->bytesperline_out[p]; unsigned stride_osd = dev->display_byte_stride; unsigned hmax = (img_height * tpg->perc_fill) / 100; u8 *voutbuf; u8 *vosdbuf = NULL; unsigned y; bool blend = dev->bitmap_out || dev->clipcount_out || dev->fbuf_out_flags; /* Coarse scaling with Bresenham */ unsigned vid_out_int_part; unsigned vid_out_fract_part; unsigned vid_out_y = 0; unsigned vid_out_error = 0; unsigned vid_overlay_int_part = 0; unsigned vid_overlay_fract_part = 0; unsigned vid_overlay_y = 0; unsigned vid_overlay_error = 0; unsigned vid_cap_left = tpg_hdiv(tpg, p, dev->loop_vid_cap.left); unsigned vid_cap_right; bool quick; vid_out_int_part = dev->loop_vid_out.height / dev->loop_vid_cap.height; vid_out_fract_part = dev->loop_vid_out.height % dev->loop_vid_cap.height; if (!list_empty(&dev->vid_out_active)) vid_out_buf = list_entry(dev->vid_out_active.next, struct vivid_buffer, list); if (vid_out_buf == NULL) return -ENODATA; vid_cap_buf->vb.v4l2_buf.field = vid_out_buf->vb.v4l2_buf.field; voutbuf = plane_vaddr(tpg, vid_out_buf, p, dev->bytesperline_out, dev->fmt_out_rect.height); if (p < dev->fmt_out->buffers) voutbuf += vid_out_buf->vb.v4l2_planes[p].data_offset; voutbuf += tpg_hdiv(tpg, p, dev->loop_vid_out.left) + (dev->loop_vid_out.top / vdiv) * stride_out; vcapbuf += tpg_hdiv(tpg, p, dev->compose_cap.left) + (dev->compose_cap.top / vdiv) * stride_cap; if (dev->loop_vid_copy.width == 0 || dev->loop_vid_copy.height == 0) { /* * If there is nothing to copy, then just fill the capture window * with black. */ for (y = 0; y < hmax / vdiv; y++, vcapbuf += stride_cap) memcpy(vcapbuf, tpg->black_line[p], img_width); return 0; } if (dev->overlay_out_enabled && dev->loop_vid_overlay.width && dev->loop_vid_overlay.height) { vosdbuf = dev->video_vbase; vosdbuf += (dev->loop_fb_copy.left * twopixsize) / 2 + dev->loop_fb_copy.top * stride_osd; vid_overlay_int_part = dev->loop_vid_overlay.height / dev->loop_vid_overlay_cap.height; vid_overlay_fract_part = dev->loop_vid_overlay.height % dev->loop_vid_overlay_cap.height; } vid_cap_right = tpg_hdiv(tpg, p, dev->loop_vid_cap.left + dev->loop_vid_cap.width); /* quick is true if no video scaling is needed */ quick = dev->loop_vid_out.width == dev->loop_vid_cap.width; dev->cur_scaled_line = dev->loop_vid_out.height; for (y = 0; y < hmax; y += vdiv, vcapbuf += stride_cap) { /* osdline is true if this line requires overlay blending */ bool osdline = vosdbuf && y >= dev->loop_vid_overlay_cap.top && y < dev->loop_vid_overlay_cap.top + dev->loop_vid_overlay_cap.height; /* * If this line of the capture buffer doesn't get any video, then * just fill with black. */ if (y < dev->loop_vid_cap.top || y >= dev->loop_vid_cap.top + dev->loop_vid_cap.height) { memcpy(vcapbuf, tpg->black_line[p], img_width); continue; } /* fill the left border with black */ if (dev->loop_vid_cap.left) memcpy(vcapbuf, tpg->black_line[p], vid_cap_left); /* fill the right border with black */ if (vid_cap_right < img_width) memcpy(vcapbuf + vid_cap_right, tpg->black_line[p], img_width - vid_cap_right); if (quick && !osdline) { memcpy(vcapbuf + vid_cap_left, voutbuf + vid_out_y * stride_out, tpg_hdiv(tpg, p, dev->loop_vid_cap.width)); goto update_vid_out_y; } if (dev->cur_scaled_line == vid_out_y) { memcpy(vcapbuf + vid_cap_left, dev->scaled_line, tpg_hdiv(tpg, p, dev->loop_vid_cap.width)); goto update_vid_out_y; } if (!osdline) { scale_line(voutbuf + vid_out_y * stride_out, dev->scaled_line, tpg_hdiv(tpg, p, dev->loop_vid_out.width), tpg_hdiv(tpg, p, dev->loop_vid_cap.width), tpg_g_twopixelsize(tpg, p)); } else { /* * Offset in bytes within loop_vid_copy to the start of the * loop_vid_overlay rectangle. */ unsigned offset = ((dev->loop_vid_overlay.left - dev->loop_vid_copy.left) * twopixsize) / 2; u8 *osd = vosdbuf + vid_overlay_y * stride_osd; scale_line(voutbuf + vid_out_y * stride_out, dev->blended_line, dev->loop_vid_out.width, dev->loop_vid_copy.width, tpg_g_twopixelsize(tpg, p)); if (blend) blend_line(dev, vid_overlay_y + dev->loop_vid_overlay.top, dev->loop_vid_overlay.left, dev->blended_line + offset, osd, dev->loop_vid_overlay.width, twopixsize / 2); else memcpy(dev->blended_line + offset, osd, (dev->loop_vid_overlay.width * twopixsize) / 2); scale_line(dev->blended_line, dev->scaled_line, dev->loop_vid_copy.width, dev->loop_vid_cap.width, tpg_g_twopixelsize(tpg, p)); } dev->cur_scaled_line = vid_out_y; memcpy(vcapbuf + vid_cap_left, dev->scaled_line, tpg_hdiv(tpg, p, dev->loop_vid_cap.width)); update_vid_out_y: if (osdline) { vid_overlay_y += vid_overlay_int_part; vid_overlay_error += vid_overlay_fract_part; if (vid_overlay_error >= dev->loop_vid_overlay_cap.height) { vid_overlay_error -= dev->loop_vid_overlay_cap.height; vid_overlay_y++; } } vid_out_y += vid_out_int_part; vid_out_error += vid_out_fract_part; if (vid_out_error >= dev->loop_vid_cap.height / vdiv) { vid_out_error -= dev->loop_vid_cap.height / vdiv; vid_out_y++; } } if (!blank) return 0; for (; y < img_height; y += vdiv, vcapbuf += stride_cap) memcpy(vcapbuf, tpg->contrast_line[p], img_width); return 0; } static void vivid_fillbuff(struct vivid_dev *dev, struct vivid_buffer *buf) { struct tpg_data *tpg = &dev->tpg; unsigned factor = V4L2_FIELD_HAS_T_OR_B(dev->field_cap) ? 2 : 1; unsigned line_height = 16 / factor; bool is_tv = vivid_is_sdtv_cap(dev); bool is_60hz = is_tv && (dev->std_cap & V4L2_STD_525_60); unsigned p; int line = 1; u8 *basep[TPG_MAX_PLANES][2]; unsigned ms; char str[100]; s32 gain; bool is_loop = false; if (dev->loop_video && dev->can_loop_video && ((vivid_is_svid_cap(dev) && !VIVID_INVALID_SIGNAL(dev->std_signal_mode)) || (vivid_is_hdmi_cap(dev) && !VIVID_INVALID_SIGNAL(dev->dv_timings_signal_mode)))) is_loop = true; buf->vb.v4l2_buf.sequence = dev->vid_cap_seq_count; /* * Take the timestamp now if the timestamp source is set to * "Start of Exposure". */ if (dev->tstamp_src_is_soe) v4l2_get_timestamp(&buf->vb.v4l2_buf.timestamp); if (dev->field_cap == V4L2_FIELD_ALTERNATE) { /* * 60 Hz standards start with the bottom field, 50 Hz standards * with the top field. So if the 0-based seq_count is even, * then the field is TOP for 50 Hz and BOTTOM for 60 Hz * standards. */ buf->vb.v4l2_buf.field = ((dev->vid_cap_seq_count & 1) ^ is_60hz) ? V4L2_FIELD_BOTTOM : V4L2_FIELD_TOP; /* * The sequence counter counts frames, not fields. So divide * by two. */ buf->vb.v4l2_buf.sequence /= 2; } else { buf->vb.v4l2_buf.field = dev->field_cap; } tpg_s_field(tpg, buf->vb.v4l2_buf.field, dev->field_cap == V4L2_FIELD_ALTERNATE); tpg_s_perc_fill_blank(tpg, dev->must_blank[buf->vb.v4l2_buf.index]); vivid_precalc_copy_rects(dev); for (p = 0; p < tpg_g_planes(tpg); p++) { void *vbuf = plane_vaddr(tpg, buf, p, tpg->bytesperline, tpg->buf_height); /* * The first plane of a multiplanar format has a non-zero * data_offset. This helps testing whether the application * correctly supports non-zero data offsets. */ if (p < tpg_g_buffers(tpg) && dev->fmt_cap->data_offset[p]) { memset(vbuf, dev->fmt_cap->data_offset[p] & 0xff, dev->fmt_cap->data_offset[p]); vbuf += dev->fmt_cap->data_offset[p]; } tpg_calc_text_basep(tpg, basep, p, vbuf); if (!is_loop || vivid_copy_buffer(dev, p, vbuf, buf)) tpg_fill_plane_buffer(tpg, vivid_get_std_cap(dev), p, vbuf); } dev->must_blank[buf->vb.v4l2_buf.index] = false; /* Updates stream time, only update at the start of a new frame. */ if (dev->field_cap != V4L2_FIELD_ALTERNATE || (buf->vb.v4l2_buf.sequence & 1) == 0) dev->ms_vid_cap = jiffies_to_msecs(jiffies - dev->jiffies_vid_cap); ms = dev->ms_vid_cap; if (dev->osd_mode <= 1) { snprintf(str, sizeof(str), " %02d:%02d:%02d:%03d %u%s", (ms / (60 * 60 * 1000)) % 24, (ms / (60 * 1000)) % 60, (ms / 1000) % 60, ms % 1000, buf->vb.v4l2_buf.sequence, (dev->field_cap == V4L2_FIELD_ALTERNATE) ? (buf->vb.v4l2_buf.field == V4L2_FIELD_TOP ? " top" : " bottom") : ""); tpg_gen_text(tpg, basep, line++ * line_height, 16, str); } if (dev->osd_mode == 0) { snprintf(str, sizeof(str), " %dx%d, input %d ", dev->src_rect.width, dev->src_rect.height, dev->input); tpg_gen_text(tpg, basep, line++ * line_height, 16, str); gain = v4l2_ctrl_g_ctrl(dev->gain); mutex_lock(dev->ctrl_hdl_user_vid.lock); snprintf(str, sizeof(str), " brightness %3d, contrast %3d, saturation %3d, hue %d ", dev->brightness->cur.val, dev->contrast->cur.val, dev->saturation->cur.val, dev->hue->cur.val); tpg_gen_text(tpg, basep, line++ * line_height, 16, str); snprintf(str, sizeof(str), " autogain %d, gain %3d, alpha 0x%02x ", dev->autogain->cur.val, gain, dev->alpha->cur.val); mutex_unlock(dev->ctrl_hdl_user_vid.lock); tpg_gen_text(tpg, basep, line++ * line_height, 16, str); mutex_lock(dev->ctrl_hdl_user_aud.lock); snprintf(str, sizeof(str), " volume %3d, mute %d ", dev->volume->cur.val, dev->mute->cur.val); mutex_unlock(dev->ctrl_hdl_user_aud.lock); tpg_gen_text(tpg, basep, line++ * line_height, 16, str); mutex_lock(dev->ctrl_hdl_user_gen.lock); snprintf(str, sizeof(str), " int32 %d, int64 %lld, bitmask %08x ", dev->int32->cur.val, *dev->int64->p_cur.p_s64, dev->bitmask->cur.val); tpg_gen_text(tpg, basep, line++ * line_height, 16, str); snprintf(str, sizeof(str), " boolean %d, menu %s, string \"%s\" ", dev->boolean->cur.val, dev->menu->qmenu[dev->menu->cur.val], dev->string->p_cur.p_char); tpg_gen_text(tpg, basep, line++ * line_height, 16, str); snprintf(str, sizeof(str), " integer_menu %lld, value %d ", dev->int_menu->qmenu_int[dev->int_menu->cur.val], dev->int_menu->cur.val); mutex_unlock(dev->ctrl_hdl_user_gen.lock); tpg_gen_text(tpg, basep, line++ * line_height, 16, str); if (dev->button_pressed) { dev->button_pressed--; snprintf(str, sizeof(str), " button pressed!"); tpg_gen_text(tpg, basep, line++ * line_height, 16, str); } } /* * If "End of Frame" is specified at the timestamp source, then take * the timestamp now. */ if (!dev->tstamp_src_is_soe) v4l2_get_timestamp(&buf->vb.v4l2_buf.timestamp); buf->vb.v4l2_buf.timestamp.tv_sec += dev->time_wrap_offset; } /* * Return true if this pixel coordinate is a valid video pixel. */ static bool valid_pix(struct vivid_dev *dev, int win_y, int win_x, int fb_y, int fb_x) { int i; if (dev->bitmap_cap) { /* * Only if the corresponding bit in the bitmap is set can * the video pixel be shown. Coordinates are relative to * the overlay window set by VIDIOC_S_FMT. */ const u8 *p = dev->bitmap_cap; unsigned stride = (dev->compose_cap.width + 7) / 8; if (!(p[stride * win_y + win_x / 8] & (1 << (win_x & 7)))) return false; } for (i = 0; i < dev->clipcount_cap; i++) { /* * Only if the framebuffer coordinate is not in any of the * clip rectangles will be video pixel be shown. */ struct v4l2_rect *r = &dev->clips_cap[i].c; if (fb_y >= r->top && fb_y < r->top + r->height && fb_x >= r->left && fb_x < r->left + r->width) return false; } return true; } /* * Draw the image into the overlay buffer. * Note that the combination of overlay and multiplanar is not supported. */ static void vivid_overlay(struct vivid_dev *dev, struct vivid_buffer *buf) { struct tpg_data *tpg = &dev->tpg; unsigned pixsize = tpg_g_twopixelsize(tpg, 0) / 2; void *vbase = dev->fb_vbase_cap; void *vbuf = vb2_plane_vaddr(&buf->vb, 0); unsigned img_width = dev->compose_cap.width; unsigned img_height = dev->compose_cap.height; unsigned stride = tpg->bytesperline[0]; /* if quick is true, then valid_pix() doesn't have to be called */ bool quick = dev->bitmap_cap == NULL && dev->clipcount_cap == 0; int x, y, w, out_x = 0; /* * Overlay support is only supported for formats that have a twopixelsize * that's >= 2. Warn and bail out if that's not the case. */ if (WARN_ON(pixsize == 0)) return; if ((dev->overlay_cap_field == V4L2_FIELD_TOP || dev->overlay_cap_field == V4L2_FIELD_BOTTOM) && dev->overlay_cap_field != buf->vb.v4l2_buf.field) return; vbuf += dev->compose_cap.left * pixsize + dev->compose_cap.top * stride; x = dev->overlay_cap_left; w = img_width; if (x < 0) { out_x = -x; w = w - out_x; x = 0; } else { w = dev->fb_cap.fmt.width - x; if (w > img_width) w = img_width; } if (w <= 0) return; if (dev->overlay_cap_top >= 0) vbase += dev->overlay_cap_top * dev->fb_cap.fmt.bytesperline; for (y = dev->overlay_cap_top; y < dev->overlay_cap_top + (int)img_height; y++, vbuf += stride) { int px; if (y < 0 || y > dev->fb_cap.fmt.height) continue; if (quick) { memcpy(vbase + x * pixsize, vbuf + out_x * pixsize, w * pixsize); vbase += dev->fb_cap.fmt.bytesperline; continue; } for (px = 0; px < w; px++) { if (!valid_pix(dev, y - dev->overlay_cap_top, px + out_x, y, px + x)) continue; memcpy(vbase + (px + x) * pixsize, vbuf + (px + out_x) * pixsize, pixsize); } vbase += dev->fb_cap.fmt.bytesperline; } } static void vivid_thread_vid_cap_tick(struct vivid_dev *dev, int dropped_bufs) { struct vivid_buffer *vid_cap_buf = NULL; struct vivid_buffer *vbi_cap_buf = NULL; dprintk(dev, 1, "Video Capture Thread Tick\n"); while (dropped_bufs-- > 1) tpg_update_mv_count(&dev->tpg, dev->field_cap == V4L2_FIELD_NONE || dev->field_cap == V4L2_FIELD_ALTERNATE); /* Drop a certain percentage of buffers. */ if (dev->perc_dropped_buffers && prandom_u32_max(100) < dev->perc_dropped_buffers) goto update_mv; spin_lock(&dev->slock); if (!list_empty(&dev->vid_cap_active)) { vid_cap_buf = list_entry(dev->vid_cap_active.next, struct vivid_buffer, list); list_del(&vid_cap_buf->list); } if (!list_empty(&dev->vbi_cap_active)) { if (dev->field_cap != V4L2_FIELD_ALTERNATE || (dev->vbi_cap_seq_count & 1)) { vbi_cap_buf = list_entry(dev->vbi_cap_active.next, struct vivid_buffer, list); list_del(&vbi_cap_buf->list); } } spin_unlock(&dev->slock); if (!vid_cap_buf && !vbi_cap_buf) goto update_mv; if (vid_cap_buf) { /* Fill buffer */ vivid_fillbuff(dev, vid_cap_buf); dprintk(dev, 1, "filled buffer %d\n", vid_cap_buf->vb.v4l2_buf.index); /* Handle overlay */ if (dev->overlay_cap_owner && dev->fb_cap.base && dev->fb_cap.fmt.pixelformat == dev->fmt_cap->fourcc) vivid_overlay(dev, vid_cap_buf); vb2_buffer_done(&vid_cap_buf->vb, dev->dqbuf_error ? VB2_BUF_STATE_ERROR : VB2_BUF_STATE_DONE); dprintk(dev, 2, "vid_cap buffer %d done\n", vid_cap_buf->vb.v4l2_buf.index); } if (vbi_cap_buf) { if (dev->stream_sliced_vbi_cap) vivid_sliced_vbi_cap_process(dev, vbi_cap_buf); else vivid_raw_vbi_cap_process(dev, vbi_cap_buf); vb2_buffer_done(&vbi_cap_buf->vb, dev->dqbuf_error ? VB2_BUF_STATE_ERROR : VB2_BUF_STATE_DONE); dprintk(dev, 2, "vbi_cap %d done\n", vbi_cap_buf->vb.v4l2_buf.index); } dev->dqbuf_error = false; update_mv: /* Update the test pattern movement counters */ tpg_update_mv_count(&dev->tpg, dev->field_cap == V4L2_FIELD_NONE || dev->field_cap == V4L2_FIELD_ALTERNATE); } static int vivid_thread_vid_cap(void *data) { struct vivid_dev *dev = data; u64 numerators_since_start; u64 buffers_since_start; u64 next_jiffies_since_start; unsigned long jiffies_since_start; unsigned long cur_jiffies; unsigned wait_jiffies; unsigned numerator; unsigned denominator; int dropped_bufs; dprintk(dev, 1, "Video Capture Thread Start\n"); set_freezable(); /* Resets frame counters */ dev->cap_seq_offset = 0; dev->cap_seq_count = 0; dev->cap_seq_resync = false; dev->jiffies_vid_cap = jiffies; for (;;) { try_to_freeze(); if (kthread_should_stop()) break; mutex_lock(&dev->mutex); cur_jiffies = jiffies; if (dev->cap_seq_resync) { dev->jiffies_vid_cap = cur_jiffies; dev->cap_seq_offset = dev->cap_seq_count + 1; dev->cap_seq_count = 0; dev->cap_seq_resync = false; } numerator = dev->timeperframe_vid_cap.numerator; denominator = dev->timeperframe_vid_cap.denominator; if (dev->field_cap == V4L2_FIELD_ALTERNATE) denominator *= 2; /* Calculate the number of jiffies since we started streaming */ jiffies_since_start = cur_jiffies - dev->jiffies_vid_cap; /* Get the number of buffers streamed since the start */ buffers_since_start = (u64)jiffies_since_start * denominator + (HZ * numerator) / 2; do_div(buffers_since_start, HZ * numerator); /* * After more than 0xf0000000 (rounded down to a multiple of * 'jiffies-per-day' to ease jiffies_to_msecs calculation) * jiffies have passed since we started streaming reset the * counters and keep track of the sequence offset. */ if (jiffies_since_start > JIFFIES_RESYNC) { dev->jiffies_vid_cap = cur_jiffies; dev->cap_seq_offset = buffers_since_start; buffers_since_start = 0; } dropped_bufs = buffers_since_start + dev->cap_seq_offset - dev->cap_seq_count; dev->cap_seq_count = buffers_since_start + dev->cap_seq_offset; dev->vid_cap_seq_count = dev->cap_seq_count - dev->vid_cap_seq_start; dev->vbi_cap_seq_count = dev->cap_seq_count - dev->vbi_cap_seq_start; vivid_thread_vid_cap_tick(dev, dropped_bufs); /* * Calculate the number of 'numerators' streamed since we started, * including the current buffer. */ numerators_since_start = ++buffers_since_start * numerator; /* And the number of jiffies since we started */ jiffies_since_start = jiffies - dev->jiffies_vid_cap; mutex_unlock(&dev->mutex); /* * Calculate when that next buffer is supposed to start * in jiffies since we started streaming. */ next_jiffies_since_start = numerators_since_start * HZ + denominator / 2; do_div(next_jiffies_since_start, denominator); /* If it is in the past, then just schedule asap */ if (next_jiffies_since_start < jiffies_since_start) next_jiffies_since_start = jiffies_since_start; wait_jiffies = next_jiffies_since_start - jiffies_since_start; schedule_timeout_interruptible(wait_jiffies ? wait_jiffies : 1); } dprintk(dev, 1, "Video Capture Thread End\n"); return 0; } static void vivid_grab_controls(struct vivid_dev *dev, bool grab) { v4l2_ctrl_grab(dev->ctrl_has_crop_cap, grab); v4l2_ctrl_grab(dev->ctrl_has_compose_cap, grab); v4l2_ctrl_grab(dev->ctrl_has_scaler_cap, grab); } int vivid_start_generating_vid_cap(struct vivid_dev *dev, bool *pstreaming) { dprintk(dev, 1, "%s\n", __func__); if (dev->kthread_vid_cap) { u32 seq_count = dev->cap_seq_count + dev->seq_wrap * 128; if (pstreaming == &dev->vid_cap_streaming) dev->vid_cap_seq_start = seq_count; else dev->vbi_cap_seq_start = seq_count; *pstreaming = true; return 0; } /* Resets frame counters */ tpg_init_mv_count(&dev->tpg); dev->vid_cap_seq_start = dev->seq_wrap * 128; dev->vbi_cap_seq_start = dev->seq_wrap * 128; dev->kthread_vid_cap = kthread_run(vivid_thread_vid_cap, dev, "%s-vid-cap", dev->v4l2_dev.name); if (IS_ERR(dev->kthread_vid_cap)) { v4l2_err(&dev->v4l2_dev, "kernel_thread() failed\n"); return PTR_ERR(dev->kthread_vid_cap); } *pstreaming = true; vivid_grab_controls(dev, true); dprintk(dev, 1, "returning from %s\n", __func__); return 0; } void vivid_stop_generating_vid_cap(struct vivid_dev *dev, bool *pstreaming) { dprintk(dev, 1, "%s\n", __func__); if (dev->kthread_vid_cap == NULL) return; *pstreaming = false; if (pstreaming == &dev->vid_cap_streaming) { /* Release all active buffers */ while (!list_empty(&dev->vid_cap_active)) { struct vivid_buffer *buf; buf = list_entry(dev->vid_cap_active.next, struct vivid_buffer, list); list_del(&buf->list); vb2_buffer_done(&buf->vb, VB2_BUF_STATE_ERROR); dprintk(dev, 2, "vid_cap buffer %d done\n", buf->vb.v4l2_buf.index); } } if (pstreaming == &dev->vbi_cap_streaming) { while (!list_empty(&dev->vbi_cap_active)) { struct vivid_buffer *buf; buf = list_entry(dev->vbi_cap_active.next, struct vivid_buffer, list); list_del(&buf->list); vb2_buffer_done(&buf->vb, VB2_BUF_STATE_ERROR); dprintk(dev, 2, "vbi_cap buffer %d done\n", buf->vb.v4l2_buf.index); } } if (dev->vid_cap_streaming || dev->vbi_cap_streaming) return; /* shutdown control thread */ vivid_grab_controls(dev, false); mutex_unlock(&dev->mutex); kthread_stop(dev->kthread_vid_cap); dev->kthread_vid_cap = NULL; mutex_lock(&dev->mutex); }