/* * Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved. * Copyright (c) 2013-2014 Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/mm.h> #include <linux/highmem.h> #include <linux/scatterlist.h> #include "iscsi_iser.h" static void iser_free_bounce_sg(struct iser_data_buf *data) { struct scatterlist *sg; int count; for_each_sg(data->sg, sg, data->size, count) __free_page(sg_page(sg)); kfree(data->sg); data->sg = data->orig_sg; data->size = data->orig_size; data->orig_sg = NULL; data->orig_size = 0; } static int iser_alloc_bounce_sg(struct iser_data_buf *data) { struct scatterlist *sg; struct page *page; unsigned long length = data->data_len; int i = 0, nents = DIV_ROUND_UP(length, PAGE_SIZE); sg = kcalloc(nents, sizeof(*sg), GFP_ATOMIC); if (!sg) goto err; sg_init_table(sg, nents); while (length) { u32 page_len = min_t(u32, length, PAGE_SIZE); page = alloc_page(GFP_ATOMIC); if (!page) goto err; sg_set_page(&sg[i], page, page_len, 0); length -= page_len; i++; } data->orig_sg = data->sg; data->orig_size = data->size; data->sg = sg; data->size = nents; return 0; err: for (; i > 0; i--) __free_page(sg_page(&sg[i - 1])); kfree(sg); return -ENOMEM; } static void iser_copy_bounce(struct iser_data_buf *data, bool to_buffer) { struct scatterlist *osg, *bsg = data->sg; void *oaddr, *baddr; unsigned int left = data->data_len; unsigned int bsg_off = 0; int i; for_each_sg(data->orig_sg, osg, data->orig_size, i) { unsigned int copy_len, osg_off = 0; oaddr = kmap_atomic(sg_page(osg)) + osg->offset; copy_len = min(left, osg->length); while (copy_len) { unsigned int len = min(copy_len, bsg->length - bsg_off); baddr = kmap_atomic(sg_page(bsg)) + bsg->offset; if (to_buffer) memcpy(baddr + bsg_off, oaddr + osg_off, len); else memcpy(oaddr + osg_off, baddr + bsg_off, len); kunmap_atomic(baddr - bsg->offset); osg_off += len; bsg_off += len; copy_len -= len; if (bsg_off >= bsg->length) { bsg = sg_next(bsg); bsg_off = 0; } } kunmap_atomic(oaddr - osg->offset); left -= osg_off; } } static inline void iser_copy_from_bounce(struct iser_data_buf *data) { iser_copy_bounce(data, false); } static inline void iser_copy_to_bounce(struct iser_data_buf *data) { iser_copy_bounce(data, true); } struct fast_reg_descriptor * iser_reg_desc_get(struct ib_conn *ib_conn) { struct fast_reg_descriptor *desc; unsigned long flags; spin_lock_irqsave(&ib_conn->lock, flags); desc = list_first_entry(&ib_conn->fastreg.pool, struct fast_reg_descriptor, list); list_del(&desc->list); spin_unlock_irqrestore(&ib_conn->lock, flags); return desc; } void iser_reg_desc_put(struct ib_conn *ib_conn, struct fast_reg_descriptor *desc) { unsigned long flags; spin_lock_irqsave(&ib_conn->lock, flags); list_add(&desc->list, &ib_conn->fastreg.pool); spin_unlock_irqrestore(&ib_conn->lock, flags); } /** * iser_start_rdma_unaligned_sg */ static int iser_start_rdma_unaligned_sg(struct iscsi_iser_task *iser_task, struct iser_data_buf *data, enum iser_data_dir cmd_dir) { struct ib_device *dev = iser_task->iser_conn->ib_conn.device->ib_device; int rc; rc = iser_alloc_bounce_sg(data); if (rc) { iser_err("Failed to allocate bounce for data len %lu\n", data->data_len); return rc; } if (cmd_dir == ISER_DIR_OUT) iser_copy_to_bounce(data); data->dma_nents = ib_dma_map_sg(dev, data->sg, data->size, (cmd_dir == ISER_DIR_OUT) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); if (!data->dma_nents) { iser_err("Got dma_nents %d, something went wrong...\n", data->dma_nents); rc = -ENOMEM; goto err; } return 0; err: iser_free_bounce_sg(data); return rc; } /** * iser_finalize_rdma_unaligned_sg */ void iser_finalize_rdma_unaligned_sg(struct iscsi_iser_task *iser_task, struct iser_data_buf *data, enum iser_data_dir cmd_dir) { struct ib_device *dev = iser_task->iser_conn->ib_conn.device->ib_device; ib_dma_unmap_sg(dev, data->sg, data->size, (cmd_dir == ISER_DIR_OUT) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); if (cmd_dir == ISER_DIR_IN) iser_copy_from_bounce(data); iser_free_bounce_sg(data); } #define IS_4K_ALIGNED(addr) ((((unsigned long)addr) & ~MASK_4K) == 0) /** * iser_sg_to_page_vec - Translates scatterlist entries to physical addresses * and returns the length of resulting physical address array (may be less than * the original due to possible compaction). * * we build a "page vec" under the assumption that the SG meets the RDMA * alignment requirements. Other then the first and last SG elements, all * the "internal" elements can be compacted into a list whose elements are * dma addresses of physical pages. The code supports also the weird case * where --few fragments of the same page-- are present in the SG as * consecutive elements. Also, it handles one entry SG. */ static int iser_sg_to_page_vec(struct iser_data_buf *data, struct ib_device *ibdev, u64 *pages, int *offset, int *data_size) { struct scatterlist *sg, *sgl = data->sg; u64 start_addr, end_addr, page, chunk_start = 0; unsigned long total_sz = 0; unsigned int dma_len; int i, new_chunk, cur_page, last_ent = data->dma_nents - 1; /* compute the offset of first element */ *offset = (u64) sgl[0].offset & ~MASK_4K; new_chunk = 1; cur_page = 0; for_each_sg(sgl, sg, data->dma_nents, i) { start_addr = ib_sg_dma_address(ibdev, sg); if (new_chunk) chunk_start = start_addr; dma_len = ib_sg_dma_len(ibdev, sg); end_addr = start_addr + dma_len; total_sz += dma_len; /* collect page fragments until aligned or end of SG list */ if (!IS_4K_ALIGNED(end_addr) && i < last_ent) { new_chunk = 0; continue; } new_chunk = 1; /* address of the first page in the contiguous chunk; masking relevant for the very first SG entry, which might be unaligned */ page = chunk_start & MASK_4K; do { pages[cur_page++] = page; page += SIZE_4K; } while (page < end_addr); } *data_size = total_sz; iser_dbg("page_vec->data_size:%d cur_page %d\n", *data_size, cur_page); return cur_page; } /** * iser_data_buf_aligned_len - Tries to determine the maximal correctly aligned * for RDMA sub-list of a scatter-gather list of memory buffers, and returns * the number of entries which are aligned correctly. Supports the case where * consecutive SG elements are actually fragments of the same physcial page. */ static int iser_data_buf_aligned_len(struct iser_data_buf *data, struct ib_device *ibdev) { struct scatterlist *sg, *sgl, *next_sg = NULL; u64 start_addr, end_addr; int i, ret_len, start_check = 0; if (data->dma_nents == 1) return 1; sgl = data->sg; start_addr = ib_sg_dma_address(ibdev, sgl); for_each_sg(sgl, sg, data->dma_nents, i) { if (start_check && !IS_4K_ALIGNED(start_addr)) break; next_sg = sg_next(sg); if (!next_sg) break; end_addr = start_addr + ib_sg_dma_len(ibdev, sg); start_addr = ib_sg_dma_address(ibdev, next_sg); if (end_addr == start_addr) { start_check = 0; continue; } else start_check = 1; if (!IS_4K_ALIGNED(end_addr)) break; } ret_len = (next_sg) ? i : i+1; iser_dbg("Found %d aligned entries out of %d in sg:0x%p\n", ret_len, data->dma_nents, data); return ret_len; } static void iser_data_buf_dump(struct iser_data_buf *data, struct ib_device *ibdev) { struct scatterlist *sg; int i; for_each_sg(data->sg, sg, data->dma_nents, i) iser_dbg("sg[%d] dma_addr:0x%lX page:0x%p " "off:0x%x sz:0x%x dma_len:0x%x\n", i, (unsigned long)ib_sg_dma_address(ibdev, sg), sg_page(sg), sg->offset, sg->length, ib_sg_dma_len(ibdev, sg)); } static void iser_dump_page_vec(struct iser_page_vec *page_vec) { int i; iser_err("page vec length %d data size %d\n", page_vec->length, page_vec->data_size); for (i = 0; i < page_vec->length; i++) iser_err("%d %lx\n",i,(unsigned long)page_vec->pages[i]); } int iser_dma_map_task_data(struct iscsi_iser_task *iser_task, struct iser_data_buf *data, enum iser_data_dir iser_dir, enum dma_data_direction dma_dir) { struct ib_device *dev; iser_task->dir[iser_dir] = 1; dev = iser_task->iser_conn->ib_conn.device->ib_device; data->dma_nents = ib_dma_map_sg(dev, data->sg, data->size, dma_dir); if (data->dma_nents == 0) { iser_err("dma_map_sg failed!!!\n"); return -EINVAL; } return 0; } void iser_dma_unmap_task_data(struct iscsi_iser_task *iser_task, struct iser_data_buf *data, enum dma_data_direction dir) { struct ib_device *dev; dev = iser_task->iser_conn->ib_conn.device->ib_device; ib_dma_unmap_sg(dev, data->sg, data->size, dir); } static int iser_reg_dma(struct iser_device *device, struct iser_data_buf *mem, struct iser_mem_reg *reg) { struct scatterlist *sg = mem->sg; reg->sge.lkey = device->mr->lkey; reg->rkey = device->mr->rkey; reg->sge.addr = ib_sg_dma_address(device->ib_device, &sg[0]); reg->sge.length = ib_sg_dma_len(device->ib_device, &sg[0]); iser_dbg("Single DMA entry: lkey=0x%x, rkey=0x%x, addr=0x%llx," " length=0x%x\n", reg->sge.lkey, reg->rkey, reg->sge.addr, reg->sge.length); return 0; } static int fall_to_bounce_buf(struct iscsi_iser_task *iser_task, struct iser_data_buf *mem, enum iser_data_dir cmd_dir, int aligned_len) { struct iscsi_conn *iscsi_conn = iser_task->iser_conn->iscsi_conn; struct iser_device *device = iser_task->iser_conn->ib_conn.device; iscsi_conn->fmr_unalign_cnt++; iser_warn("rdma alignment violation (%d/%d aligned) or FMR not supported\n", aligned_len, mem->size); if (iser_debug_level > 0) iser_data_buf_dump(mem, device->ib_device); /* unmap the command data before accessing it */ iser_dma_unmap_task_data(iser_task, mem, (cmd_dir == ISER_DIR_OUT) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); /* allocate copy buf, if we are writing, copy the */ /* unaligned scatterlist, dma map the copy */ if (iser_start_rdma_unaligned_sg(iser_task, mem, cmd_dir) != 0) return -ENOMEM; return 0; } /** * iser_reg_page_vec - Register physical memory * * returns: 0 on success, errno code on failure */ static int iser_reg_page_vec(struct iscsi_iser_task *iser_task, struct iser_data_buf *mem, struct iser_page_vec *page_vec, struct iser_mem_reg *mem_reg) { struct ib_conn *ib_conn = &iser_task->iser_conn->ib_conn; struct iser_device *device = ib_conn->device; struct ib_pool_fmr *fmr; int ret, plen; plen = iser_sg_to_page_vec(mem, device->ib_device, page_vec->pages, &page_vec->offset, &page_vec->data_size); page_vec->length = plen; if (plen * SIZE_4K < page_vec->data_size) { iser_err("page vec too short to hold this SG\n"); iser_data_buf_dump(mem, device->ib_device); iser_dump_page_vec(page_vec); return -EINVAL; } fmr = ib_fmr_pool_map_phys(ib_conn->fmr.pool, page_vec->pages, page_vec->length, page_vec->pages[0]); if (IS_ERR(fmr)) { ret = PTR_ERR(fmr); iser_err("ib_fmr_pool_map_phys failed: %d\n", ret); return ret; } mem_reg->sge.lkey = fmr->fmr->lkey; mem_reg->rkey = fmr->fmr->rkey; mem_reg->sge.addr = page_vec->pages[0] + page_vec->offset; mem_reg->sge.length = page_vec->data_size; mem_reg->mem_h = fmr; return 0; } /** * Unregister (previosuly registered using FMR) memory. * If memory is non-FMR does nothing. */ void iser_unreg_mem_fmr(struct iscsi_iser_task *iser_task, enum iser_data_dir cmd_dir) { struct iser_mem_reg *reg = &iser_task->rdma_reg[cmd_dir]; int ret; if (!reg->mem_h) return; iser_dbg("PHYSICAL Mem.Unregister mem_h %p\n", reg->mem_h); ret = ib_fmr_pool_unmap((struct ib_pool_fmr *)reg->mem_h); if (ret) iser_err("ib_fmr_pool_unmap failed %d\n", ret); reg->mem_h = NULL; } void iser_unreg_mem_fastreg(struct iscsi_iser_task *iser_task, enum iser_data_dir cmd_dir) { struct iser_mem_reg *reg = &iser_task->rdma_reg[cmd_dir]; if (!reg->mem_h) return; iser_reg_desc_put(&iser_task->iser_conn->ib_conn, reg->mem_h); reg->mem_h = NULL; } /** * iser_reg_rdma_mem_fmr - Registers memory intended for RDMA, * using FMR (if possible) obtaining rkey and va * * returns 0 on success, errno code on failure */ int iser_reg_rdma_mem_fmr(struct iscsi_iser_task *iser_task, enum iser_data_dir cmd_dir) { struct ib_conn *ib_conn = &iser_task->iser_conn->ib_conn; struct iser_device *device = ib_conn->device; struct ib_device *ibdev = device->ib_device; struct iser_data_buf *mem = &iser_task->data[cmd_dir]; struct iser_mem_reg *mem_reg; int aligned_len; int err; int i; mem_reg = &iser_task->rdma_reg[cmd_dir]; aligned_len = iser_data_buf_aligned_len(mem, ibdev); if (aligned_len != mem->dma_nents) { err = fall_to_bounce_buf(iser_task, mem, cmd_dir, aligned_len); if (err) { iser_err("failed to allocate bounce buffer\n"); return err; } } /* if there a single dma entry, FMR is not needed */ if (mem->dma_nents == 1) { return iser_reg_dma(device, mem, mem_reg); } else { /* use FMR for multiple dma entries */ err = iser_reg_page_vec(iser_task, mem, ib_conn->fmr.page_vec, mem_reg); if (err && err != -EAGAIN) { iser_data_buf_dump(mem, ibdev); iser_err("mem->dma_nents = %d (dlength = 0x%x)\n", mem->dma_nents, ntoh24(iser_task->desc.iscsi_header.dlength)); iser_err("page_vec: data_size = 0x%x, length = %d, offset = 0x%x\n", ib_conn->fmr.page_vec->data_size, ib_conn->fmr.page_vec->length, ib_conn->fmr.page_vec->offset); for (i = 0; i < ib_conn->fmr.page_vec->length; i++) iser_err("page_vec[%d] = 0x%llx\n", i, (unsigned long long)ib_conn->fmr.page_vec->pages[i]); } if (err) return err; } return 0; } static void iser_set_dif_domain(struct scsi_cmnd *sc, struct ib_sig_attrs *sig_attrs, struct ib_sig_domain *domain) { domain->sig_type = IB_SIG_TYPE_T10_DIF; domain->sig.dif.pi_interval = scsi_prot_interval(sc); domain->sig.dif.ref_tag = scsi_prot_ref_tag(sc); /* * At the moment we hard code those, but in the future * we will take them from sc. */ domain->sig.dif.apptag_check_mask = 0xffff; domain->sig.dif.app_escape = true; domain->sig.dif.ref_escape = true; if (sc->prot_flags & SCSI_PROT_REF_INCREMENT) domain->sig.dif.ref_remap = true; }; static int iser_set_sig_attrs(struct scsi_cmnd *sc, struct ib_sig_attrs *sig_attrs) { switch (scsi_get_prot_op(sc)) { case SCSI_PROT_WRITE_INSERT: case SCSI_PROT_READ_STRIP: sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE; iser_set_dif_domain(sc, sig_attrs, &sig_attrs->wire); sig_attrs->wire.sig.dif.bg_type = IB_T10DIF_CRC; break; case SCSI_PROT_READ_INSERT: case SCSI_PROT_WRITE_STRIP: sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE; iser_set_dif_domain(sc, sig_attrs, &sig_attrs->mem); sig_attrs->mem.sig.dif.bg_type = sc->prot_flags & SCSI_PROT_IP_CHECKSUM ? IB_T10DIF_CSUM : IB_T10DIF_CRC; break; case SCSI_PROT_READ_PASS: case SCSI_PROT_WRITE_PASS: iser_set_dif_domain(sc, sig_attrs, &sig_attrs->wire); sig_attrs->wire.sig.dif.bg_type = IB_T10DIF_CRC; iser_set_dif_domain(sc, sig_attrs, &sig_attrs->mem); sig_attrs->mem.sig.dif.bg_type = sc->prot_flags & SCSI_PROT_IP_CHECKSUM ? IB_T10DIF_CSUM : IB_T10DIF_CRC; break; default: iser_err("Unsupported PI operation %d\n", scsi_get_prot_op(sc)); return -EINVAL; } return 0; } static inline void iser_set_prot_checks(struct scsi_cmnd *sc, u8 *mask) { *mask = 0; if (sc->prot_flags & SCSI_PROT_REF_CHECK) *mask |= ISER_CHECK_REFTAG; if (sc->prot_flags & SCSI_PROT_GUARD_CHECK) *mask |= ISER_CHECK_GUARD; } static void iser_inv_rkey(struct ib_send_wr *inv_wr, struct ib_mr *mr) { u32 rkey; memset(inv_wr, 0, sizeof(*inv_wr)); inv_wr->opcode = IB_WR_LOCAL_INV; inv_wr->wr_id = ISER_FASTREG_LI_WRID; inv_wr->ex.invalidate_rkey = mr->rkey; rkey = ib_inc_rkey(mr->rkey); ib_update_fast_reg_key(mr, rkey); } static int iser_reg_sig_mr(struct iscsi_iser_task *iser_task, struct fast_reg_descriptor *desc, struct iser_mem_reg *data_reg, struct iser_mem_reg *prot_reg, struct iser_mem_reg *sig_reg) { struct ib_conn *ib_conn = &iser_task->iser_conn->ib_conn; struct iser_pi_context *pi_ctx = desc->pi_ctx; struct ib_send_wr sig_wr, inv_wr; struct ib_send_wr *bad_wr, *wr = NULL; struct ib_sig_attrs sig_attrs; int ret; memset(&sig_attrs, 0, sizeof(sig_attrs)); ret = iser_set_sig_attrs(iser_task->sc, &sig_attrs); if (ret) goto err; iser_set_prot_checks(iser_task->sc, &sig_attrs.check_mask); if (!(desc->reg_indicators & ISER_SIG_KEY_VALID)) { iser_inv_rkey(&inv_wr, pi_ctx->sig_mr); wr = &inv_wr; } memset(&sig_wr, 0, sizeof(sig_wr)); sig_wr.opcode = IB_WR_REG_SIG_MR; sig_wr.wr_id = ISER_FASTREG_LI_WRID; sig_wr.sg_list = &data_reg->sge; sig_wr.num_sge = 1; sig_wr.wr.sig_handover.sig_attrs = &sig_attrs; sig_wr.wr.sig_handover.sig_mr = pi_ctx->sig_mr; if (scsi_prot_sg_count(iser_task->sc)) sig_wr.wr.sig_handover.prot = &prot_reg->sge; sig_wr.wr.sig_handover.access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE; if (!wr) wr = &sig_wr; else wr->next = &sig_wr; ret = ib_post_send(ib_conn->qp, wr, &bad_wr); if (ret) { iser_err("reg_sig_mr failed, ret:%d\n", ret); goto err; } desc->reg_indicators &= ~ISER_SIG_KEY_VALID; sig_reg->sge.lkey = pi_ctx->sig_mr->lkey; sig_reg->rkey = pi_ctx->sig_mr->rkey; sig_reg->sge.addr = 0; sig_reg->sge.length = scsi_transfer_length(iser_task->sc); iser_dbg("sig_sge: lkey: 0x%x, rkey: 0x%x, addr: 0x%llx, length: %u\n", sig_reg->sge.lkey, sig_reg->rkey, sig_reg->sge.addr, sig_reg->sge.length); err: return ret; } static int iser_fast_reg_mr(struct iscsi_iser_task *iser_task, struct iser_data_buf *mem, struct fast_reg_descriptor *desc, enum iser_reg_indicator ind, struct iser_mem_reg *reg) { struct ib_conn *ib_conn = &iser_task->iser_conn->ib_conn; struct iser_device *device = ib_conn->device; struct ib_mr *mr; struct ib_fast_reg_page_list *frpl; struct ib_send_wr fastreg_wr, inv_wr; struct ib_send_wr *bad_wr, *wr = NULL; int ret, offset, size, plen; /* if there a single dma entry, dma mr suffices */ if (mem->dma_nents == 1) return iser_reg_dma(device, mem, reg); if (ind == ISER_DATA_KEY_VALID) { mr = desc->data_mr; frpl = desc->data_frpl; } else { mr = desc->pi_ctx->prot_mr; frpl = desc->pi_ctx->prot_frpl; } plen = iser_sg_to_page_vec(mem, device->ib_device, frpl->page_list, &offset, &size); if (plen * SIZE_4K < size) { iser_err("fast reg page_list too short to hold this SG\n"); return -EINVAL; } if (!(desc->reg_indicators & ind)) { iser_inv_rkey(&inv_wr, mr); wr = &inv_wr; } /* Prepare FASTREG WR */ memset(&fastreg_wr, 0, sizeof(fastreg_wr)); fastreg_wr.wr_id = ISER_FASTREG_LI_WRID; fastreg_wr.opcode = IB_WR_FAST_REG_MR; fastreg_wr.wr.fast_reg.iova_start = frpl->page_list[0] + offset; fastreg_wr.wr.fast_reg.page_list = frpl; fastreg_wr.wr.fast_reg.page_list_len = plen; fastreg_wr.wr.fast_reg.page_shift = SHIFT_4K; fastreg_wr.wr.fast_reg.length = size; fastreg_wr.wr.fast_reg.rkey = mr->rkey; fastreg_wr.wr.fast_reg.access_flags = (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | IB_ACCESS_REMOTE_READ); if (!wr) wr = &fastreg_wr; else wr->next = &fastreg_wr; ret = ib_post_send(ib_conn->qp, wr, &bad_wr); if (ret) { iser_err("fast registration failed, ret:%d\n", ret); return ret; } desc->reg_indicators &= ~ind; reg->sge.lkey = mr->lkey; reg->rkey = mr->rkey; reg->sge.addr = frpl->page_list[0] + offset; reg->sge.length = size; return ret; } /** * iser_reg_rdma_mem_fastreg - Registers memory intended for RDMA, * using Fast Registration WR (if possible) obtaining rkey and va * * returns 0 on success, errno code on failure */ int iser_reg_rdma_mem_fastreg(struct iscsi_iser_task *iser_task, enum iser_data_dir cmd_dir) { struct ib_conn *ib_conn = &iser_task->iser_conn->ib_conn; struct iser_device *device = ib_conn->device; struct ib_device *ibdev = device->ib_device; struct iser_data_buf *mem = &iser_task->data[cmd_dir]; struct iser_mem_reg *mem_reg = &iser_task->rdma_reg[cmd_dir]; struct fast_reg_descriptor *desc = NULL; int err, aligned_len; aligned_len = iser_data_buf_aligned_len(mem, ibdev); if (aligned_len != mem->dma_nents) { err = fall_to_bounce_buf(iser_task, mem, cmd_dir, aligned_len); if (err) { iser_err("failed to allocate bounce buffer\n"); return err; } } if (mem->dma_nents != 1 || scsi_get_prot_op(iser_task->sc) != SCSI_PROT_NORMAL) { desc = iser_reg_desc_get(ib_conn); mem_reg->mem_h = desc; } err = iser_fast_reg_mr(iser_task, mem, desc, ISER_DATA_KEY_VALID, mem_reg); if (err) goto err_reg; if (scsi_get_prot_op(iser_task->sc) != SCSI_PROT_NORMAL) { struct iser_mem_reg prot_reg; memset(&prot_reg, 0, sizeof(prot_reg)); if (scsi_prot_sg_count(iser_task->sc)) { mem = &iser_task->prot[cmd_dir]; aligned_len = iser_data_buf_aligned_len(mem, ibdev); if (aligned_len != mem->dma_nents) { err = fall_to_bounce_buf(iser_task, mem, cmd_dir, aligned_len); if (err) { iser_err("failed to allocate bounce buffer\n"); return err; } } err = iser_fast_reg_mr(iser_task, mem, desc, ISER_PROT_KEY_VALID, &prot_reg); if (err) goto err_reg; } err = iser_reg_sig_mr(iser_task, desc, mem_reg, &prot_reg, mem_reg); if (err) { iser_err("Failed to register signature mr\n"); return err; } desc->reg_indicators |= ISER_FASTREG_PROTECTED; } return 0; err_reg: if (desc) iser_reg_desc_put(ib_conn, desc); return err; }