/* * ddbridge.c: Digital Devices PCIe bridge driver * * Copyright (C) 2010-2011 Digital Devices GmbH * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 only, as published by the Free Software Foundation. * * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA * Or, point your browser to http://www.gnu.org/copyleft/gpl.html */ #include <linux/module.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/poll.h> #include <linux/io.h> #include <linux/pci.h> #include <linux/pci_ids.h> #include <linux/timer.h> #include <linux/i2c.h> #include <linux/swab.h> #include <linux/vmalloc.h> #include "ddbridge.h" #include "ddbridge-regs.h" #include "tda18271c2dd.h" #include "stv6110x.h" #include "stv090x.h" #include "lnbh24.h" #include "drxk.h" DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr); /* MSI had problems with lost interrupts, fixed but needs testing */ #undef CONFIG_PCI_MSI /******************************************************************************/ static int i2c_read(struct i2c_adapter *adapter, u8 adr, u8 *val) { struct i2c_msg msgs[1] = {{.addr = adr, .flags = I2C_M_RD, .buf = val, .len = 1 } }; return (i2c_transfer(adapter, msgs, 1) == 1) ? 0 : -1; } static int i2c_read_reg(struct i2c_adapter *adapter, u8 adr, u8 reg, u8 *val) { struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0, .buf = ®, .len = 1 }, {.addr = adr, .flags = I2C_M_RD, .buf = val, .len = 1 } }; return (i2c_transfer(adapter, msgs, 2) == 2) ? 0 : -1; } static int i2c_read_reg16(struct i2c_adapter *adapter, u8 adr, u16 reg, u8 *val) { u8 msg[2] = {reg>>8, reg&0xff}; struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0, .buf = msg, .len = 2}, {.addr = adr, .flags = I2C_M_RD, .buf = val, .len = 1} }; return (i2c_transfer(adapter, msgs, 2) == 2) ? 0 : -1; } static int ddb_i2c_cmd(struct ddb_i2c *i2c, u32 adr, u32 cmd) { struct ddb *dev = i2c->dev; int stat; u32 val; i2c->done = 0; ddbwritel((adr << 9) | cmd, i2c->regs + I2C_COMMAND); stat = wait_event_timeout(i2c->wq, i2c->done == 1, HZ); if (stat <= 0) { printk(KERN_ERR "I2C timeout\n"); { /* MSI debugging*/ u32 istat = ddbreadl(INTERRUPT_STATUS); printk(KERN_ERR "IRS %08x\n", istat); ddbwritel(istat, INTERRUPT_ACK); } return -EIO; } val = ddbreadl(i2c->regs+I2C_COMMAND); if (val & 0x70000) return -EIO; return 0; } static int ddb_i2c_master_xfer(struct i2c_adapter *adapter, struct i2c_msg msg[], int num) { struct ddb_i2c *i2c = (struct ddb_i2c *)i2c_get_adapdata(adapter); struct ddb *dev = i2c->dev; u8 addr = 0; if (num) addr = msg[0].addr; if (num == 2 && msg[1].flags & I2C_M_RD && !(msg[0].flags & I2C_M_RD)) { memcpy_toio(dev->regs + I2C_TASKMEM_BASE + i2c->wbuf, msg[0].buf, msg[0].len); ddbwritel(msg[0].len|(msg[1].len << 16), i2c->regs+I2C_TASKLENGTH); if (!ddb_i2c_cmd(i2c, addr, 1)) { memcpy_fromio(msg[1].buf, dev->regs + I2C_TASKMEM_BASE + i2c->rbuf, msg[1].len); return num; } } if (num == 1 && !(msg[0].flags & I2C_M_RD)) { ddbcpyto(I2C_TASKMEM_BASE + i2c->wbuf, msg[0].buf, msg[0].len); ddbwritel(msg[0].len, i2c->regs + I2C_TASKLENGTH); if (!ddb_i2c_cmd(i2c, addr, 2)) return num; } if (num == 1 && (msg[0].flags & I2C_M_RD)) { ddbwritel(msg[0].len << 16, i2c->regs + I2C_TASKLENGTH); if (!ddb_i2c_cmd(i2c, addr, 3)) { ddbcpyfrom(msg[0].buf, I2C_TASKMEM_BASE + i2c->rbuf, msg[0].len); return num; } } return -EIO; } static u32 ddb_i2c_functionality(struct i2c_adapter *adap) { return I2C_FUNC_SMBUS_EMUL; } static struct i2c_algorithm ddb_i2c_algo = { .master_xfer = ddb_i2c_master_xfer, .functionality = ddb_i2c_functionality, }; static void ddb_i2c_release(struct ddb *dev) { int i; struct ddb_i2c *i2c; struct i2c_adapter *adap; for (i = 0; i < dev->info->port_num; i++) { i2c = &dev->i2c[i]; adap = &i2c->adap; i2c_del_adapter(adap); } } static int ddb_i2c_init(struct ddb *dev) { int i, j, stat = 0; struct ddb_i2c *i2c; struct i2c_adapter *adap; for (i = 0; i < dev->info->port_num; i++) { i2c = &dev->i2c[i]; i2c->dev = dev; i2c->nr = i; i2c->wbuf = i * (I2C_TASKMEM_SIZE / 4); i2c->rbuf = i2c->wbuf + (I2C_TASKMEM_SIZE / 8); i2c->regs = 0x80 + i * 0x20; ddbwritel(I2C_SPEED_100, i2c->regs + I2C_TIMING); ddbwritel((i2c->rbuf << 16) | i2c->wbuf, i2c->regs + I2C_TASKADDRESS); init_waitqueue_head(&i2c->wq); adap = &i2c->adap; i2c_set_adapdata(adap, i2c); #ifdef I2C_ADAP_CLASS_TV_DIGITAL adap->class = I2C_ADAP_CLASS_TV_DIGITAL|I2C_CLASS_TV_ANALOG; #else #ifdef I2C_CLASS_TV_ANALOG adap->class = I2C_CLASS_TV_ANALOG; #endif #endif strcpy(adap->name, "ddbridge"); adap->algo = &ddb_i2c_algo; adap->algo_data = (void *)i2c; adap->dev.parent = &dev->pdev->dev; stat = i2c_add_adapter(adap); if (stat) break; } if (stat) for (j = 0; j < i; j++) { i2c = &dev->i2c[j]; adap = &i2c->adap; i2c_del_adapter(adap); } return stat; } /******************************************************************************/ /******************************************************************************/ /******************************************************************************/ #if 0 static void set_table(struct ddb *dev, u32 off, dma_addr_t *pbuf, u32 num) { u32 i, base; u64 mem; base = DMA_BASE_ADDRESS_TABLE + off; for (i = 0; i < num; i++) { mem = pbuf[i]; ddbwritel(mem & 0xffffffff, base + i * 8); ddbwritel(mem >> 32, base + i * 8 + 4); } } #endif static void ddb_address_table(struct ddb *dev) { u32 i, j, base; u64 mem; dma_addr_t *pbuf; for (i = 0; i < dev->info->port_num * 2; i++) { base = DMA_BASE_ADDRESS_TABLE + i * 0x100; pbuf = dev->input[i].pbuf; for (j = 0; j < dev->input[i].dma_buf_num; j++) { mem = pbuf[j]; ddbwritel(mem & 0xffffffff, base + j * 8); ddbwritel(mem >> 32, base + j * 8 + 4); } } for (i = 0; i < dev->info->port_num; i++) { base = DMA_BASE_ADDRESS_TABLE + 0x800 + i * 0x100; pbuf = dev->output[i].pbuf; for (j = 0; j < dev->output[i].dma_buf_num; j++) { mem = pbuf[j]; ddbwritel(mem & 0xffffffff, base + j * 8); ddbwritel(mem >> 32, base + j * 8 + 4); } } } static void io_free(struct pci_dev *pdev, u8 **vbuf, dma_addr_t *pbuf, u32 size, int num) { int i; for (i = 0; i < num; i++) { if (vbuf[i]) { pci_free_consistent(pdev, size, vbuf[i], pbuf[i]); vbuf[i] = NULL; } } } static int io_alloc(struct pci_dev *pdev, u8 **vbuf, dma_addr_t *pbuf, u32 size, int num) { int i; for (i = 0; i < num; i++) { vbuf[i] = pci_alloc_consistent(pdev, size, &pbuf[i]); if (!vbuf[i]) return -ENOMEM; } return 0; } static int ddb_buffers_alloc(struct ddb *dev) { int i; struct ddb_port *port; for (i = 0; i < dev->info->port_num; i++) { port = &dev->port[i]; switch (port->class) { case DDB_PORT_TUNER: if (io_alloc(dev->pdev, port->input[0]->vbuf, port->input[0]->pbuf, port->input[0]->dma_buf_size, port->input[0]->dma_buf_num) < 0) return -1; if (io_alloc(dev->pdev, port->input[1]->vbuf, port->input[1]->pbuf, port->input[1]->dma_buf_size, port->input[1]->dma_buf_num) < 0) return -1; break; case DDB_PORT_CI: if (io_alloc(dev->pdev, port->input[0]->vbuf, port->input[0]->pbuf, port->input[0]->dma_buf_size, port->input[0]->dma_buf_num) < 0) return -1; if (io_alloc(dev->pdev, port->output->vbuf, port->output->pbuf, port->output->dma_buf_size, port->output->dma_buf_num) < 0) return -1; break; default: break; } } ddb_address_table(dev); return 0; } static void ddb_buffers_free(struct ddb *dev) { int i; struct ddb_port *port; for (i = 0; i < dev->info->port_num; i++) { port = &dev->port[i]; io_free(dev->pdev, port->input[0]->vbuf, port->input[0]->pbuf, port->input[0]->dma_buf_size, port->input[0]->dma_buf_num); io_free(dev->pdev, port->input[1]->vbuf, port->input[1]->pbuf, port->input[1]->dma_buf_size, port->input[1]->dma_buf_num); io_free(dev->pdev, port->output->vbuf, port->output->pbuf, port->output->dma_buf_size, port->output->dma_buf_num); } } static void ddb_input_start(struct ddb_input *input) { struct ddb *dev = input->port->dev; spin_lock_irq(&input->lock); input->cbuf = 0; input->coff = 0; /* reset */ ddbwritel(0, TS_INPUT_CONTROL(input->nr)); ddbwritel(2, TS_INPUT_CONTROL(input->nr)); ddbwritel(0, TS_INPUT_CONTROL(input->nr)); ddbwritel((1 << 16) | (input->dma_buf_num << 11) | (input->dma_buf_size >> 7), DMA_BUFFER_SIZE(input->nr)); ddbwritel(0, DMA_BUFFER_ACK(input->nr)); ddbwritel(1, DMA_BASE_WRITE); ddbwritel(3, DMA_BUFFER_CONTROL(input->nr)); ddbwritel(9, TS_INPUT_CONTROL(input->nr)); input->running = 1; spin_unlock_irq(&input->lock); } static void ddb_input_stop(struct ddb_input *input) { struct ddb *dev = input->port->dev; spin_lock_irq(&input->lock); ddbwritel(0, TS_INPUT_CONTROL(input->nr)); ddbwritel(0, DMA_BUFFER_CONTROL(input->nr)); input->running = 0; spin_unlock_irq(&input->lock); } static void ddb_output_start(struct ddb_output *output) { struct ddb *dev = output->port->dev; spin_lock_irq(&output->lock); output->cbuf = 0; output->coff = 0; ddbwritel(0, TS_OUTPUT_CONTROL(output->nr)); ddbwritel(2, TS_OUTPUT_CONTROL(output->nr)); ddbwritel(0, TS_OUTPUT_CONTROL(output->nr)); ddbwritel(0x3c, TS_OUTPUT_CONTROL(output->nr)); ddbwritel((1 << 16) | (output->dma_buf_num << 11) | (output->dma_buf_size >> 7), DMA_BUFFER_SIZE(output->nr + 8)); ddbwritel(0, DMA_BUFFER_ACK(output->nr + 8)); ddbwritel(1, DMA_BASE_READ); ddbwritel(3, DMA_BUFFER_CONTROL(output->nr + 8)); /* ddbwritel(0xbd, TS_OUTPUT_CONTROL(output->nr)); */ ddbwritel(0x1d, TS_OUTPUT_CONTROL(output->nr)); output->running = 1; spin_unlock_irq(&output->lock); } static void ddb_output_stop(struct ddb_output *output) { struct ddb *dev = output->port->dev; spin_lock_irq(&output->lock); ddbwritel(0, TS_OUTPUT_CONTROL(output->nr)); ddbwritel(0, DMA_BUFFER_CONTROL(output->nr + 8)); output->running = 0; spin_unlock_irq(&output->lock); } static u32 ddb_output_free(struct ddb_output *output) { u32 idx, off, stat = output->stat; s32 diff; idx = (stat >> 11) & 0x1f; off = (stat & 0x7ff) << 7; if (output->cbuf != idx) { if ((((output->cbuf + 1) % output->dma_buf_num) == idx) && (output->dma_buf_size - output->coff <= 188)) return 0; return 188; } diff = off - output->coff; if (diff <= 0 || diff > 188) return 188; return 0; } static ssize_t ddb_output_write(struct ddb_output *output, const __user u8 *buf, size_t count) { struct ddb *dev = output->port->dev; u32 idx, off, stat = output->stat; u32 left = count, len; idx = (stat >> 11) & 0x1f; off = (stat & 0x7ff) << 7; while (left) { len = output->dma_buf_size - output->coff; if ((((output->cbuf + 1) % output->dma_buf_num) == idx) && (off == 0)) { if (len <= 188) break; len -= 188; } if (output->cbuf == idx) { if (off > output->coff) { #if 1 len = off - output->coff; len -= (len % 188); if (len <= 188) #endif break; len -= 188; } } if (len > left) len = left; if (copy_from_user(output->vbuf[output->cbuf] + output->coff, buf, len)) return -EIO; left -= len; buf += len; output->coff += len; if (output->coff == output->dma_buf_size) { output->coff = 0; output->cbuf = ((output->cbuf + 1) % output->dma_buf_num); } ddbwritel((output->cbuf << 11) | (output->coff >> 7), DMA_BUFFER_ACK(output->nr + 8)); } return count - left; } static u32 ddb_input_avail(struct ddb_input *input) { struct ddb *dev = input->port->dev; u32 idx, off, stat = input->stat; u32 ctrl = ddbreadl(DMA_BUFFER_CONTROL(input->nr)); idx = (stat >> 11) & 0x1f; off = (stat & 0x7ff) << 7; if (ctrl & 4) { printk(KERN_ERR "IA %d %d %08x\n", idx, off, ctrl); ddbwritel(input->stat, DMA_BUFFER_ACK(input->nr)); return 0; } if (input->cbuf != idx) return 188; return 0; } static ssize_t ddb_input_read(struct ddb_input *input, __user u8 *buf, size_t count) { struct ddb *dev = input->port->dev; u32 left = count; u32 idx, free, stat = input->stat; int ret; idx = (stat >> 11) & 0x1f; while (left) { if (input->cbuf == idx) return count - left; free = input->dma_buf_size - input->coff; if (free > left) free = left; ret = copy_to_user(buf, input->vbuf[input->cbuf] + input->coff, free); if (ret) return -EFAULT; input->coff += free; if (input->coff == input->dma_buf_size) { input->coff = 0; input->cbuf = (input->cbuf+1) % input->dma_buf_num; } left -= free; ddbwritel((input->cbuf << 11) | (input->coff >> 7), DMA_BUFFER_ACK(input->nr)); } return count; } /******************************************************************************/ /******************************************************************************/ /******************************************************************************/ #if 0 static struct ddb_input *fe2input(struct ddb *dev, struct dvb_frontend *fe) { int i; for (i = 0; i < dev->info->port_num * 2; i++) { if (dev->input[i].fe == fe) return &dev->input[i]; } return NULL; } #endif static int drxk_gate_ctrl(struct dvb_frontend *fe, int enable) { struct ddb_input *input = fe->sec_priv; struct ddb_port *port = input->port; int status; if (enable) { mutex_lock(&port->i2c_gate_lock); status = input->gate_ctrl(fe, 1); } else { status = input->gate_ctrl(fe, 0); mutex_unlock(&port->i2c_gate_lock); } return status; } static int demod_attach_drxk(struct ddb_input *input) { struct i2c_adapter *i2c = &input->port->i2c->adap; struct dvb_frontend *fe; struct drxk_config config; memset(&config, 0, sizeof(config)); config.microcode_name = "drxk_a3.mc"; config.qam_demod_parameter_count = 4; config.adr = 0x29 + (input->nr & 1); fe = input->fe = dvb_attach(drxk_attach, &config, i2c); if (!input->fe) { printk(KERN_ERR "No DRXK found!\n"); return -ENODEV; } fe->sec_priv = input; input->gate_ctrl = fe->ops.i2c_gate_ctrl; fe->ops.i2c_gate_ctrl = drxk_gate_ctrl; return 0; } static int tuner_attach_tda18271(struct ddb_input *input) { struct i2c_adapter *i2c = &input->port->i2c->adap; struct dvb_frontend *fe; if (input->fe->ops.i2c_gate_ctrl) input->fe->ops.i2c_gate_ctrl(input->fe, 1); fe = dvb_attach(tda18271c2dd_attach, input->fe, i2c, 0x60); if (!fe) { printk(KERN_ERR "No TDA18271 found!\n"); return -ENODEV; } if (input->fe->ops.i2c_gate_ctrl) input->fe->ops.i2c_gate_ctrl(input->fe, 0); return 0; } /******************************************************************************/ /******************************************************************************/ /******************************************************************************/ static struct stv090x_config stv0900 = { .device = STV0900, .demod_mode = STV090x_DUAL, .clk_mode = STV090x_CLK_EXT, .xtal = 27000000, .address = 0x69, .ts1_mode = STV090x_TSMODE_SERIAL_PUNCTURED, .ts2_mode = STV090x_TSMODE_SERIAL_PUNCTURED, .repeater_level = STV090x_RPTLEVEL_16, .adc1_range = STV090x_ADC_1Vpp, .adc2_range = STV090x_ADC_1Vpp, .diseqc_envelope_mode = true, }; static struct stv090x_config stv0900_aa = { .device = STV0900, .demod_mode = STV090x_DUAL, .clk_mode = STV090x_CLK_EXT, .xtal = 27000000, .address = 0x68, .ts1_mode = STV090x_TSMODE_SERIAL_PUNCTURED, .ts2_mode = STV090x_TSMODE_SERIAL_PUNCTURED, .repeater_level = STV090x_RPTLEVEL_16, .adc1_range = STV090x_ADC_1Vpp, .adc2_range = STV090x_ADC_1Vpp, .diseqc_envelope_mode = true, }; static struct stv6110x_config stv6110a = { .addr = 0x60, .refclk = 27000000, .clk_div = 1, }; static struct stv6110x_config stv6110b = { .addr = 0x63, .refclk = 27000000, .clk_div = 1, }; static int demod_attach_stv0900(struct ddb_input *input, int type) { struct i2c_adapter *i2c = &input->port->i2c->adap; struct stv090x_config *feconf = type ? &stv0900_aa : &stv0900; input->fe = dvb_attach(stv090x_attach, feconf, i2c, (input->nr & 1) ? STV090x_DEMODULATOR_1 : STV090x_DEMODULATOR_0); if (!input->fe) { printk(KERN_ERR "No STV0900 found!\n"); return -ENODEV; } if (!dvb_attach(lnbh24_attach, input->fe, i2c, 0, 0, (input->nr & 1) ? (0x09 - type) : (0x0b - type))) { printk(KERN_ERR "No LNBH24 found!\n"); return -ENODEV; } return 0; } static int tuner_attach_stv6110(struct ddb_input *input, int type) { struct i2c_adapter *i2c = &input->port->i2c->adap; struct stv090x_config *feconf = type ? &stv0900_aa : &stv0900; struct stv6110x_config *tunerconf = (input->nr & 1) ? &stv6110b : &stv6110a; struct stv6110x_devctl *ctl; ctl = dvb_attach(stv6110x_attach, input->fe, tunerconf, i2c); if (!ctl) { printk(KERN_ERR "No STV6110X found!\n"); return -ENODEV; } printk(KERN_INFO "attach tuner input %d adr %02x\n", input->nr, tunerconf->addr); feconf->tuner_init = ctl->tuner_init; feconf->tuner_sleep = ctl->tuner_sleep; feconf->tuner_set_mode = ctl->tuner_set_mode; feconf->tuner_set_frequency = ctl->tuner_set_frequency; feconf->tuner_get_frequency = ctl->tuner_get_frequency; feconf->tuner_set_bandwidth = ctl->tuner_set_bandwidth; feconf->tuner_get_bandwidth = ctl->tuner_get_bandwidth; feconf->tuner_set_bbgain = ctl->tuner_set_bbgain; feconf->tuner_get_bbgain = ctl->tuner_get_bbgain; feconf->tuner_set_refclk = ctl->tuner_set_refclk; feconf->tuner_get_status = ctl->tuner_get_status; return 0; } static int my_dvb_dmx_ts_card_init(struct dvb_demux *dvbdemux, char *id, int (*start_feed)(struct dvb_demux_feed *), int (*stop_feed)(struct dvb_demux_feed *), void *priv) { dvbdemux->priv = priv; dvbdemux->filternum = 256; dvbdemux->feednum = 256; dvbdemux->start_feed = start_feed; dvbdemux->stop_feed = stop_feed; dvbdemux->write_to_decoder = NULL; dvbdemux->dmx.capabilities = (DMX_TS_FILTERING | DMX_SECTION_FILTERING | DMX_MEMORY_BASED_FILTERING); return dvb_dmx_init(dvbdemux); } static int my_dvb_dmxdev_ts_card_init(struct dmxdev *dmxdev, struct dvb_demux *dvbdemux, struct dmx_frontend *hw_frontend, struct dmx_frontend *mem_frontend, struct dvb_adapter *dvb_adapter) { int ret; dmxdev->filternum = 256; dmxdev->demux = &dvbdemux->dmx; dmxdev->capabilities = 0; ret = dvb_dmxdev_init(dmxdev, dvb_adapter); if (ret < 0) return ret; hw_frontend->source = DMX_FRONTEND_0; dvbdemux->dmx.add_frontend(&dvbdemux->dmx, hw_frontend); mem_frontend->source = DMX_MEMORY_FE; dvbdemux->dmx.add_frontend(&dvbdemux->dmx, mem_frontend); return dvbdemux->dmx.connect_frontend(&dvbdemux->dmx, hw_frontend); } static int start_feed(struct dvb_demux_feed *dvbdmxfeed) { struct dvb_demux *dvbdmx = dvbdmxfeed->demux; struct ddb_input *input = dvbdmx->priv; if (!input->users) ddb_input_start(input); return ++input->users; } static int stop_feed(struct dvb_demux_feed *dvbdmxfeed) { struct dvb_demux *dvbdmx = dvbdmxfeed->demux; struct ddb_input *input = dvbdmx->priv; if (--input->users) return input->users; ddb_input_stop(input); return 0; } static void dvb_input_detach(struct ddb_input *input) { struct dvb_adapter *adap = &input->adap; struct dvb_demux *dvbdemux = &input->demux; switch (input->attached) { case 5: if (input->fe2) dvb_unregister_frontend(input->fe2); if (input->fe) { dvb_unregister_frontend(input->fe); dvb_frontend_detach(input->fe); input->fe = NULL; } case 4: dvb_net_release(&input->dvbnet); case 3: dvbdemux->dmx.close(&dvbdemux->dmx); dvbdemux->dmx.remove_frontend(&dvbdemux->dmx, &input->hw_frontend); dvbdemux->dmx.remove_frontend(&dvbdemux->dmx, &input->mem_frontend); dvb_dmxdev_release(&input->dmxdev); case 2: dvb_dmx_release(&input->demux); case 1: dvb_unregister_adapter(adap); } input->attached = 0; } static int dvb_input_attach(struct ddb_input *input) { int ret; struct ddb_port *port = input->port; struct dvb_adapter *adap = &input->adap; struct dvb_demux *dvbdemux = &input->demux; ret = dvb_register_adapter(adap, "DDBridge", THIS_MODULE, &input->port->dev->pdev->dev, adapter_nr); if (ret < 0) { printk(KERN_ERR "ddbridge: Could not register adapter." "Check if you enabled enough adapters in dvb-core!\n"); return ret; } input->attached = 1; ret = my_dvb_dmx_ts_card_init(dvbdemux, "SW demux", start_feed, stop_feed, input); if (ret < 0) return ret; input->attached = 2; ret = my_dvb_dmxdev_ts_card_init(&input->dmxdev, &input->demux, &input->hw_frontend, &input->mem_frontend, adap); if (ret < 0) return ret; input->attached = 3; ret = dvb_net_init(adap, &input->dvbnet, input->dmxdev.demux); if (ret < 0) return ret; input->attached = 4; input->fe = NULL; switch (port->type) { case DDB_TUNER_DVBS_ST: if (demod_attach_stv0900(input, 0) < 0) return -ENODEV; if (tuner_attach_stv6110(input, 0) < 0) return -ENODEV; if (input->fe) { if (dvb_register_frontend(adap, input->fe) < 0) return -ENODEV; } break; case DDB_TUNER_DVBS_ST_AA: if (demod_attach_stv0900(input, 1) < 0) return -ENODEV; if (tuner_attach_stv6110(input, 1) < 0) return -ENODEV; if (input->fe) { if (dvb_register_frontend(adap, input->fe) < 0) return -ENODEV; } break; case DDB_TUNER_DVBCT_TR: if (demod_attach_drxk(input) < 0) return -ENODEV; if (tuner_attach_tda18271(input) < 0) return -ENODEV; if (dvb_register_frontend(adap, input->fe) < 0) return -ENODEV; if (input->fe2) { if (dvb_register_frontend(adap, input->fe2) < 0) return -ENODEV; input->fe2->tuner_priv = input->fe->tuner_priv; memcpy(&input->fe2->ops.tuner_ops, &input->fe->ops.tuner_ops, sizeof(struct dvb_tuner_ops)); } break; } input->attached = 5; return 0; } /****************************************************************************/ /****************************************************************************/ static ssize_t ts_write(struct file *file, const __user char *buf, size_t count, loff_t *ppos) { struct dvb_device *dvbdev = file->private_data; struct ddb_output *output = dvbdev->priv; size_t left = count; int stat; while (left) { if (ddb_output_free(output) < 188) { if (file->f_flags & O_NONBLOCK) break; if (wait_event_interruptible( output->wq, ddb_output_free(output) >= 188) < 0) break; } stat = ddb_output_write(output, buf, left); if (stat < 0) break; buf += stat; left -= stat; } return (left == count) ? -EAGAIN : (count - left); } static ssize_t ts_read(struct file *file, __user char *buf, size_t count, loff_t *ppos) { struct dvb_device *dvbdev = file->private_data; struct ddb_output *output = dvbdev->priv; struct ddb_input *input = output->port->input[0]; int left, read; count -= count % 188; left = count; while (left) { if (ddb_input_avail(input) < 188) { if (file->f_flags & O_NONBLOCK) break; if (wait_event_interruptible( input->wq, ddb_input_avail(input) >= 188) < 0) break; } read = ddb_input_read(input, buf, left); if (read < 0) return read; left -= read; buf += read; } return (left == count) ? -EAGAIN : (count - left); } static unsigned int ts_poll(struct file *file, poll_table *wait) { /* struct dvb_device *dvbdev = file->private_data; struct ddb_output *output = dvbdev->priv; struct ddb_input *input = output->port->input[0]; */ unsigned int mask = 0; #if 0 if (data_avail_to_read) mask |= POLLIN | POLLRDNORM; if (data_avail_to_write) mask |= POLLOUT | POLLWRNORM; poll_wait(file, &read_queue, wait); poll_wait(file, &write_queue, wait); #endif return mask; } static const struct file_operations ci_fops = { .owner = THIS_MODULE, .read = ts_read, .write = ts_write, .open = dvb_generic_open, .release = dvb_generic_release, .poll = ts_poll, }; static struct dvb_device dvbdev_ci = { .readers = -1, .writers = -1, .users = -1, .fops = &ci_fops, }; /****************************************************************************/ /****************************************************************************/ /****************************************************************************/ static void input_tasklet(unsigned long data) { struct ddb_input *input = (struct ddb_input *) data; struct ddb *dev = input->port->dev; spin_lock(&input->lock); if (!input->running) { spin_unlock(&input->lock); return; } input->stat = ddbreadl(DMA_BUFFER_CURRENT(input->nr)); if (input->port->class == DDB_PORT_TUNER) { if (4&ddbreadl(DMA_BUFFER_CONTROL(input->nr))) printk(KERN_ERR "Overflow input %d\n", input->nr); while (input->cbuf != ((input->stat >> 11) & 0x1f) || (4&ddbreadl(DMA_BUFFER_CONTROL(input->nr)))) { dvb_dmx_swfilter_packets(&input->demux, input->vbuf[input->cbuf], input->dma_buf_size / 188); input->cbuf = (input->cbuf + 1) % input->dma_buf_num; ddbwritel((input->cbuf << 11), DMA_BUFFER_ACK(input->nr)); input->stat = ddbreadl(DMA_BUFFER_CURRENT(input->nr)); } } if (input->port->class == DDB_PORT_CI) wake_up(&input->wq); spin_unlock(&input->lock); } static void output_tasklet(unsigned long data) { struct ddb_output *output = (struct ddb_output *) data; struct ddb *dev = output->port->dev; spin_lock(&output->lock); if (!output->running) { spin_unlock(&output->lock); return; } output->stat = ddbreadl(DMA_BUFFER_CURRENT(output->nr + 8)); wake_up(&output->wq); spin_unlock(&output->lock); } static struct cxd2099_cfg cxd_cfg = { .bitrate = 62000, .adr = 0x40, .polarity = 1, .clock_mode = 1, }; static int ddb_ci_attach(struct ddb_port *port) { int ret; ret = dvb_register_adapter(&port->output->adap, "DDBridge", THIS_MODULE, &port->dev->pdev->dev, adapter_nr); if (ret < 0) return ret; port->en = cxd2099_attach(&cxd_cfg, port, &port->i2c->adap); if (!port->en) { dvb_unregister_adapter(&port->output->adap); return -ENODEV; } ddb_input_start(port->input[0]); ddb_output_start(port->output); dvb_ca_en50221_init(&port->output->adap, port->en, 0, 1); ret = dvb_register_device(&port->output->adap, &port->output->dev, &dvbdev_ci, (void *) port->output, DVB_DEVICE_SEC); return ret; } static int ddb_port_attach(struct ddb_port *port) { int ret = 0; switch (port->class) { case DDB_PORT_TUNER: ret = dvb_input_attach(port->input[0]); if (ret < 0) break; ret = dvb_input_attach(port->input[1]); break; case DDB_PORT_CI: ret = ddb_ci_attach(port); break; default: break; } if (ret < 0) printk(KERN_ERR "port_attach on port %d failed\n", port->nr); return ret; } static int ddb_ports_attach(struct ddb *dev) { int i, ret = 0; struct ddb_port *port; for (i = 0; i < dev->info->port_num; i++) { port = &dev->port[i]; ret = ddb_port_attach(port); if (ret < 0) break; } return ret; } static void ddb_ports_detach(struct ddb *dev) { int i; struct ddb_port *port; for (i = 0; i < dev->info->port_num; i++) { port = &dev->port[i]; switch (port->class) { case DDB_PORT_TUNER: dvb_input_detach(port->input[0]); dvb_input_detach(port->input[1]); break; case DDB_PORT_CI: dvb_unregister_device(port->output->dev); if (port->en) { ddb_input_stop(port->input[0]); ddb_output_stop(port->output); dvb_ca_en50221_release(port->en); kfree(port->en); port->en = NULL; dvb_unregister_adapter(&port->output->adap); } break; } } } /****************************************************************************/ /****************************************************************************/ static int port_has_ci(struct ddb_port *port) { u8 val; return i2c_read_reg(&port->i2c->adap, 0x40, 0, &val) ? 0 : 1; } static int port_has_stv0900(struct ddb_port *port) { u8 val; if (i2c_read_reg16(&port->i2c->adap, 0x69, 0xf100, &val) < 0) return 0; return 1; } static int port_has_stv0900_aa(struct ddb_port *port) { u8 val; if (i2c_read_reg16(&port->i2c->adap, 0x68, 0xf100, &val) < 0) return 0; return 1; } static int port_has_drxks(struct ddb_port *port) { u8 val; if (i2c_read(&port->i2c->adap, 0x29, &val) < 0) return 0; if (i2c_read(&port->i2c->adap, 0x2a, &val) < 0) return 0; return 1; } static void ddb_port_probe(struct ddb_port *port) { struct ddb *dev = port->dev; char *modname = "NO MODULE"; port->class = DDB_PORT_NONE; if (port_has_ci(port)) { modname = "CI"; port->class = DDB_PORT_CI; ddbwritel(I2C_SPEED_400, port->i2c->regs + I2C_TIMING); } else if (port_has_stv0900(port)) { modname = "DUAL DVB-S2"; port->class = DDB_PORT_TUNER; port->type = DDB_TUNER_DVBS_ST; ddbwritel(I2C_SPEED_100, port->i2c->regs + I2C_TIMING); } else if (port_has_stv0900_aa(port)) { modname = "DUAL DVB-S2"; port->class = DDB_PORT_TUNER; port->type = DDB_TUNER_DVBS_ST_AA; ddbwritel(I2C_SPEED_100, port->i2c->regs + I2C_TIMING); } else if (port_has_drxks(port)) { modname = "DUAL DVB-C/T"; port->class = DDB_PORT_TUNER; port->type = DDB_TUNER_DVBCT_TR; ddbwritel(I2C_SPEED_400, port->i2c->regs + I2C_TIMING); } printk(KERN_INFO "Port %d (TAB %d): %s\n", port->nr, port->nr+1, modname); } static void ddb_input_init(struct ddb_port *port, int nr) { struct ddb *dev = port->dev; struct ddb_input *input = &dev->input[nr]; input->nr = nr; input->port = port; input->dma_buf_num = INPUT_DMA_BUFS; input->dma_buf_size = INPUT_DMA_SIZE; ddbwritel(0, TS_INPUT_CONTROL(nr)); ddbwritel(2, TS_INPUT_CONTROL(nr)); ddbwritel(0, TS_INPUT_CONTROL(nr)); ddbwritel(0, DMA_BUFFER_ACK(nr)); tasklet_init(&input->tasklet, input_tasklet, (unsigned long) input); spin_lock_init(&input->lock); init_waitqueue_head(&input->wq); } static void ddb_output_init(struct ddb_port *port, int nr) { struct ddb *dev = port->dev; struct ddb_output *output = &dev->output[nr]; output->nr = nr; output->port = port; output->dma_buf_num = OUTPUT_DMA_BUFS; output->dma_buf_size = OUTPUT_DMA_SIZE; ddbwritel(0, TS_OUTPUT_CONTROL(nr)); ddbwritel(2, TS_OUTPUT_CONTROL(nr)); ddbwritel(0, TS_OUTPUT_CONTROL(nr)); tasklet_init(&output->tasklet, output_tasklet, (unsigned long) output); init_waitqueue_head(&output->wq); } static void ddb_ports_init(struct ddb *dev) { int i; struct ddb_port *port; for (i = 0; i < dev->info->port_num; i++) { port = &dev->port[i]; port->dev = dev; port->nr = i; port->i2c = &dev->i2c[i]; port->input[0] = &dev->input[2 * i]; port->input[1] = &dev->input[2 * i + 1]; port->output = &dev->output[i]; mutex_init(&port->i2c_gate_lock); ddb_port_probe(port); ddb_input_init(port, 2 * i); ddb_input_init(port, 2 * i + 1); ddb_output_init(port, i); } } static void ddb_ports_release(struct ddb *dev) { int i; struct ddb_port *port; for (i = 0; i < dev->info->port_num; i++) { port = &dev->port[i]; port->dev = dev; tasklet_kill(&port->input[0]->tasklet); tasklet_kill(&port->input[1]->tasklet); tasklet_kill(&port->output->tasklet); } } /****************************************************************************/ /****************************************************************************/ /****************************************************************************/ static void irq_handle_i2c(struct ddb *dev, int n) { struct ddb_i2c *i2c = &dev->i2c[n]; i2c->done = 1; wake_up(&i2c->wq); } static irqreturn_t irq_handler(int irq, void *dev_id) { struct ddb *dev = (struct ddb *) dev_id; u32 s = ddbreadl(INTERRUPT_STATUS); if (!s) return IRQ_NONE; do { ddbwritel(s, INTERRUPT_ACK); if (s & 0x00000001) irq_handle_i2c(dev, 0); if (s & 0x00000002) irq_handle_i2c(dev, 1); if (s & 0x00000004) irq_handle_i2c(dev, 2); if (s & 0x00000008) irq_handle_i2c(dev, 3); if (s & 0x00000100) tasklet_schedule(&dev->input[0].tasklet); if (s & 0x00000200) tasklet_schedule(&dev->input[1].tasklet); if (s & 0x00000400) tasklet_schedule(&dev->input[2].tasklet); if (s & 0x00000800) tasklet_schedule(&dev->input[3].tasklet); if (s & 0x00001000) tasklet_schedule(&dev->input[4].tasklet); if (s & 0x00002000) tasklet_schedule(&dev->input[5].tasklet); if (s & 0x00004000) tasklet_schedule(&dev->input[6].tasklet); if (s & 0x00008000) tasklet_schedule(&dev->input[7].tasklet); if (s & 0x00010000) tasklet_schedule(&dev->output[0].tasklet); if (s & 0x00020000) tasklet_schedule(&dev->output[1].tasklet); if (s & 0x00040000) tasklet_schedule(&dev->output[2].tasklet); if (s & 0x00080000) tasklet_schedule(&dev->output[3].tasklet); /* if (s & 0x000f0000) printk(KERN_DEBUG "%08x\n", istat); */ } while ((s = ddbreadl(INTERRUPT_STATUS))); return IRQ_HANDLED; } /******************************************************************************/ /******************************************************************************/ /******************************************************************************/ static int flashio(struct ddb *dev, u8 *wbuf, u32 wlen, u8 *rbuf, u32 rlen) { u32 data, shift; if (wlen > 4) ddbwritel(1, SPI_CONTROL); while (wlen > 4) { /* FIXME: check for big-endian */ data = swab32(*(u32 *)wbuf); wbuf += 4; wlen -= 4; ddbwritel(data, SPI_DATA); while (ddbreadl(SPI_CONTROL) & 0x0004) ; } if (rlen) ddbwritel(0x0001 | ((wlen << (8 + 3)) & 0x1f00), SPI_CONTROL); else ddbwritel(0x0003 | ((wlen << (8 + 3)) & 0x1f00), SPI_CONTROL); data = 0; shift = ((4 - wlen) * 8); while (wlen) { data <<= 8; data |= *wbuf; wlen--; wbuf++; } if (shift) data <<= shift; ddbwritel(data, SPI_DATA); while (ddbreadl(SPI_CONTROL) & 0x0004) ; if (!rlen) { ddbwritel(0, SPI_CONTROL); return 0; } if (rlen > 4) ddbwritel(1, SPI_CONTROL); while (rlen > 4) { ddbwritel(0xffffffff, SPI_DATA); while (ddbreadl(SPI_CONTROL) & 0x0004) ; data = ddbreadl(SPI_DATA); *(u32 *) rbuf = swab32(data); rbuf += 4; rlen -= 4; } ddbwritel(0x0003 | ((rlen << (8 + 3)) & 0x1F00), SPI_CONTROL); ddbwritel(0xffffffff, SPI_DATA); while (ddbreadl(SPI_CONTROL) & 0x0004) ; data = ddbreadl(SPI_DATA); ddbwritel(0, SPI_CONTROL); if (rlen < 4) data <<= ((4 - rlen) * 8); while (rlen > 0) { *rbuf = ((data >> 24) & 0xff); data <<= 8; rbuf++; rlen--; } return 0; } #define DDB_MAGIC 'd' struct ddb_flashio { __user __u8 *write_buf; __u32 write_len; __user __u8 *read_buf; __u32 read_len; }; #define IOCTL_DDB_FLASHIO _IOWR(DDB_MAGIC, 0x00, struct ddb_flashio) #define DDB_NAME "ddbridge" static u32 ddb_num; static struct ddb *ddbs[32]; static struct class *ddb_class; static int ddb_major; static int ddb_open(struct inode *inode, struct file *file) { struct ddb *dev = ddbs[iminor(inode)]; file->private_data = dev; return 0; } static long ddb_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct ddb *dev = file->private_data; __user void *parg = (__user void *)arg; int res; switch (cmd) { case IOCTL_DDB_FLASHIO: { struct ddb_flashio fio; u8 *rbuf, *wbuf; if (copy_from_user(&fio, parg, sizeof(fio))) return -EFAULT; if (fio.write_len > 1028 || fio.read_len > 1028) return -EINVAL; if (fio.write_len + fio.read_len > 1028) return -EINVAL; wbuf = &dev->iobuf[0]; rbuf = wbuf + fio.write_len; if (copy_from_user(wbuf, fio.write_buf, fio.write_len)) return -EFAULT; res = flashio(dev, wbuf, fio.write_len, rbuf, fio.read_len); if (res) return res; if (copy_to_user(fio.read_buf, rbuf, fio.read_len)) return -EFAULT; break; } default: return -ENOTTY; } return 0; } static const struct file_operations ddb_fops = { .unlocked_ioctl = ddb_ioctl, .open = ddb_open, }; static char *ddb_devnode(struct device *device, umode_t *mode) { struct ddb *dev = dev_get_drvdata(device); return kasprintf(GFP_KERNEL, "ddbridge/card%d", dev->nr); } static int ddb_class_create(void) { ddb_major = register_chrdev(0, DDB_NAME, &ddb_fops); if (ddb_major < 0) return ddb_major; ddb_class = class_create(THIS_MODULE, DDB_NAME); if (IS_ERR(ddb_class)) { unregister_chrdev(ddb_major, DDB_NAME); return PTR_ERR(ddb_class); } ddb_class->devnode = ddb_devnode; return 0; } static void ddb_class_destroy(void) { class_destroy(ddb_class); unregister_chrdev(ddb_major, DDB_NAME); } static int ddb_device_create(struct ddb *dev) { dev->nr = ddb_num++; dev->ddb_dev = device_create(ddb_class, NULL, MKDEV(ddb_major, dev->nr), dev, "ddbridge%d", dev->nr); ddbs[dev->nr] = dev; if (IS_ERR(dev->ddb_dev)) return -1; return 0; } static void ddb_device_destroy(struct ddb *dev) { ddb_num--; if (IS_ERR(dev->ddb_dev)) return; device_destroy(ddb_class, MKDEV(ddb_major, 0)); } /****************************************************************************/ /****************************************************************************/ /****************************************************************************/ static void ddb_unmap(struct ddb *dev) { if (dev->regs) iounmap(dev->regs); vfree(dev); } static void ddb_remove(struct pci_dev *pdev) { struct ddb *dev = pci_get_drvdata(pdev); ddb_ports_detach(dev); ddb_i2c_release(dev); ddbwritel(0, INTERRUPT_ENABLE); free_irq(dev->pdev->irq, dev); #ifdef CONFIG_PCI_MSI if (dev->msi) pci_disable_msi(dev->pdev); #endif ddb_ports_release(dev); ddb_buffers_free(dev); ddb_device_destroy(dev); ddb_unmap(dev); pci_set_drvdata(pdev, NULL); pci_disable_device(pdev); } static int ddb_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct ddb *dev; int stat = 0; int irq_flag = IRQF_SHARED; if (pci_enable_device(pdev) < 0) return -ENODEV; dev = vmalloc(sizeof(struct ddb)); if (dev == NULL) return -ENOMEM; memset(dev, 0, sizeof(struct ddb)); dev->pdev = pdev; pci_set_drvdata(pdev, dev); dev->info = (struct ddb_info *) id->driver_data; printk(KERN_INFO "DDBridge driver detected: %s\n", dev->info->name); dev->regs = ioremap(pci_resource_start(dev->pdev, 0), pci_resource_len(dev->pdev, 0)); if (!dev->regs) { stat = -ENOMEM; goto fail; } printk(KERN_INFO "HW %08x FW %08x\n", ddbreadl(0), ddbreadl(4)); #ifdef CONFIG_PCI_MSI if (pci_msi_enabled()) stat = pci_enable_msi(dev->pdev); if (stat) { printk(KERN_INFO ": MSI not available.\n"); } else { irq_flag = 0; dev->msi = 1; } #endif stat = request_irq(dev->pdev->irq, irq_handler, irq_flag, "DDBridge", (void *) dev); if (stat < 0) goto fail1; ddbwritel(0, DMA_BASE_WRITE); ddbwritel(0, DMA_BASE_READ); ddbwritel(0xffffffff, INTERRUPT_ACK); ddbwritel(0xfff0f, INTERRUPT_ENABLE); ddbwritel(0, MSI1_ENABLE); if (ddb_i2c_init(dev) < 0) goto fail1; ddb_ports_init(dev); if (ddb_buffers_alloc(dev) < 0) { printk(KERN_INFO ": Could not allocate buffer memory\n"); goto fail2; } if (ddb_ports_attach(dev) < 0) goto fail3; ddb_device_create(dev); return 0; fail3: ddb_ports_detach(dev); printk(KERN_ERR "fail3\n"); ddb_ports_release(dev); fail2: printk(KERN_ERR "fail2\n"); ddb_buffers_free(dev); fail1: printk(KERN_ERR "fail1\n"); if (dev->msi) pci_disable_msi(dev->pdev); free_irq(dev->pdev->irq, dev); fail: printk(KERN_ERR "fail\n"); ddb_unmap(dev); pci_set_drvdata(pdev, NULL); pci_disable_device(pdev); return -1; } /******************************************************************************/ /******************************************************************************/ /******************************************************************************/ static struct ddb_info ddb_none = { .type = DDB_NONE, .name = "Digital Devices PCIe bridge", }; static struct ddb_info ddb_octopus = { .type = DDB_OCTOPUS, .name = "Digital Devices Octopus DVB adapter", .port_num = 4, }; static struct ddb_info ddb_octopus_le = { .type = DDB_OCTOPUS, .name = "Digital Devices Octopus LE DVB adapter", .port_num = 2, }; static struct ddb_info ddb_octopus_mini = { .type = DDB_OCTOPUS, .name = "Digital Devices Octopus Mini", .port_num = 4, }; static struct ddb_info ddb_v6 = { .type = DDB_OCTOPUS, .name = "Digital Devices Cine S2 V6 DVB adapter", .port_num = 3, }; static struct ddb_info ddb_v6_5 = { .type = DDB_OCTOPUS, .name = "Digital Devices Cine S2 V6.5 DVB adapter", .port_num = 4, }; static struct ddb_info ddb_dvbct = { .type = DDB_OCTOPUS, .name = "Digital Devices DVBCT V6.1 DVB adapter", .port_num = 3, }; static struct ddb_info ddb_satixS2v3 = { .type = DDB_OCTOPUS, .name = "Mystique SaTiX-S2 V3 DVB adapter", .port_num = 3, }; static struct ddb_info ddb_octopusv3 = { .type = DDB_OCTOPUS, .name = "Digital Devices Octopus V3 DVB adapter", .port_num = 4, }; #define DDVID 0xdd01 /* Digital Devices Vendor ID */ #define DDB_ID(_vend, _dev, _subvend, _subdev, _driverdata) { \ .vendor = _vend, .device = _dev, \ .subvendor = _subvend, .subdevice = _subdev, \ .driver_data = (unsigned long)&_driverdata } static const struct pci_device_id ddb_id_tbl[] = { DDB_ID(DDVID, 0x0002, DDVID, 0x0001, ddb_octopus), DDB_ID(DDVID, 0x0003, DDVID, 0x0001, ddb_octopus), DDB_ID(DDVID, 0x0003, DDVID, 0x0002, ddb_octopus_le), DDB_ID(DDVID, 0x0003, DDVID, 0x0010, ddb_octopus_mini), DDB_ID(DDVID, 0x0003, DDVID, 0x0020, ddb_v6), DDB_ID(DDVID, 0x0003, DDVID, 0x0021, ddb_v6_5), DDB_ID(DDVID, 0x0003, DDVID, 0x0030, ddb_dvbct), DDB_ID(DDVID, 0x0003, DDVID, 0xdb03, ddb_satixS2v3), DDB_ID(DDVID, 0x0005, DDVID, 0x0004, ddb_octopusv3), /* in case sub-ids got deleted in flash */ DDB_ID(DDVID, 0x0003, PCI_ANY_ID, PCI_ANY_ID, ddb_none), {0} }; MODULE_DEVICE_TABLE(pci, ddb_id_tbl); static struct pci_driver ddb_pci_driver = { .name = "DDBridge", .id_table = ddb_id_tbl, .probe = ddb_probe, .remove = ddb_remove, }; static __init int module_init_ddbridge(void) { int ret; printk(KERN_INFO "Digital Devices PCIE bridge driver, " "Copyright (C) 2010-11 Digital Devices GmbH\n"); ret = ddb_class_create(); if (ret < 0) return ret; ret = pci_register_driver(&ddb_pci_driver); if (ret < 0) ddb_class_destroy(); return ret; } static __exit void module_exit_ddbridge(void) { pci_unregister_driver(&ddb_pci_driver); ddb_class_destroy(); } module_init(module_init_ddbridge); module_exit(module_exit_ddbridge); MODULE_DESCRIPTION("Digital Devices PCIe Bridge"); MODULE_AUTHOR("Ralph Metzler"); MODULE_LICENSE("GPL"); MODULE_VERSION("0.5");