/* * Copyright (c) 2007, 2008, 2009 QLogic Corporation. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/mm.h> #include <linux/types.h> #include <linux/device.h> #include <linux/dmapool.h> #include <linux/slab.h> #include <linux/list.h> #include <linux/highmem.h> #include <linux/io.h> #include <linux/uio.h> #include <linux/rbtree.h> #include <linux/spinlock.h> #include <linux/delay.h> #include "qib.h" #include "qib_user_sdma.h" /* minimum size of header */ #define QIB_USER_SDMA_MIN_HEADER_LENGTH 64 /* expected size of headers (for dma_pool) */ #define QIB_USER_SDMA_EXP_HEADER_LENGTH 64 /* attempt to drain the queue for 5secs */ #define QIB_USER_SDMA_DRAIN_TIMEOUT 250 /* * track how many times a process open this driver. */ static struct rb_root qib_user_sdma_rb_root = RB_ROOT; struct qib_user_sdma_rb_node { struct rb_node node; int refcount; pid_t pid; }; struct qib_user_sdma_pkt { struct list_head list; /* list element */ u8 tiddma; /* if this is NEW tid-sdma */ u8 largepkt; /* this is large pkt from kmalloc */ u16 frag_size; /* frag size used by PSM */ u16 index; /* last header index or push index */ u16 naddr; /* dimension of addr (1..3) ... */ u16 addrlimit; /* addr array size */ u16 tidsmidx; /* current tidsm index */ u16 tidsmcount; /* tidsm array item count */ u16 payload_size; /* payload size so far for header */ u32 bytes_togo; /* bytes for processing */ u32 counter; /* sdma pkts queued counter for this entry */ struct qib_tid_session_member *tidsm; /* tid session member array */ struct qib_user_sdma_queue *pq; /* which pq this pkt belongs to */ u64 added; /* global descq number of entries */ struct { u16 offset; /* offset for kvaddr, addr */ u16 length; /* length in page */ u16 first_desc; /* first desc */ u16 last_desc; /* last desc */ u16 put_page; /* should we put_page? */ u16 dma_mapped; /* is page dma_mapped? */ u16 dma_length; /* for dma_unmap_page() */ u16 padding; struct page *page; /* may be NULL (coherent mem) */ void *kvaddr; /* FIXME: only for pio hack */ dma_addr_t addr; } addr[4]; /* max pages, any more and we coalesce */ }; struct qib_user_sdma_queue { /* * pkts sent to dma engine are queued on this * list head. the type of the elements of this * list are struct qib_user_sdma_pkt... */ struct list_head sent; /* * Because above list will be accessed by both process and * signal handler, we need a spinlock for it. */ spinlock_t sent_lock ____cacheline_aligned_in_smp; /* headers with expected length are allocated from here... */ char header_cache_name[64]; struct dma_pool *header_cache; /* packets are allocated from the slab cache... */ char pkt_slab_name[64]; struct kmem_cache *pkt_slab; /* as packets go on the queued queue, they are counted... */ u32 counter; u32 sent_counter; /* pending packets, not sending yet */ u32 num_pending; /* sending packets, not complete yet */ u32 num_sending; /* global descq number of entry of last sending packet */ u64 added; /* dma page table */ struct rb_root dma_pages_root; struct qib_user_sdma_rb_node *sdma_rb_node; /* protect everything above... */ struct mutex lock; }; static struct qib_user_sdma_rb_node * qib_user_sdma_rb_search(struct rb_root *root, pid_t pid) { struct qib_user_sdma_rb_node *sdma_rb_node; struct rb_node *node = root->rb_node; while (node) { sdma_rb_node = container_of(node, struct qib_user_sdma_rb_node, node); if (pid < sdma_rb_node->pid) node = node->rb_left; else if (pid > sdma_rb_node->pid) node = node->rb_right; else return sdma_rb_node; } return NULL; } static int qib_user_sdma_rb_insert(struct rb_root *root, struct qib_user_sdma_rb_node *new) { struct rb_node **node = &(root->rb_node); struct rb_node *parent = NULL; struct qib_user_sdma_rb_node *got; while (*node) { got = container_of(*node, struct qib_user_sdma_rb_node, node); parent = *node; if (new->pid < got->pid) node = &((*node)->rb_left); else if (new->pid > got->pid) node = &((*node)->rb_right); else return 0; } rb_link_node(&new->node, parent, node); rb_insert_color(&new->node, root); return 1; } struct qib_user_sdma_queue * qib_user_sdma_queue_create(struct device *dev, int unit, int ctxt, int sctxt) { struct qib_user_sdma_queue *pq = kmalloc(sizeof(struct qib_user_sdma_queue), GFP_KERNEL); struct qib_user_sdma_rb_node *sdma_rb_node; if (!pq) goto done; pq->counter = 0; pq->sent_counter = 0; pq->num_pending = 0; pq->num_sending = 0; pq->added = 0; pq->sdma_rb_node = NULL; INIT_LIST_HEAD(&pq->sent); spin_lock_init(&pq->sent_lock); mutex_init(&pq->lock); snprintf(pq->pkt_slab_name, sizeof(pq->pkt_slab_name), "qib-user-sdma-pkts-%u-%02u.%02u", unit, ctxt, sctxt); pq->pkt_slab = kmem_cache_create(pq->pkt_slab_name, sizeof(struct qib_user_sdma_pkt), 0, 0, NULL); if (!pq->pkt_slab) goto err_kfree; snprintf(pq->header_cache_name, sizeof(pq->header_cache_name), "qib-user-sdma-headers-%u-%02u.%02u", unit, ctxt, sctxt); pq->header_cache = dma_pool_create(pq->header_cache_name, dev, QIB_USER_SDMA_EXP_HEADER_LENGTH, 4, 0); if (!pq->header_cache) goto err_slab; pq->dma_pages_root = RB_ROOT; sdma_rb_node = qib_user_sdma_rb_search(&qib_user_sdma_rb_root, current->pid); if (sdma_rb_node) { sdma_rb_node->refcount++; } else { int ret; sdma_rb_node = kmalloc(sizeof( struct qib_user_sdma_rb_node), GFP_KERNEL); if (!sdma_rb_node) goto err_rb; sdma_rb_node->refcount = 1; sdma_rb_node->pid = current->pid; ret = qib_user_sdma_rb_insert(&qib_user_sdma_rb_root, sdma_rb_node); BUG_ON(ret == 0); } pq->sdma_rb_node = sdma_rb_node; goto done; err_rb: dma_pool_destroy(pq->header_cache); err_slab: kmem_cache_destroy(pq->pkt_slab); err_kfree: kfree(pq); pq = NULL; done: return pq; } static void qib_user_sdma_init_frag(struct qib_user_sdma_pkt *pkt, int i, u16 offset, u16 len, u16 first_desc, u16 last_desc, u16 put_page, u16 dma_mapped, struct page *page, void *kvaddr, dma_addr_t dma_addr, u16 dma_length) { pkt->addr[i].offset = offset; pkt->addr[i].length = len; pkt->addr[i].first_desc = first_desc; pkt->addr[i].last_desc = last_desc; pkt->addr[i].put_page = put_page; pkt->addr[i].dma_mapped = dma_mapped; pkt->addr[i].page = page; pkt->addr[i].kvaddr = kvaddr; pkt->addr[i].addr = dma_addr; pkt->addr[i].dma_length = dma_length; } static void *qib_user_sdma_alloc_header(struct qib_user_sdma_queue *pq, size_t len, dma_addr_t *dma_addr) { void *hdr; if (len == QIB_USER_SDMA_EXP_HEADER_LENGTH) hdr = dma_pool_alloc(pq->header_cache, GFP_KERNEL, dma_addr); else hdr = NULL; if (!hdr) { hdr = kmalloc(len, GFP_KERNEL); if (!hdr) return NULL; *dma_addr = 0; } return hdr; } static int qib_user_sdma_page_to_frags(const struct qib_devdata *dd, struct qib_user_sdma_queue *pq, struct qib_user_sdma_pkt *pkt, struct page *page, u16 put, u16 offset, u16 len, void *kvaddr) { __le16 *pbc16; void *pbcvaddr; struct qib_message_header *hdr; u16 newlen, pbclen, lastdesc, dma_mapped; u32 vcto; union qib_seqnum seqnum; dma_addr_t pbcdaddr; dma_addr_t dma_addr = dma_map_page(&dd->pcidev->dev, page, offset, len, DMA_TO_DEVICE); int ret = 0; if (dma_mapping_error(&dd->pcidev->dev, dma_addr)) { /* * dma mapping error, pkt has not managed * this page yet, return the page here so * the caller can ignore this page. */ if (put) { put_page(page); } else { /* coalesce case */ kunmap(page); __free_page(page); } ret = -ENOMEM; goto done; } offset = 0; dma_mapped = 1; next_fragment: /* * In tid-sdma, the transfer length is restricted by * receiver side current tid page length. */ if (pkt->tiddma && len > pkt->tidsm[pkt->tidsmidx].length) newlen = pkt->tidsm[pkt->tidsmidx].length; else newlen = len; /* * Then the transfer length is restricted by MTU. * the last descriptor flag is determined by: * 1. the current packet is at frag size length. * 2. the current tid page is done if tid-sdma. * 3. there is no more byte togo if sdma. */ lastdesc = 0; if ((pkt->payload_size + newlen) >= pkt->frag_size) { newlen = pkt->frag_size - pkt->payload_size; lastdesc = 1; } else if (pkt->tiddma) { if (newlen == pkt->tidsm[pkt->tidsmidx].length) lastdesc = 1; } else { if (newlen == pkt->bytes_togo) lastdesc = 1; } /* fill the next fragment in this page */ qib_user_sdma_init_frag(pkt, pkt->naddr, /* index */ offset, newlen, /* offset, len */ 0, lastdesc, /* first last desc */ put, dma_mapped, /* put page, dma mapped */ page, kvaddr, /* struct page, virt addr */ dma_addr, len); /* dma addr, dma length */ pkt->bytes_togo -= newlen; pkt->payload_size += newlen; pkt->naddr++; if (pkt->naddr == pkt->addrlimit) { ret = -EFAULT; goto done; } /* If there is no more byte togo. (lastdesc==1) */ if (pkt->bytes_togo == 0) { /* The packet is done, header is not dma mapped yet. * it should be from kmalloc */ if (!pkt->addr[pkt->index].addr) { pkt->addr[pkt->index].addr = dma_map_single(&dd->pcidev->dev, pkt->addr[pkt->index].kvaddr, pkt->addr[pkt->index].dma_length, DMA_TO_DEVICE); if (dma_mapping_error(&dd->pcidev->dev, pkt->addr[pkt->index].addr)) { ret = -ENOMEM; goto done; } pkt->addr[pkt->index].dma_mapped = 1; } goto done; } /* If tid-sdma, advance tid info. */ if (pkt->tiddma) { pkt->tidsm[pkt->tidsmidx].length -= newlen; if (pkt->tidsm[pkt->tidsmidx].length) { pkt->tidsm[pkt->tidsmidx].offset += newlen; } else { pkt->tidsmidx++; if (pkt->tidsmidx == pkt->tidsmcount) { ret = -EFAULT; goto done; } } } /* * If this is NOT the last descriptor. (newlen==len) * the current packet is not done yet, but the current * send side page is done. */ if (lastdesc == 0) goto done; /* * If running this driver under PSM with message size * fitting into one transfer unit, it is not possible * to pass this line. otherwise, it is a buggggg. */ /* * Since the current packet is done, and there are more * bytes togo, we need to create a new sdma header, copying * from previous sdma header and modify both. */ pbclen = pkt->addr[pkt->index].length; pbcvaddr = qib_user_sdma_alloc_header(pq, pbclen, &pbcdaddr); if (!pbcvaddr) { ret = -ENOMEM; goto done; } /* Copy the previous sdma header to new sdma header */ pbc16 = (__le16 *)pkt->addr[pkt->index].kvaddr; memcpy(pbcvaddr, pbc16, pbclen); /* Modify the previous sdma header */ hdr = (struct qib_message_header *)&pbc16[4]; /* New pbc length */ pbc16[0] = cpu_to_le16(le16_to_cpu(pbc16[0])-(pkt->bytes_togo>>2)); /* New packet length */ hdr->lrh[2] = cpu_to_be16(le16_to_cpu(pbc16[0])); if (pkt->tiddma) { /* turn on the header suppression */ hdr->iph.pkt_flags = cpu_to_le16(le16_to_cpu(hdr->iph.pkt_flags)|0x2); /* turn off ACK_REQ: 0x04 and EXPECTED_DONE: 0x20 */ hdr->flags &= ~(0x04|0x20); } else { /* turn off extra bytes: 20-21 bits */ hdr->bth[0] = cpu_to_be32(be32_to_cpu(hdr->bth[0])&0xFFCFFFFF); /* turn off ACK_REQ: 0x04 */ hdr->flags &= ~(0x04); } /* New kdeth checksum */ vcto = le32_to_cpu(hdr->iph.ver_ctxt_tid_offset); hdr->iph.chksum = cpu_to_le16(QIB_LRH_BTH + be16_to_cpu(hdr->lrh[2]) - ((vcto>>16)&0xFFFF) - (vcto&0xFFFF) - le16_to_cpu(hdr->iph.pkt_flags)); /* The packet is done, header is not dma mapped yet. * it should be from kmalloc */ if (!pkt->addr[pkt->index].addr) { pkt->addr[pkt->index].addr = dma_map_single(&dd->pcidev->dev, pkt->addr[pkt->index].kvaddr, pkt->addr[pkt->index].dma_length, DMA_TO_DEVICE); if (dma_mapping_error(&dd->pcidev->dev, pkt->addr[pkt->index].addr)) { ret = -ENOMEM; goto done; } pkt->addr[pkt->index].dma_mapped = 1; } /* Modify the new sdma header */ pbc16 = (__le16 *)pbcvaddr; hdr = (struct qib_message_header *)&pbc16[4]; /* New pbc length */ pbc16[0] = cpu_to_le16(le16_to_cpu(pbc16[0])-(pkt->payload_size>>2)); /* New packet length */ hdr->lrh[2] = cpu_to_be16(le16_to_cpu(pbc16[0])); if (pkt->tiddma) { /* Set new tid and offset for new sdma header */ hdr->iph.ver_ctxt_tid_offset = cpu_to_le32( (le32_to_cpu(hdr->iph.ver_ctxt_tid_offset)&0xFF000000) + (pkt->tidsm[pkt->tidsmidx].tid<<QLOGIC_IB_I_TID_SHIFT) + (pkt->tidsm[pkt->tidsmidx].offset>>2)); } else { /* Middle protocol new packet offset */ hdr->uwords[2] += pkt->payload_size; } /* New kdeth checksum */ vcto = le32_to_cpu(hdr->iph.ver_ctxt_tid_offset); hdr->iph.chksum = cpu_to_le16(QIB_LRH_BTH + be16_to_cpu(hdr->lrh[2]) - ((vcto>>16)&0xFFFF) - (vcto&0xFFFF) - le16_to_cpu(hdr->iph.pkt_flags)); /* Next sequence number in new sdma header */ seqnum.val = be32_to_cpu(hdr->bth[2]); if (pkt->tiddma) seqnum.seq++; else seqnum.pkt++; hdr->bth[2] = cpu_to_be32(seqnum.val); /* Init new sdma header. */ qib_user_sdma_init_frag(pkt, pkt->naddr, /* index */ 0, pbclen, /* offset, len */ 1, 0, /* first last desc */ 0, 0, /* put page, dma mapped */ NULL, pbcvaddr, /* struct page, virt addr */ pbcdaddr, pbclen); /* dma addr, dma length */ pkt->index = pkt->naddr; pkt->payload_size = 0; pkt->naddr++; if (pkt->naddr == pkt->addrlimit) { ret = -EFAULT; goto done; } /* Prepare for next fragment in this page */ if (newlen != len) { if (dma_mapped) { put = 0; dma_mapped = 0; page = NULL; kvaddr = NULL; } len -= newlen; offset += newlen; goto next_fragment; } done: return ret; } /* we've too many pages in the iovec, coalesce to a single page */ static int qib_user_sdma_coalesce(const struct qib_devdata *dd, struct qib_user_sdma_queue *pq, struct qib_user_sdma_pkt *pkt, const struct iovec *iov, unsigned long niov) { int ret = 0; struct page *page = alloc_page(GFP_KERNEL); void *mpage_save; char *mpage; int i; int len = 0; if (!page) { ret = -ENOMEM; goto done; } mpage = kmap(page); mpage_save = mpage; for (i = 0; i < niov; i++) { int cfur; cfur = copy_from_user(mpage, iov[i].iov_base, iov[i].iov_len); if (cfur) { ret = -EFAULT; goto free_unmap; } mpage += iov[i].iov_len; len += iov[i].iov_len; } ret = qib_user_sdma_page_to_frags(dd, pq, pkt, page, 0, 0, len, mpage_save); goto done; free_unmap: kunmap(page); __free_page(page); done: return ret; } /* * How many pages in this iovec element? */ static int qib_user_sdma_num_pages(const struct iovec *iov) { const unsigned long addr = (unsigned long) iov->iov_base; const unsigned long len = iov->iov_len; const unsigned long spage = addr & PAGE_MASK; const unsigned long epage = (addr + len - 1) & PAGE_MASK; return 1 + ((epage - spage) >> PAGE_SHIFT); } static void qib_user_sdma_free_pkt_frag(struct device *dev, struct qib_user_sdma_queue *pq, struct qib_user_sdma_pkt *pkt, int frag) { const int i = frag; if (pkt->addr[i].page) { /* only user data has page */ if (pkt->addr[i].dma_mapped) dma_unmap_page(dev, pkt->addr[i].addr, pkt->addr[i].dma_length, DMA_TO_DEVICE); if (pkt->addr[i].kvaddr) kunmap(pkt->addr[i].page); if (pkt->addr[i].put_page) put_page(pkt->addr[i].page); else __free_page(pkt->addr[i].page); } else if (pkt->addr[i].kvaddr) { /* for headers */ if (pkt->addr[i].dma_mapped) { /* from kmalloc & dma mapped */ dma_unmap_single(dev, pkt->addr[i].addr, pkt->addr[i].dma_length, DMA_TO_DEVICE); kfree(pkt->addr[i].kvaddr); } else if (pkt->addr[i].addr) { /* free coherent mem from cache... */ dma_pool_free(pq->header_cache, pkt->addr[i].kvaddr, pkt->addr[i].addr); } else { /* from kmalloc but not dma mapped */ kfree(pkt->addr[i].kvaddr); } } } /* return number of pages pinned... */ static int qib_user_sdma_pin_pages(const struct qib_devdata *dd, struct qib_user_sdma_queue *pq, struct qib_user_sdma_pkt *pkt, unsigned long addr, int tlen, int npages) { struct page *pages[8]; int i, j; int ret = 0; while (npages) { if (npages > 8) j = 8; else j = npages; ret = get_user_pages_fast(addr, j, 0, pages); if (ret != j) { i = 0; j = ret; ret = -ENOMEM; goto free_pages; } for (i = 0; i < j; i++) { /* map the pages... */ unsigned long fofs = addr & ~PAGE_MASK; int flen = ((fofs + tlen) > PAGE_SIZE) ? (PAGE_SIZE - fofs) : tlen; ret = qib_user_sdma_page_to_frags(dd, pq, pkt, pages[i], 1, fofs, flen, NULL); if (ret < 0) { /* current page has beed taken * care of inside above call. */ i++; goto free_pages; } addr += flen; tlen -= flen; } npages -= j; } goto done; /* if error, return all pages not managed by pkt */ free_pages: while (i < j) put_page(pages[i++]); done: return ret; } static int qib_user_sdma_pin_pkt(const struct qib_devdata *dd, struct qib_user_sdma_queue *pq, struct qib_user_sdma_pkt *pkt, const struct iovec *iov, unsigned long niov) { int ret = 0; unsigned long idx; for (idx = 0; idx < niov; idx++) { const int npages = qib_user_sdma_num_pages(iov + idx); const unsigned long addr = (unsigned long) iov[idx].iov_base; ret = qib_user_sdma_pin_pages(dd, pq, pkt, addr, iov[idx].iov_len, npages); if (ret < 0) goto free_pkt; } goto done; free_pkt: /* we need to ignore the first entry here */ for (idx = 1; idx < pkt->naddr; idx++) qib_user_sdma_free_pkt_frag(&dd->pcidev->dev, pq, pkt, idx); /* need to dma unmap the first entry, this is to restore to * the original state so that caller can free the memory in * error condition. Caller does not know if dma mapped or not*/ if (pkt->addr[0].dma_mapped) { dma_unmap_single(&dd->pcidev->dev, pkt->addr[0].addr, pkt->addr[0].dma_length, DMA_TO_DEVICE); pkt->addr[0].addr = 0; pkt->addr[0].dma_mapped = 0; } done: return ret; } static int qib_user_sdma_init_payload(const struct qib_devdata *dd, struct qib_user_sdma_queue *pq, struct qib_user_sdma_pkt *pkt, const struct iovec *iov, unsigned long niov, int npages) { int ret = 0; if (pkt->frag_size == pkt->bytes_togo && npages >= ARRAY_SIZE(pkt->addr)) ret = qib_user_sdma_coalesce(dd, pq, pkt, iov, niov); else ret = qib_user_sdma_pin_pkt(dd, pq, pkt, iov, niov); return ret; } /* free a packet list -- return counter value of last packet */ static void qib_user_sdma_free_pkt_list(struct device *dev, struct qib_user_sdma_queue *pq, struct list_head *list) { struct qib_user_sdma_pkt *pkt, *pkt_next; list_for_each_entry_safe(pkt, pkt_next, list, list) { int i; for (i = 0; i < pkt->naddr; i++) qib_user_sdma_free_pkt_frag(dev, pq, pkt, i); if (pkt->largepkt) kfree(pkt); else kmem_cache_free(pq->pkt_slab, pkt); } INIT_LIST_HEAD(list); } /* * copy headers, coalesce etc -- pq->lock must be held * * we queue all the packets to list, returning the * number of bytes total. list must be empty initially, * as, if there is an error we clean it... */ static int qib_user_sdma_queue_pkts(const struct qib_devdata *dd, struct qib_pportdata *ppd, struct qib_user_sdma_queue *pq, const struct iovec *iov, unsigned long niov, struct list_head *list, int *maxpkts, int *ndesc) { unsigned long idx = 0; int ret = 0; int npkts = 0; __le32 *pbc; dma_addr_t dma_addr; struct qib_user_sdma_pkt *pkt = NULL; size_t len; size_t nw; u32 counter = pq->counter; u16 frag_size; while (idx < niov && npkts < *maxpkts) { const unsigned long addr = (unsigned long) iov[idx].iov_base; const unsigned long idx_save = idx; unsigned pktnw; unsigned pktnwc; int nfrags = 0; int npages = 0; int bytes_togo = 0; int tiddma = 0; int cfur; len = iov[idx].iov_len; nw = len >> 2; if (len < QIB_USER_SDMA_MIN_HEADER_LENGTH || len > PAGE_SIZE || len & 3 || addr & 3) { ret = -EINVAL; goto free_list; } pbc = qib_user_sdma_alloc_header(pq, len, &dma_addr); if (!pbc) { ret = -ENOMEM; goto free_list; } cfur = copy_from_user(pbc, iov[idx].iov_base, len); if (cfur) { ret = -EFAULT; goto free_pbc; } /* * This assignment is a bit strange. it's because the * the pbc counts the number of 32 bit words in the full * packet _except_ the first word of the pbc itself... */ pktnwc = nw - 1; /* * pktnw computation yields the number of 32 bit words * that the caller has indicated in the PBC. note that * this is one less than the total number of words that * goes to the send DMA engine as the first 32 bit word * of the PBC itself is not counted. Armed with this count, * we can verify that the packet is consistent with the * iovec lengths. */ pktnw = le32_to_cpu(*pbc) & 0xFFFF; if (pktnw < pktnwc) { ret = -EINVAL; goto free_pbc; } idx++; while (pktnwc < pktnw && idx < niov) { const size_t slen = iov[idx].iov_len; const unsigned long faddr = (unsigned long) iov[idx].iov_base; if (slen & 3 || faddr & 3 || !slen) { ret = -EINVAL; goto free_pbc; } npages += qib_user_sdma_num_pages(&iov[idx]); bytes_togo += slen; pktnwc += slen >> 2; idx++; nfrags++; } if (pktnwc != pktnw) { ret = -EINVAL; goto free_pbc; } frag_size = ((le32_to_cpu(*pbc))>>16) & 0xFFFF; if (((frag_size ? frag_size : bytes_togo) + len) > ppd->ibmaxlen) { ret = -EINVAL; goto free_pbc; } if (frag_size) { int pktsize, tidsmsize, n; n = npages*((2*PAGE_SIZE/frag_size)+1); pktsize = sizeof(*pkt) + sizeof(pkt->addr[0])*n; /* * Determine if this is tid-sdma or just sdma. */ tiddma = (((le32_to_cpu(pbc[7])>> QLOGIC_IB_I_TID_SHIFT)& QLOGIC_IB_I_TID_MASK) != QLOGIC_IB_I_TID_MASK); if (tiddma) tidsmsize = iov[idx].iov_len; else tidsmsize = 0; pkt = kmalloc(pktsize+tidsmsize, GFP_KERNEL); if (!pkt) { ret = -ENOMEM; goto free_pbc; } pkt->largepkt = 1; pkt->frag_size = frag_size; pkt->addrlimit = n + ARRAY_SIZE(pkt->addr); if (tiddma) { char *tidsm = (char *)pkt + pktsize; cfur = copy_from_user(tidsm, iov[idx].iov_base, tidsmsize); if (cfur) { ret = -EFAULT; goto free_pkt; } pkt->tidsm = (struct qib_tid_session_member *)tidsm; pkt->tidsmcount = tidsmsize/ sizeof(struct qib_tid_session_member); pkt->tidsmidx = 0; idx++; } /* * pbc 'fill1' field is borrowed to pass frag size, * we need to clear it after picking frag size, the * hardware requires this field to be zero. */ *pbc = cpu_to_le32(le32_to_cpu(*pbc) & 0x0000FFFF); } else { pkt = kmem_cache_alloc(pq->pkt_slab, GFP_KERNEL); if (!pkt) { ret = -ENOMEM; goto free_pbc; } pkt->largepkt = 0; pkt->frag_size = bytes_togo; pkt->addrlimit = ARRAY_SIZE(pkt->addr); } pkt->bytes_togo = bytes_togo; pkt->payload_size = 0; pkt->counter = counter; pkt->tiddma = tiddma; /* setup the first header */ qib_user_sdma_init_frag(pkt, 0, /* index */ 0, len, /* offset, len */ 1, 0, /* first last desc */ 0, 0, /* put page, dma mapped */ NULL, pbc, /* struct page, virt addr */ dma_addr, len); /* dma addr, dma length */ pkt->index = 0; pkt->naddr = 1; if (nfrags) { ret = qib_user_sdma_init_payload(dd, pq, pkt, iov + idx_save + 1, nfrags, npages); if (ret < 0) goto free_pkt; } else { /* since there is no payload, mark the * header as the last desc. */ pkt->addr[0].last_desc = 1; if (dma_addr == 0) { /* * the header is not dma mapped yet. * it should be from kmalloc. */ dma_addr = dma_map_single(&dd->pcidev->dev, pbc, len, DMA_TO_DEVICE); if (dma_mapping_error(&dd->pcidev->dev, dma_addr)) { ret = -ENOMEM; goto free_pkt; } pkt->addr[0].addr = dma_addr; pkt->addr[0].dma_mapped = 1; } } counter++; npkts++; pkt->pq = pq; pkt->index = 0; /* reset index for push on hw */ *ndesc += pkt->naddr; list_add_tail(&pkt->list, list); } *maxpkts = npkts; ret = idx; goto done; free_pkt: if (pkt->largepkt) kfree(pkt); else kmem_cache_free(pq->pkt_slab, pkt); free_pbc: if (dma_addr) dma_pool_free(pq->header_cache, pbc, dma_addr); else kfree(pbc); free_list: qib_user_sdma_free_pkt_list(&dd->pcidev->dev, pq, list); done: return ret; } static void qib_user_sdma_set_complete_counter(struct qib_user_sdma_queue *pq, u32 c) { pq->sent_counter = c; } /* try to clean out queue -- needs pq->lock */ static int qib_user_sdma_queue_clean(struct qib_pportdata *ppd, struct qib_user_sdma_queue *pq) { struct qib_devdata *dd = ppd->dd; struct list_head free_list; struct qib_user_sdma_pkt *pkt; struct qib_user_sdma_pkt *pkt_prev; unsigned long flags; int ret = 0; if (!pq->num_sending) return 0; INIT_LIST_HEAD(&free_list); /* * We need this spin lock here because interrupt handler * might modify this list in qib_user_sdma_send_desc(), also * we can not get interrupted, otherwise it is a deadlock. */ spin_lock_irqsave(&pq->sent_lock, flags); list_for_each_entry_safe(pkt, pkt_prev, &pq->sent, list) { s64 descd = ppd->sdma_descq_removed - pkt->added; if (descd < 0) break; list_move_tail(&pkt->list, &free_list); /* one more packet cleaned */ ret++; pq->num_sending--; } spin_unlock_irqrestore(&pq->sent_lock, flags); if (!list_empty(&free_list)) { u32 counter; pkt = list_entry(free_list.prev, struct qib_user_sdma_pkt, list); counter = pkt->counter; qib_user_sdma_free_pkt_list(&dd->pcidev->dev, pq, &free_list); qib_user_sdma_set_complete_counter(pq, counter); } return ret; } void qib_user_sdma_queue_destroy(struct qib_user_sdma_queue *pq) { if (!pq) return; pq->sdma_rb_node->refcount--; if (pq->sdma_rb_node->refcount == 0) { rb_erase(&pq->sdma_rb_node->node, &qib_user_sdma_rb_root); kfree(pq->sdma_rb_node); } dma_pool_destroy(pq->header_cache); kmem_cache_destroy(pq->pkt_slab); kfree(pq); } /* clean descriptor queue, returns > 0 if some elements cleaned */ static int qib_user_sdma_hwqueue_clean(struct qib_pportdata *ppd) { int ret; unsigned long flags; spin_lock_irqsave(&ppd->sdma_lock, flags); ret = qib_sdma_make_progress(ppd); spin_unlock_irqrestore(&ppd->sdma_lock, flags); return ret; } /* we're in close, drain packets so that we can cleanup successfully... */ void qib_user_sdma_queue_drain(struct qib_pportdata *ppd, struct qib_user_sdma_queue *pq) { struct qib_devdata *dd = ppd->dd; unsigned long flags; int i; if (!pq) return; for (i = 0; i < QIB_USER_SDMA_DRAIN_TIMEOUT; i++) { mutex_lock(&pq->lock); if (!pq->num_pending && !pq->num_sending) { mutex_unlock(&pq->lock); break; } qib_user_sdma_hwqueue_clean(ppd); qib_user_sdma_queue_clean(ppd, pq); mutex_unlock(&pq->lock); msleep(20); } if (pq->num_pending || pq->num_sending) { struct qib_user_sdma_pkt *pkt; struct qib_user_sdma_pkt *pkt_prev; struct list_head free_list; mutex_lock(&pq->lock); spin_lock_irqsave(&ppd->sdma_lock, flags); /* * Since we hold sdma_lock, it is safe without sent_lock. */ if (pq->num_pending) { list_for_each_entry_safe(pkt, pkt_prev, &ppd->sdma_userpending, list) { if (pkt->pq == pq) { list_move_tail(&pkt->list, &pq->sent); pq->num_pending--; pq->num_sending++; } } } spin_unlock_irqrestore(&ppd->sdma_lock, flags); qib_dev_err(dd, "user sdma lists not empty: forcing!\n"); INIT_LIST_HEAD(&free_list); list_splice_init(&pq->sent, &free_list); pq->num_sending = 0; qib_user_sdma_free_pkt_list(&dd->pcidev->dev, pq, &free_list); mutex_unlock(&pq->lock); } } static inline __le64 qib_sdma_make_desc0(u8 gen, u64 addr, u64 dwlen, u64 dwoffset) { return cpu_to_le64(/* SDmaPhyAddr[31:0] */ ((addr & 0xfffffffcULL) << 32) | /* SDmaGeneration[1:0] */ ((gen & 3ULL) << 30) | /* SDmaDwordCount[10:0] */ ((dwlen & 0x7ffULL) << 16) | /* SDmaBufOffset[12:2] */ (dwoffset & 0x7ffULL)); } static inline __le64 qib_sdma_make_first_desc0(__le64 descq) { return descq | cpu_to_le64(1ULL << 12); } static inline __le64 qib_sdma_make_last_desc0(__le64 descq) { /* last */ /* dma head */ return descq | cpu_to_le64(1ULL << 11 | 1ULL << 13); } static inline __le64 qib_sdma_make_desc1(u64 addr) { /* SDmaPhyAddr[47:32] */ return cpu_to_le64(addr >> 32); } static void qib_user_sdma_send_frag(struct qib_pportdata *ppd, struct qib_user_sdma_pkt *pkt, int idx, unsigned ofs, u16 tail, u8 gen) { const u64 addr = (u64) pkt->addr[idx].addr + (u64) pkt->addr[idx].offset; const u64 dwlen = (u64) pkt->addr[idx].length / 4; __le64 *descqp; __le64 descq0; descqp = &ppd->sdma_descq[tail].qw[0]; descq0 = qib_sdma_make_desc0(gen, addr, dwlen, ofs); if (pkt->addr[idx].first_desc) descq0 = qib_sdma_make_first_desc0(descq0); if (pkt->addr[idx].last_desc) { descq0 = qib_sdma_make_last_desc0(descq0); if (ppd->sdma_intrequest) { descq0 |= cpu_to_le64(1ULL << 15); ppd->sdma_intrequest = 0; } } descqp[0] = descq0; descqp[1] = qib_sdma_make_desc1(addr); } void qib_user_sdma_send_desc(struct qib_pportdata *ppd, struct list_head *pktlist) { struct qib_devdata *dd = ppd->dd; u16 nfree, nsent; u16 tail, tail_c; u8 gen, gen_c; nfree = qib_sdma_descq_freecnt(ppd); if (!nfree) return; retry: nsent = 0; tail_c = tail = ppd->sdma_descq_tail; gen_c = gen = ppd->sdma_generation; while (!list_empty(pktlist)) { struct qib_user_sdma_pkt *pkt = list_entry(pktlist->next, struct qib_user_sdma_pkt, list); int i, j, c = 0; unsigned ofs = 0; u16 dtail = tail; for (i = pkt->index; i < pkt->naddr && nfree; i++) { qib_user_sdma_send_frag(ppd, pkt, i, ofs, tail, gen); ofs += pkt->addr[i].length >> 2; if (++tail == ppd->sdma_descq_cnt) { tail = 0; ++gen; ppd->sdma_intrequest = 1; } else if (tail == (ppd->sdma_descq_cnt>>1)) { ppd->sdma_intrequest = 1; } nfree--; if (pkt->addr[i].last_desc == 0) continue; /* * If the packet is >= 2KB mtu equivalent, we * have to use the large buffers, and have to * mark each descriptor as part of a large * buffer packet. */ if (ofs > dd->piosize2kmax_dwords) { for (j = pkt->index; j <= i; j++) { ppd->sdma_descq[dtail].qw[0] |= cpu_to_le64(1ULL << 14); if (++dtail == ppd->sdma_descq_cnt) dtail = 0; } } c += i + 1 - pkt->index; pkt->index = i + 1; /* index for next first */ tail_c = dtail = tail; gen_c = gen; ofs = 0; /* reset for next packet */ } ppd->sdma_descq_added += c; nsent += c; if (pkt->index == pkt->naddr) { pkt->added = ppd->sdma_descq_added; pkt->pq->added = pkt->added; pkt->pq->num_pending--; spin_lock(&pkt->pq->sent_lock); pkt->pq->num_sending++; list_move_tail(&pkt->list, &pkt->pq->sent); spin_unlock(&pkt->pq->sent_lock); } if (!nfree || (nsent<<2) > ppd->sdma_descq_cnt) break; } /* advance the tail on the chip if necessary */ if (ppd->sdma_descq_tail != tail_c) { ppd->sdma_generation = gen_c; dd->f_sdma_update_tail(ppd, tail_c); } if (nfree && !list_empty(pktlist)) goto retry; } /* pq->lock must be held, get packets on the wire... */ static int qib_user_sdma_push_pkts(struct qib_pportdata *ppd, struct qib_user_sdma_queue *pq, struct list_head *pktlist, int count) { unsigned long flags; if (unlikely(!(ppd->lflags & QIBL_LINKACTIVE))) return -ECOMM; /* non-blocking mode */ if (pq->sdma_rb_node->refcount > 1) { spin_lock_irqsave(&ppd->sdma_lock, flags); if (unlikely(!__qib_sdma_running(ppd))) { spin_unlock_irqrestore(&ppd->sdma_lock, flags); return -ECOMM; } pq->num_pending += count; list_splice_tail_init(pktlist, &ppd->sdma_userpending); qib_user_sdma_send_desc(ppd, &ppd->sdma_userpending); spin_unlock_irqrestore(&ppd->sdma_lock, flags); return 0; } /* In this case, descriptors from this process are not * linked to ppd pending queue, interrupt handler * won't update this process, it is OK to directly * modify without sdma lock. */ pq->num_pending += count; /* * Blocking mode for single rail process, we must * release/regain sdma_lock to give other process * chance to make progress. This is important for * performance. */ do { spin_lock_irqsave(&ppd->sdma_lock, flags); if (unlikely(!__qib_sdma_running(ppd))) { spin_unlock_irqrestore(&ppd->sdma_lock, flags); return -ECOMM; } qib_user_sdma_send_desc(ppd, pktlist); if (!list_empty(pktlist)) qib_sdma_make_progress(ppd); spin_unlock_irqrestore(&ppd->sdma_lock, flags); } while (!list_empty(pktlist)); return 0; } int qib_user_sdma_writev(struct qib_ctxtdata *rcd, struct qib_user_sdma_queue *pq, const struct iovec *iov, unsigned long dim) { struct qib_devdata *dd = rcd->dd; struct qib_pportdata *ppd = rcd->ppd; int ret = 0; struct list_head list; int npkts = 0; INIT_LIST_HEAD(&list); mutex_lock(&pq->lock); /* why not -ECOMM like qib_user_sdma_push_pkts() below? */ if (!qib_sdma_running(ppd)) goto done_unlock; /* if I have packets not complete yet */ if (pq->added > ppd->sdma_descq_removed) qib_user_sdma_hwqueue_clean(ppd); /* if I have complete packets to be freed */ if (pq->num_sending) qib_user_sdma_queue_clean(ppd, pq); while (dim) { int mxp = 1; int ndesc = 0; ret = qib_user_sdma_queue_pkts(dd, ppd, pq, iov, dim, &list, &mxp, &ndesc); if (ret < 0) goto done_unlock; else { dim -= ret; iov += ret; } /* force packets onto the sdma hw queue... */ if (!list_empty(&list)) { /* * Lazily clean hw queue. */ if (qib_sdma_descq_freecnt(ppd) < ndesc) { qib_user_sdma_hwqueue_clean(ppd); if (pq->num_sending) qib_user_sdma_queue_clean(ppd, pq); } ret = qib_user_sdma_push_pkts(ppd, pq, &list, mxp); if (ret < 0) goto done_unlock; else { npkts += mxp; pq->counter += mxp; } } } done_unlock: if (!list_empty(&list)) qib_user_sdma_free_pkt_list(&dd->pcidev->dev, pq, &list); mutex_unlock(&pq->lock); return (ret < 0) ? ret : npkts; } int qib_user_sdma_make_progress(struct qib_pportdata *ppd, struct qib_user_sdma_queue *pq) { int ret = 0; mutex_lock(&pq->lock); qib_user_sdma_hwqueue_clean(ppd); ret = qib_user_sdma_queue_clean(ppd, pq); mutex_unlock(&pq->lock); return ret; } u32 qib_user_sdma_complete_counter(const struct qib_user_sdma_queue *pq) { return pq ? pq->sent_counter : 0; } u32 qib_user_sdma_inflight_counter(struct qib_user_sdma_queue *pq) { return pq ? pq->counter : 0; }