/* * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/debugfs.h> #include <linux/vmalloc.h> #include <linux/math64.h> #include <rdma/ib_verbs.h> #include "iw_cxgb4.h" #define DRV_VERSION "0.1" MODULE_AUTHOR("Steve Wise"); MODULE_DESCRIPTION("Chelsio T4/T5 RDMA Driver"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_VERSION(DRV_VERSION); static int allow_db_fc_on_t5; module_param(allow_db_fc_on_t5, int, 0644); MODULE_PARM_DESC(allow_db_fc_on_t5, "Allow DB Flow Control on T5 (default = 0)"); static int allow_db_coalescing_on_t5; module_param(allow_db_coalescing_on_t5, int, 0644); MODULE_PARM_DESC(allow_db_coalescing_on_t5, "Allow DB Coalescing on T5 (default = 0)"); int c4iw_wr_log = 0; module_param(c4iw_wr_log, int, 0444); MODULE_PARM_DESC(c4iw_wr_log, "Enables logging of work request timing data."); static int c4iw_wr_log_size_order = 12; module_param(c4iw_wr_log_size_order, int, 0444); MODULE_PARM_DESC(c4iw_wr_log_size_order, "Number of entries (log2) in the work request timing log."); struct uld_ctx { struct list_head entry; struct cxgb4_lld_info lldi; struct c4iw_dev *dev; }; static LIST_HEAD(uld_ctx_list); static DEFINE_MUTEX(dev_mutex); #define DB_FC_RESUME_SIZE 64 #define DB_FC_RESUME_DELAY 1 #define DB_FC_DRAIN_THRESH 0 static struct dentry *c4iw_debugfs_root; struct c4iw_debugfs_data { struct c4iw_dev *devp; char *buf; int bufsize; int pos; }; /* registered cxgb4 netlink callbacks */ static struct ibnl_client_cbs c4iw_nl_cb_table[] = { [RDMA_NL_IWPM_REG_PID] = {.dump = iwpm_register_pid_cb}, [RDMA_NL_IWPM_ADD_MAPPING] = {.dump = iwpm_add_mapping_cb}, [RDMA_NL_IWPM_QUERY_MAPPING] = {.dump = iwpm_add_and_query_mapping_cb}, [RDMA_NL_IWPM_HANDLE_ERR] = {.dump = iwpm_mapping_error_cb}, [RDMA_NL_IWPM_REMOTE_INFO] = {.dump = iwpm_remote_info_cb}, [RDMA_NL_IWPM_MAPINFO] = {.dump = iwpm_mapping_info_cb}, [RDMA_NL_IWPM_MAPINFO_NUM] = {.dump = iwpm_ack_mapping_info_cb} }; static int count_idrs(int id, void *p, void *data) { int *countp = data; *countp = *countp + 1; return 0; } static ssize_t debugfs_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { struct c4iw_debugfs_data *d = file->private_data; return simple_read_from_buffer(buf, count, ppos, d->buf, d->pos); } void c4iw_log_wr_stats(struct t4_wq *wq, struct t4_cqe *cqe) { struct wr_log_entry le; int idx; if (!wq->rdev->wr_log) return; idx = (atomic_inc_return(&wq->rdev->wr_log_idx) - 1) & (wq->rdev->wr_log_size - 1); le.poll_sge_ts = cxgb4_read_sge_timestamp(wq->rdev->lldi.ports[0]); getnstimeofday(&le.poll_host_ts); le.valid = 1; le.cqe_sge_ts = CQE_TS(cqe); if (SQ_TYPE(cqe)) { le.qid = wq->sq.qid; le.opcode = CQE_OPCODE(cqe); le.post_host_ts = wq->sq.sw_sq[wq->sq.cidx].host_ts; le.post_sge_ts = wq->sq.sw_sq[wq->sq.cidx].sge_ts; le.wr_id = CQE_WRID_SQ_IDX(cqe); } else { le.qid = wq->rq.qid; le.opcode = FW_RI_RECEIVE; le.post_host_ts = wq->rq.sw_rq[wq->rq.cidx].host_ts; le.post_sge_ts = wq->rq.sw_rq[wq->rq.cidx].sge_ts; le.wr_id = CQE_WRID_MSN(cqe); } wq->rdev->wr_log[idx] = le; } static int wr_log_show(struct seq_file *seq, void *v) { struct c4iw_dev *dev = seq->private; struct timespec prev_ts = {0, 0}; struct wr_log_entry *lep; int prev_ts_set = 0; int idx, end; #define ts2ns(ts) div64_u64((ts) * dev->rdev.lldi.cclk_ps, 1000) idx = atomic_read(&dev->rdev.wr_log_idx) & (dev->rdev.wr_log_size - 1); end = idx - 1; if (end < 0) end = dev->rdev.wr_log_size - 1; lep = &dev->rdev.wr_log[idx]; while (idx != end) { if (lep->valid) { if (!prev_ts_set) { prev_ts_set = 1; prev_ts = lep->poll_host_ts; } seq_printf(seq, "%04u: sec %lu nsec %lu qid %u opcode " "%u %s 0x%x host_wr_delta sec %lu nsec %lu " "post_sge_ts 0x%llx cqe_sge_ts 0x%llx " "poll_sge_ts 0x%llx post_poll_delta_ns %llu " "cqe_poll_delta_ns %llu\n", idx, timespec_sub(lep->poll_host_ts, prev_ts).tv_sec, timespec_sub(lep->poll_host_ts, prev_ts).tv_nsec, lep->qid, lep->opcode, lep->opcode == FW_RI_RECEIVE ? "msn" : "wrid", lep->wr_id, timespec_sub(lep->poll_host_ts, lep->post_host_ts).tv_sec, timespec_sub(lep->poll_host_ts, lep->post_host_ts).tv_nsec, lep->post_sge_ts, lep->cqe_sge_ts, lep->poll_sge_ts, ts2ns(lep->poll_sge_ts - lep->post_sge_ts), ts2ns(lep->poll_sge_ts - lep->cqe_sge_ts)); prev_ts = lep->poll_host_ts; } idx++; if (idx > (dev->rdev.wr_log_size - 1)) idx = 0; lep = &dev->rdev.wr_log[idx]; } #undef ts2ns return 0; } static int wr_log_open(struct inode *inode, struct file *file) { return single_open(file, wr_log_show, inode->i_private); } static ssize_t wr_log_clear(struct file *file, const char __user *buf, size_t count, loff_t *pos) { struct c4iw_dev *dev = ((struct seq_file *)file->private_data)->private; int i; if (dev->rdev.wr_log) for (i = 0; i < dev->rdev.wr_log_size; i++) dev->rdev.wr_log[i].valid = 0; return count; } static const struct file_operations wr_log_debugfs_fops = { .owner = THIS_MODULE, .open = wr_log_open, .release = single_release, .read = seq_read, .llseek = seq_lseek, .write = wr_log_clear, }; static int dump_qp(int id, void *p, void *data) { struct c4iw_qp *qp = p; struct c4iw_debugfs_data *qpd = data; int space; int cc; if (id != qp->wq.sq.qid) return 0; space = qpd->bufsize - qpd->pos - 1; if (space == 0) return 1; if (qp->ep) { if (qp->ep->com.local_addr.ss_family == AF_INET) { struct sockaddr_in *lsin = (struct sockaddr_in *) &qp->ep->com.local_addr; struct sockaddr_in *rsin = (struct sockaddr_in *) &qp->ep->com.remote_addr; struct sockaddr_in *mapped_lsin = (struct sockaddr_in *) &qp->ep->com.mapped_local_addr; struct sockaddr_in *mapped_rsin = (struct sockaddr_in *) &qp->ep->com.mapped_remote_addr; cc = snprintf(qpd->buf + qpd->pos, space, "rc qp sq id %u rq id %u state %u " "onchip %u ep tid %u state %u " "%pI4:%u/%u->%pI4:%u/%u\n", qp->wq.sq.qid, qp->wq.rq.qid, (int)qp->attr.state, qp->wq.sq.flags & T4_SQ_ONCHIP, qp->ep->hwtid, (int)qp->ep->com.state, &lsin->sin_addr, ntohs(lsin->sin_port), ntohs(mapped_lsin->sin_port), &rsin->sin_addr, ntohs(rsin->sin_port), ntohs(mapped_rsin->sin_port)); } else { struct sockaddr_in6 *lsin6 = (struct sockaddr_in6 *) &qp->ep->com.local_addr; struct sockaddr_in6 *rsin6 = (struct sockaddr_in6 *) &qp->ep->com.remote_addr; struct sockaddr_in6 *mapped_lsin6 = (struct sockaddr_in6 *) &qp->ep->com.mapped_local_addr; struct sockaddr_in6 *mapped_rsin6 = (struct sockaddr_in6 *) &qp->ep->com.mapped_remote_addr; cc = snprintf(qpd->buf + qpd->pos, space, "rc qp sq id %u rq id %u state %u " "onchip %u ep tid %u state %u " "%pI6:%u/%u->%pI6:%u/%u\n", qp->wq.sq.qid, qp->wq.rq.qid, (int)qp->attr.state, qp->wq.sq.flags & T4_SQ_ONCHIP, qp->ep->hwtid, (int)qp->ep->com.state, &lsin6->sin6_addr, ntohs(lsin6->sin6_port), ntohs(mapped_lsin6->sin6_port), &rsin6->sin6_addr, ntohs(rsin6->sin6_port), ntohs(mapped_rsin6->sin6_port)); } } else cc = snprintf(qpd->buf + qpd->pos, space, "qp sq id %u rq id %u state %u onchip %u\n", qp->wq.sq.qid, qp->wq.rq.qid, (int)qp->attr.state, qp->wq.sq.flags & T4_SQ_ONCHIP); if (cc < space) qpd->pos += cc; return 0; } static int qp_release(struct inode *inode, struct file *file) { struct c4iw_debugfs_data *qpd = file->private_data; if (!qpd) { printk(KERN_INFO "%s null qpd?\n", __func__); return 0; } vfree(qpd->buf); kfree(qpd); return 0; } static int qp_open(struct inode *inode, struct file *file) { struct c4iw_debugfs_data *qpd; int ret = 0; int count = 1; qpd = kmalloc(sizeof *qpd, GFP_KERNEL); if (!qpd) { ret = -ENOMEM; goto out; } qpd->devp = inode->i_private; qpd->pos = 0; spin_lock_irq(&qpd->devp->lock); idr_for_each(&qpd->devp->qpidr, count_idrs, &count); spin_unlock_irq(&qpd->devp->lock); qpd->bufsize = count * 128; qpd->buf = vmalloc(qpd->bufsize); if (!qpd->buf) { ret = -ENOMEM; goto err1; } spin_lock_irq(&qpd->devp->lock); idr_for_each(&qpd->devp->qpidr, dump_qp, qpd); spin_unlock_irq(&qpd->devp->lock); qpd->buf[qpd->pos++] = 0; file->private_data = qpd; goto out; err1: kfree(qpd); out: return ret; } static const struct file_operations qp_debugfs_fops = { .owner = THIS_MODULE, .open = qp_open, .release = qp_release, .read = debugfs_read, .llseek = default_llseek, }; static int dump_stag(int id, void *p, void *data) { struct c4iw_debugfs_data *stagd = data; int space; int cc; struct fw_ri_tpte tpte; int ret; space = stagd->bufsize - stagd->pos - 1; if (space == 0) return 1; ret = cxgb4_read_tpte(stagd->devp->rdev.lldi.ports[0], (u32)id<<8, (__be32 *)&tpte); if (ret) { dev_err(&stagd->devp->rdev.lldi.pdev->dev, "%s cxgb4_read_tpte err %d\n", __func__, ret); return ret; } cc = snprintf(stagd->buf + stagd->pos, space, "stag: idx 0x%x valid %d key 0x%x state %d pdid %d " "perm 0x%x ps %d len 0x%llx va 0x%llx\n", (u32)id<<8, FW_RI_TPTE_VALID_G(ntohl(tpte.valid_to_pdid)), FW_RI_TPTE_STAGKEY_G(ntohl(tpte.valid_to_pdid)), FW_RI_TPTE_STAGSTATE_G(ntohl(tpte.valid_to_pdid)), FW_RI_TPTE_PDID_G(ntohl(tpte.valid_to_pdid)), FW_RI_TPTE_PERM_G(ntohl(tpte.locread_to_qpid)), FW_RI_TPTE_PS_G(ntohl(tpte.locread_to_qpid)), ((u64)ntohl(tpte.len_hi) << 32) | ntohl(tpte.len_lo), ((u64)ntohl(tpte.va_hi) << 32) | ntohl(tpte.va_lo_fbo)); if (cc < space) stagd->pos += cc; return 0; } static int stag_release(struct inode *inode, struct file *file) { struct c4iw_debugfs_data *stagd = file->private_data; if (!stagd) { printk(KERN_INFO "%s null stagd?\n", __func__); return 0; } vfree(stagd->buf); kfree(stagd); return 0; } static int stag_open(struct inode *inode, struct file *file) { struct c4iw_debugfs_data *stagd; int ret = 0; int count = 1; stagd = kmalloc(sizeof *stagd, GFP_KERNEL); if (!stagd) { ret = -ENOMEM; goto out; } stagd->devp = inode->i_private; stagd->pos = 0; spin_lock_irq(&stagd->devp->lock); idr_for_each(&stagd->devp->mmidr, count_idrs, &count); spin_unlock_irq(&stagd->devp->lock); stagd->bufsize = count * 256; stagd->buf = vmalloc(stagd->bufsize); if (!stagd->buf) { ret = -ENOMEM; goto err1; } spin_lock_irq(&stagd->devp->lock); idr_for_each(&stagd->devp->mmidr, dump_stag, stagd); spin_unlock_irq(&stagd->devp->lock); stagd->buf[stagd->pos++] = 0; file->private_data = stagd; goto out; err1: kfree(stagd); out: return ret; } static const struct file_operations stag_debugfs_fops = { .owner = THIS_MODULE, .open = stag_open, .release = stag_release, .read = debugfs_read, .llseek = default_llseek, }; static char *db_state_str[] = {"NORMAL", "FLOW_CONTROL", "RECOVERY", "STOPPED"}; static int stats_show(struct seq_file *seq, void *v) { struct c4iw_dev *dev = seq->private; seq_printf(seq, " Object: %10s %10s %10s %10s\n", "Total", "Current", "Max", "Fail"); seq_printf(seq, " PDID: %10llu %10llu %10llu %10llu\n", dev->rdev.stats.pd.total, dev->rdev.stats.pd.cur, dev->rdev.stats.pd.max, dev->rdev.stats.pd.fail); seq_printf(seq, " QID: %10llu %10llu %10llu %10llu\n", dev->rdev.stats.qid.total, dev->rdev.stats.qid.cur, dev->rdev.stats.qid.max, dev->rdev.stats.qid.fail); seq_printf(seq, " TPTMEM: %10llu %10llu %10llu %10llu\n", dev->rdev.stats.stag.total, dev->rdev.stats.stag.cur, dev->rdev.stats.stag.max, dev->rdev.stats.stag.fail); seq_printf(seq, " PBLMEM: %10llu %10llu %10llu %10llu\n", dev->rdev.stats.pbl.total, dev->rdev.stats.pbl.cur, dev->rdev.stats.pbl.max, dev->rdev.stats.pbl.fail); seq_printf(seq, " RQTMEM: %10llu %10llu %10llu %10llu\n", dev->rdev.stats.rqt.total, dev->rdev.stats.rqt.cur, dev->rdev.stats.rqt.max, dev->rdev.stats.rqt.fail); seq_printf(seq, " OCQPMEM: %10llu %10llu %10llu %10llu\n", dev->rdev.stats.ocqp.total, dev->rdev.stats.ocqp.cur, dev->rdev.stats.ocqp.max, dev->rdev.stats.ocqp.fail); seq_printf(seq, " DB FULL: %10llu\n", dev->rdev.stats.db_full); seq_printf(seq, " DB EMPTY: %10llu\n", dev->rdev.stats.db_empty); seq_printf(seq, " DB DROP: %10llu\n", dev->rdev.stats.db_drop); seq_printf(seq, " DB State: %s Transitions %llu FC Interruptions %llu\n", db_state_str[dev->db_state], dev->rdev.stats.db_state_transitions, dev->rdev.stats.db_fc_interruptions); seq_printf(seq, "TCAM_FULL: %10llu\n", dev->rdev.stats.tcam_full); seq_printf(seq, "ACT_OFLD_CONN_FAILS: %10llu\n", dev->rdev.stats.act_ofld_conn_fails); seq_printf(seq, "PAS_OFLD_CONN_FAILS: %10llu\n", dev->rdev.stats.pas_ofld_conn_fails); seq_printf(seq, "NEG_ADV_RCVD: %10llu\n", dev->rdev.stats.neg_adv); seq_printf(seq, "AVAILABLE IRD: %10u\n", dev->avail_ird); return 0; } static int stats_open(struct inode *inode, struct file *file) { return single_open(file, stats_show, inode->i_private); } static ssize_t stats_clear(struct file *file, const char __user *buf, size_t count, loff_t *pos) { struct c4iw_dev *dev = ((struct seq_file *)file->private_data)->private; mutex_lock(&dev->rdev.stats.lock); dev->rdev.stats.pd.max = 0; dev->rdev.stats.pd.fail = 0; dev->rdev.stats.qid.max = 0; dev->rdev.stats.qid.fail = 0; dev->rdev.stats.stag.max = 0; dev->rdev.stats.stag.fail = 0; dev->rdev.stats.pbl.max = 0; dev->rdev.stats.pbl.fail = 0; dev->rdev.stats.rqt.max = 0; dev->rdev.stats.rqt.fail = 0; dev->rdev.stats.ocqp.max = 0; dev->rdev.stats.ocqp.fail = 0; dev->rdev.stats.db_full = 0; dev->rdev.stats.db_empty = 0; dev->rdev.stats.db_drop = 0; dev->rdev.stats.db_state_transitions = 0; dev->rdev.stats.tcam_full = 0; dev->rdev.stats.act_ofld_conn_fails = 0; dev->rdev.stats.pas_ofld_conn_fails = 0; mutex_unlock(&dev->rdev.stats.lock); return count; } static const struct file_operations stats_debugfs_fops = { .owner = THIS_MODULE, .open = stats_open, .release = single_release, .read = seq_read, .llseek = seq_lseek, .write = stats_clear, }; static int dump_ep(int id, void *p, void *data) { struct c4iw_ep *ep = p; struct c4iw_debugfs_data *epd = data; int space; int cc; space = epd->bufsize - epd->pos - 1; if (space == 0) return 1; if (ep->com.local_addr.ss_family == AF_INET) { struct sockaddr_in *lsin = (struct sockaddr_in *) &ep->com.local_addr; struct sockaddr_in *rsin = (struct sockaddr_in *) &ep->com.remote_addr; struct sockaddr_in *mapped_lsin = (struct sockaddr_in *) &ep->com.mapped_local_addr; struct sockaddr_in *mapped_rsin = (struct sockaddr_in *) &ep->com.mapped_remote_addr; cc = snprintf(epd->buf + epd->pos, space, "ep %p cm_id %p qp %p state %d flags 0x%lx " "history 0x%lx hwtid %d atid %d " "conn_na %u abort_na %u " "%pI4:%d/%d <-> %pI4:%d/%d\n", ep, ep->com.cm_id, ep->com.qp, (int)ep->com.state, ep->com.flags, ep->com.history, ep->hwtid, ep->atid, ep->stats.connect_neg_adv, ep->stats.abort_neg_adv, &lsin->sin_addr, ntohs(lsin->sin_port), ntohs(mapped_lsin->sin_port), &rsin->sin_addr, ntohs(rsin->sin_port), ntohs(mapped_rsin->sin_port)); } else { struct sockaddr_in6 *lsin6 = (struct sockaddr_in6 *) &ep->com.local_addr; struct sockaddr_in6 *rsin6 = (struct sockaddr_in6 *) &ep->com.remote_addr; struct sockaddr_in6 *mapped_lsin6 = (struct sockaddr_in6 *) &ep->com.mapped_local_addr; struct sockaddr_in6 *mapped_rsin6 = (struct sockaddr_in6 *) &ep->com.mapped_remote_addr; cc = snprintf(epd->buf + epd->pos, space, "ep %p cm_id %p qp %p state %d flags 0x%lx " "history 0x%lx hwtid %d atid %d " "conn_na %u abort_na %u " "%pI6:%d/%d <-> %pI6:%d/%d\n", ep, ep->com.cm_id, ep->com.qp, (int)ep->com.state, ep->com.flags, ep->com.history, ep->hwtid, ep->atid, ep->stats.connect_neg_adv, ep->stats.abort_neg_adv, &lsin6->sin6_addr, ntohs(lsin6->sin6_port), ntohs(mapped_lsin6->sin6_port), &rsin6->sin6_addr, ntohs(rsin6->sin6_port), ntohs(mapped_rsin6->sin6_port)); } if (cc < space) epd->pos += cc; return 0; } static int dump_listen_ep(int id, void *p, void *data) { struct c4iw_listen_ep *ep = p; struct c4iw_debugfs_data *epd = data; int space; int cc; space = epd->bufsize - epd->pos - 1; if (space == 0) return 1; if (ep->com.local_addr.ss_family == AF_INET) { struct sockaddr_in *lsin = (struct sockaddr_in *) &ep->com.local_addr; struct sockaddr_in *mapped_lsin = (struct sockaddr_in *) &ep->com.mapped_local_addr; cc = snprintf(epd->buf + epd->pos, space, "ep %p cm_id %p state %d flags 0x%lx stid %d " "backlog %d %pI4:%d/%d\n", ep, ep->com.cm_id, (int)ep->com.state, ep->com.flags, ep->stid, ep->backlog, &lsin->sin_addr, ntohs(lsin->sin_port), ntohs(mapped_lsin->sin_port)); } else { struct sockaddr_in6 *lsin6 = (struct sockaddr_in6 *) &ep->com.local_addr; struct sockaddr_in6 *mapped_lsin6 = (struct sockaddr_in6 *) &ep->com.mapped_local_addr; cc = snprintf(epd->buf + epd->pos, space, "ep %p cm_id %p state %d flags 0x%lx stid %d " "backlog %d %pI6:%d/%d\n", ep, ep->com.cm_id, (int)ep->com.state, ep->com.flags, ep->stid, ep->backlog, &lsin6->sin6_addr, ntohs(lsin6->sin6_port), ntohs(mapped_lsin6->sin6_port)); } if (cc < space) epd->pos += cc; return 0; } static int ep_release(struct inode *inode, struct file *file) { struct c4iw_debugfs_data *epd = file->private_data; if (!epd) { pr_info("%s null qpd?\n", __func__); return 0; } vfree(epd->buf); kfree(epd); return 0; } static int ep_open(struct inode *inode, struct file *file) { struct c4iw_debugfs_data *epd; int ret = 0; int count = 1; epd = kmalloc(sizeof(*epd), GFP_KERNEL); if (!epd) { ret = -ENOMEM; goto out; } epd->devp = inode->i_private; epd->pos = 0; spin_lock_irq(&epd->devp->lock); idr_for_each(&epd->devp->hwtid_idr, count_idrs, &count); idr_for_each(&epd->devp->atid_idr, count_idrs, &count); idr_for_each(&epd->devp->stid_idr, count_idrs, &count); spin_unlock_irq(&epd->devp->lock); epd->bufsize = count * 240; epd->buf = vmalloc(epd->bufsize); if (!epd->buf) { ret = -ENOMEM; goto err1; } spin_lock_irq(&epd->devp->lock); idr_for_each(&epd->devp->hwtid_idr, dump_ep, epd); idr_for_each(&epd->devp->atid_idr, dump_ep, epd); idr_for_each(&epd->devp->stid_idr, dump_listen_ep, epd); spin_unlock_irq(&epd->devp->lock); file->private_data = epd; goto out; err1: kfree(epd); out: return ret; } static const struct file_operations ep_debugfs_fops = { .owner = THIS_MODULE, .open = ep_open, .release = ep_release, .read = debugfs_read, }; static int setup_debugfs(struct c4iw_dev *devp) { if (!devp->debugfs_root) return -1; debugfs_create_file_size("qps", S_IWUSR, devp->debugfs_root, (void *)devp, &qp_debugfs_fops, 4096); debugfs_create_file_size("stags", S_IWUSR, devp->debugfs_root, (void *)devp, &stag_debugfs_fops, 4096); debugfs_create_file_size("stats", S_IWUSR, devp->debugfs_root, (void *)devp, &stats_debugfs_fops, 4096); debugfs_create_file_size("eps", S_IWUSR, devp->debugfs_root, (void *)devp, &ep_debugfs_fops, 4096); if (c4iw_wr_log) debugfs_create_file_size("wr_log", S_IWUSR, devp->debugfs_root, (void *)devp, &wr_log_debugfs_fops, 4096); return 0; } void c4iw_release_dev_ucontext(struct c4iw_rdev *rdev, struct c4iw_dev_ucontext *uctx) { struct list_head *pos, *nxt; struct c4iw_qid_list *entry; mutex_lock(&uctx->lock); list_for_each_safe(pos, nxt, &uctx->qpids) { entry = list_entry(pos, struct c4iw_qid_list, entry); list_del_init(&entry->entry); if (!(entry->qid & rdev->qpmask)) { c4iw_put_resource(&rdev->resource.qid_table, entry->qid); mutex_lock(&rdev->stats.lock); rdev->stats.qid.cur -= rdev->qpmask + 1; mutex_unlock(&rdev->stats.lock); } kfree(entry); } list_for_each_safe(pos, nxt, &uctx->qpids) { entry = list_entry(pos, struct c4iw_qid_list, entry); list_del_init(&entry->entry); kfree(entry); } mutex_unlock(&uctx->lock); } void c4iw_init_dev_ucontext(struct c4iw_rdev *rdev, struct c4iw_dev_ucontext *uctx) { INIT_LIST_HEAD(&uctx->qpids); INIT_LIST_HEAD(&uctx->cqids); mutex_init(&uctx->lock); } /* Caller takes care of locking if needed */ static int c4iw_rdev_open(struct c4iw_rdev *rdev) { int err; c4iw_init_dev_ucontext(rdev, &rdev->uctx); /* * This implementation assumes udb_density == ucq_density! Eventually * we might need to support this but for now fail the open. Also the * cqid and qpid range must match for now. */ if (rdev->lldi.udb_density != rdev->lldi.ucq_density) { pr_err(MOD "%s: unsupported udb/ucq densities %u/%u\n", pci_name(rdev->lldi.pdev), rdev->lldi.udb_density, rdev->lldi.ucq_density); err = -EINVAL; goto err1; } if (rdev->lldi.vr->qp.start != rdev->lldi.vr->cq.start || rdev->lldi.vr->qp.size != rdev->lldi.vr->cq.size) { pr_err(MOD "%s: unsupported qp and cq id ranges " "qp start %u size %u cq start %u size %u\n", pci_name(rdev->lldi.pdev), rdev->lldi.vr->qp.start, rdev->lldi.vr->qp.size, rdev->lldi.vr->cq.size, rdev->lldi.vr->cq.size); err = -EINVAL; goto err1; } /* * qpshift is the number of bits to shift the qpid left in order * to get the correct address of the doorbell for that qp. */ rdev->qpshift = PAGE_SHIFT - ilog2(rdev->lldi.udb_density); rdev->qpmask = rdev->lldi.udb_density - 1; rdev->cqshift = PAGE_SHIFT - ilog2(rdev->lldi.ucq_density); rdev->cqmask = rdev->lldi.ucq_density - 1; PDBG("%s dev %s stag start 0x%0x size 0x%0x num stags %d " "pbl start 0x%0x size 0x%0x rq start 0x%0x size 0x%0x " "qp qid start %u size %u cq qid start %u size %u\n", __func__, pci_name(rdev->lldi.pdev), rdev->lldi.vr->stag.start, rdev->lldi.vr->stag.size, c4iw_num_stags(rdev), rdev->lldi.vr->pbl.start, rdev->lldi.vr->pbl.size, rdev->lldi.vr->rq.start, rdev->lldi.vr->rq.size, rdev->lldi.vr->qp.start, rdev->lldi.vr->qp.size, rdev->lldi.vr->cq.start, rdev->lldi.vr->cq.size); PDBG("udb len 0x%x udb base %p db_reg %p gts_reg %p qpshift %lu " "qpmask 0x%x cqshift %lu cqmask 0x%x\n", (unsigned)pci_resource_len(rdev->lldi.pdev, 2), (void *)pci_resource_start(rdev->lldi.pdev, 2), rdev->lldi.db_reg, rdev->lldi.gts_reg, rdev->qpshift, rdev->qpmask, rdev->cqshift, rdev->cqmask); if (c4iw_num_stags(rdev) == 0) { err = -EINVAL; goto err1; } rdev->stats.pd.total = T4_MAX_NUM_PD; rdev->stats.stag.total = rdev->lldi.vr->stag.size; rdev->stats.pbl.total = rdev->lldi.vr->pbl.size; rdev->stats.rqt.total = rdev->lldi.vr->rq.size; rdev->stats.ocqp.total = rdev->lldi.vr->ocq.size; rdev->stats.qid.total = rdev->lldi.vr->qp.size; err = c4iw_init_resource(rdev, c4iw_num_stags(rdev), T4_MAX_NUM_PD); if (err) { printk(KERN_ERR MOD "error %d initializing resources\n", err); goto err1; } err = c4iw_pblpool_create(rdev); if (err) { printk(KERN_ERR MOD "error %d initializing pbl pool\n", err); goto err2; } err = c4iw_rqtpool_create(rdev); if (err) { printk(KERN_ERR MOD "error %d initializing rqt pool\n", err); goto err3; } err = c4iw_ocqp_pool_create(rdev); if (err) { printk(KERN_ERR MOD "error %d initializing ocqp pool\n", err); goto err4; } rdev->status_page = (struct t4_dev_status_page *) __get_free_page(GFP_KERNEL); if (!rdev->status_page) { pr_err(MOD "error allocating status page\n"); goto err4; } if (c4iw_wr_log) { rdev->wr_log = kzalloc((1 << c4iw_wr_log_size_order) * sizeof(*rdev->wr_log), GFP_KERNEL); if (rdev->wr_log) { rdev->wr_log_size = 1 << c4iw_wr_log_size_order; atomic_set(&rdev->wr_log_idx, 0); } else { pr_err(MOD "error allocating wr_log. Logging disabled\n"); } } rdev->status_page->db_off = 0; return 0; err4: c4iw_rqtpool_destroy(rdev); err3: c4iw_pblpool_destroy(rdev); err2: c4iw_destroy_resource(&rdev->resource); err1: return err; } static void c4iw_rdev_close(struct c4iw_rdev *rdev) { kfree(rdev->wr_log); free_page((unsigned long)rdev->status_page); c4iw_pblpool_destroy(rdev); c4iw_rqtpool_destroy(rdev); c4iw_destroy_resource(&rdev->resource); } static void c4iw_dealloc(struct uld_ctx *ctx) { c4iw_rdev_close(&ctx->dev->rdev); idr_destroy(&ctx->dev->cqidr); idr_destroy(&ctx->dev->qpidr); idr_destroy(&ctx->dev->mmidr); idr_destroy(&ctx->dev->hwtid_idr); idr_destroy(&ctx->dev->stid_idr); idr_destroy(&ctx->dev->atid_idr); if (ctx->dev->rdev.bar2_kva) iounmap(ctx->dev->rdev.bar2_kva); if (ctx->dev->rdev.oc_mw_kva) iounmap(ctx->dev->rdev.oc_mw_kva); ib_dealloc_device(&ctx->dev->ibdev); ctx->dev = NULL; } static void c4iw_remove(struct uld_ctx *ctx) { PDBG("%s c4iw_dev %p\n", __func__, ctx->dev); c4iw_unregister_device(ctx->dev); c4iw_dealloc(ctx); } static int rdma_supported(const struct cxgb4_lld_info *infop) { return infop->vr->stag.size > 0 && infop->vr->pbl.size > 0 && infop->vr->rq.size > 0 && infop->vr->qp.size > 0 && infop->vr->cq.size > 0; } static struct c4iw_dev *c4iw_alloc(const struct cxgb4_lld_info *infop) { struct c4iw_dev *devp; int ret; if (!rdma_supported(infop)) { printk(KERN_INFO MOD "%s: RDMA not supported on this device.\n", pci_name(infop->pdev)); return ERR_PTR(-ENOSYS); } if (!ocqp_supported(infop)) pr_info("%s: On-Chip Queues not supported on this device.\n", pci_name(infop->pdev)); devp = (struct c4iw_dev *)ib_alloc_device(sizeof(*devp)); if (!devp) { printk(KERN_ERR MOD "Cannot allocate ib device\n"); return ERR_PTR(-ENOMEM); } devp->rdev.lldi = *infop; /* init various hw-queue params based on lld info */ PDBG("%s: Ing. padding boundary is %d, egrsstatuspagesize = %d\n", __func__, devp->rdev.lldi.sge_ingpadboundary, devp->rdev.lldi.sge_egrstatuspagesize); devp->rdev.hw_queue.t4_eq_status_entries = devp->rdev.lldi.sge_ingpadboundary > 64 ? 2 : 1; devp->rdev.hw_queue.t4_max_eq_size = 65520; devp->rdev.hw_queue.t4_max_iq_size = 65520; devp->rdev.hw_queue.t4_max_rq_size = 8192 - devp->rdev.hw_queue.t4_eq_status_entries - 1; devp->rdev.hw_queue.t4_max_sq_size = devp->rdev.hw_queue.t4_max_eq_size - devp->rdev.hw_queue.t4_eq_status_entries - 1; devp->rdev.hw_queue.t4_max_qp_depth = devp->rdev.hw_queue.t4_max_rq_size; devp->rdev.hw_queue.t4_max_cq_depth = devp->rdev.hw_queue.t4_max_iq_size - 2; devp->rdev.hw_queue.t4_stat_len = devp->rdev.lldi.sge_egrstatuspagesize; /* * For T5 devices, we map all of BAR2 with WC. * For T4 devices with onchip qp mem, we map only that part * of BAR2 with WC. */ devp->rdev.bar2_pa = pci_resource_start(devp->rdev.lldi.pdev, 2); if (is_t5(devp->rdev.lldi.adapter_type)) { devp->rdev.bar2_kva = ioremap_wc(devp->rdev.bar2_pa, pci_resource_len(devp->rdev.lldi.pdev, 2)); if (!devp->rdev.bar2_kva) { pr_err(MOD "Unable to ioremap BAR2\n"); ib_dealloc_device(&devp->ibdev); return ERR_PTR(-EINVAL); } } else if (ocqp_supported(infop)) { devp->rdev.oc_mw_pa = pci_resource_start(devp->rdev.lldi.pdev, 2) + pci_resource_len(devp->rdev.lldi.pdev, 2) - roundup_pow_of_two(devp->rdev.lldi.vr->ocq.size); devp->rdev.oc_mw_kva = ioremap_wc(devp->rdev.oc_mw_pa, devp->rdev.lldi.vr->ocq.size); if (!devp->rdev.oc_mw_kva) { pr_err(MOD "Unable to ioremap onchip mem\n"); ib_dealloc_device(&devp->ibdev); return ERR_PTR(-EINVAL); } } PDBG(KERN_INFO MOD "ocq memory: " "hw_start 0x%x size %u mw_pa 0x%lx mw_kva %p\n", devp->rdev.lldi.vr->ocq.start, devp->rdev.lldi.vr->ocq.size, devp->rdev.oc_mw_pa, devp->rdev.oc_mw_kva); ret = c4iw_rdev_open(&devp->rdev); if (ret) { printk(KERN_ERR MOD "Unable to open CXIO rdev err %d\n", ret); ib_dealloc_device(&devp->ibdev); return ERR_PTR(ret); } idr_init(&devp->cqidr); idr_init(&devp->qpidr); idr_init(&devp->mmidr); idr_init(&devp->hwtid_idr); idr_init(&devp->stid_idr); idr_init(&devp->atid_idr); spin_lock_init(&devp->lock); mutex_init(&devp->rdev.stats.lock); mutex_init(&devp->db_mutex); INIT_LIST_HEAD(&devp->db_fc_list); devp->avail_ird = devp->rdev.lldi.max_ird_adapter; if (c4iw_debugfs_root) { devp->debugfs_root = debugfs_create_dir( pci_name(devp->rdev.lldi.pdev), c4iw_debugfs_root); setup_debugfs(devp); } return devp; } static void *c4iw_uld_add(const struct cxgb4_lld_info *infop) { struct uld_ctx *ctx; static int vers_printed; int i; if (!vers_printed++) pr_info("Chelsio T4/T5 RDMA Driver - version %s\n", DRV_VERSION); ctx = kzalloc(sizeof *ctx, GFP_KERNEL); if (!ctx) { ctx = ERR_PTR(-ENOMEM); goto out; } ctx->lldi = *infop; PDBG("%s found device %s nchan %u nrxq %u ntxq %u nports %u\n", __func__, pci_name(ctx->lldi.pdev), ctx->lldi.nchan, ctx->lldi.nrxq, ctx->lldi.ntxq, ctx->lldi.nports); mutex_lock(&dev_mutex); list_add_tail(&ctx->entry, &uld_ctx_list); mutex_unlock(&dev_mutex); for (i = 0; i < ctx->lldi.nrxq; i++) PDBG("rxqid[%u] %u\n", i, ctx->lldi.rxq_ids[i]); out: return ctx; } static inline struct sk_buff *copy_gl_to_skb_pkt(const struct pkt_gl *gl, const __be64 *rsp, u32 pktshift) { struct sk_buff *skb; /* * Allocate space for cpl_pass_accept_req which will be synthesized by * driver. Once the driver synthesizes the request the skb will go * through the regular cpl_pass_accept_req processing. * The math here assumes sizeof cpl_pass_accept_req >= sizeof * cpl_rx_pkt. */ skb = alloc_skb(gl->tot_len + sizeof(struct cpl_pass_accept_req) + sizeof(struct rss_header) - pktshift, GFP_ATOMIC); if (unlikely(!skb)) return NULL; __skb_put(skb, gl->tot_len + sizeof(struct cpl_pass_accept_req) + sizeof(struct rss_header) - pktshift); /* * This skb will contain: * rss_header from the rspq descriptor (1 flit) * cpl_rx_pkt struct from the rspq descriptor (2 flits) * space for the difference between the size of an * rx_pkt and pass_accept_req cpl (1 flit) * the packet data from the gl */ skb_copy_to_linear_data(skb, rsp, sizeof(struct cpl_pass_accept_req) + sizeof(struct rss_header)); skb_copy_to_linear_data_offset(skb, sizeof(struct rss_header) + sizeof(struct cpl_pass_accept_req), gl->va + pktshift, gl->tot_len - pktshift); return skb; } static inline int recv_rx_pkt(struct c4iw_dev *dev, const struct pkt_gl *gl, const __be64 *rsp) { unsigned int opcode = *(u8 *)rsp; struct sk_buff *skb; if (opcode != CPL_RX_PKT) goto out; skb = copy_gl_to_skb_pkt(gl , rsp, dev->rdev.lldi.sge_pktshift); if (skb == NULL) goto out; if (c4iw_handlers[opcode] == NULL) { pr_info("%s no handler opcode 0x%x...\n", __func__, opcode); kfree_skb(skb); goto out; } c4iw_handlers[opcode](dev, skb); return 1; out: return 0; } static int c4iw_uld_rx_handler(void *handle, const __be64 *rsp, const struct pkt_gl *gl) { struct uld_ctx *ctx = handle; struct c4iw_dev *dev = ctx->dev; struct sk_buff *skb; u8 opcode; if (gl == NULL) { /* omit RSS and rsp_ctrl at end of descriptor */ unsigned int len = 64 - sizeof(struct rsp_ctrl) - 8; skb = alloc_skb(256, GFP_ATOMIC); if (!skb) goto nomem; __skb_put(skb, len); skb_copy_to_linear_data(skb, &rsp[1], len); } else if (gl == CXGB4_MSG_AN) { const struct rsp_ctrl *rc = (void *)rsp; u32 qid = be32_to_cpu(rc->pldbuflen_qid); c4iw_ev_handler(dev, qid); return 0; } else if (unlikely(*(u8 *)rsp != *(u8 *)gl->va)) { if (recv_rx_pkt(dev, gl, rsp)) return 0; pr_info("%s: unexpected FL contents at %p, " \ "RSS %#llx, FL %#llx, len %u\n", pci_name(ctx->lldi.pdev), gl->va, (unsigned long long)be64_to_cpu(*rsp), (unsigned long long)be64_to_cpu( *(__force __be64 *)gl->va), gl->tot_len); return 0; } else { skb = cxgb4_pktgl_to_skb(gl, 128, 128); if (unlikely(!skb)) goto nomem; } opcode = *(u8 *)rsp; if (c4iw_handlers[opcode]) { c4iw_handlers[opcode](dev, skb); } else { pr_info("%s no handler opcode 0x%x...\n", __func__, opcode); kfree_skb(skb); } return 0; nomem: return -1; } static int c4iw_uld_state_change(void *handle, enum cxgb4_state new_state) { struct uld_ctx *ctx = handle; PDBG("%s new_state %u\n", __func__, new_state); switch (new_state) { case CXGB4_STATE_UP: printk(KERN_INFO MOD "%s: Up\n", pci_name(ctx->lldi.pdev)); if (!ctx->dev) { int ret; ctx->dev = c4iw_alloc(&ctx->lldi); if (IS_ERR(ctx->dev)) { printk(KERN_ERR MOD "%s: initialization failed: %ld\n", pci_name(ctx->lldi.pdev), PTR_ERR(ctx->dev)); ctx->dev = NULL; break; } ret = c4iw_register_device(ctx->dev); if (ret) { printk(KERN_ERR MOD "%s: RDMA registration failed: %d\n", pci_name(ctx->lldi.pdev), ret); c4iw_dealloc(ctx); } } break; case CXGB4_STATE_DOWN: printk(KERN_INFO MOD "%s: Down\n", pci_name(ctx->lldi.pdev)); if (ctx->dev) c4iw_remove(ctx); break; case CXGB4_STATE_START_RECOVERY: printk(KERN_INFO MOD "%s: Fatal Error\n", pci_name(ctx->lldi.pdev)); if (ctx->dev) { struct ib_event event; ctx->dev->rdev.flags |= T4_FATAL_ERROR; memset(&event, 0, sizeof event); event.event = IB_EVENT_DEVICE_FATAL; event.device = &ctx->dev->ibdev; ib_dispatch_event(&event); c4iw_remove(ctx); } break; case CXGB4_STATE_DETACH: printk(KERN_INFO MOD "%s: Detach\n", pci_name(ctx->lldi.pdev)); if (ctx->dev) c4iw_remove(ctx); break; } return 0; } static int disable_qp_db(int id, void *p, void *data) { struct c4iw_qp *qp = p; t4_disable_wq_db(&qp->wq); return 0; } static void stop_queues(struct uld_ctx *ctx) { unsigned long flags; spin_lock_irqsave(&ctx->dev->lock, flags); ctx->dev->rdev.stats.db_state_transitions++; ctx->dev->db_state = STOPPED; if (ctx->dev->rdev.flags & T4_STATUS_PAGE_DISABLED) idr_for_each(&ctx->dev->qpidr, disable_qp_db, NULL); else ctx->dev->rdev.status_page->db_off = 1; spin_unlock_irqrestore(&ctx->dev->lock, flags); } static int enable_qp_db(int id, void *p, void *data) { struct c4iw_qp *qp = p; t4_enable_wq_db(&qp->wq); return 0; } static void resume_rc_qp(struct c4iw_qp *qp) { spin_lock(&qp->lock); t4_ring_sq_db(&qp->wq, qp->wq.sq.wq_pidx_inc, is_t5(qp->rhp->rdev.lldi.adapter_type), NULL); qp->wq.sq.wq_pidx_inc = 0; t4_ring_rq_db(&qp->wq, qp->wq.rq.wq_pidx_inc, is_t5(qp->rhp->rdev.lldi.adapter_type), NULL); qp->wq.rq.wq_pidx_inc = 0; spin_unlock(&qp->lock); } static void resume_a_chunk(struct uld_ctx *ctx) { int i; struct c4iw_qp *qp; for (i = 0; i < DB_FC_RESUME_SIZE; i++) { qp = list_first_entry(&ctx->dev->db_fc_list, struct c4iw_qp, db_fc_entry); list_del_init(&qp->db_fc_entry); resume_rc_qp(qp); if (list_empty(&ctx->dev->db_fc_list)) break; } } static void resume_queues(struct uld_ctx *ctx) { spin_lock_irq(&ctx->dev->lock); if (ctx->dev->db_state != STOPPED) goto out; ctx->dev->db_state = FLOW_CONTROL; while (1) { if (list_empty(&ctx->dev->db_fc_list)) { WARN_ON(ctx->dev->db_state != FLOW_CONTROL); ctx->dev->db_state = NORMAL; ctx->dev->rdev.stats.db_state_transitions++; if (ctx->dev->rdev.flags & T4_STATUS_PAGE_DISABLED) { idr_for_each(&ctx->dev->qpidr, enable_qp_db, NULL); } else { ctx->dev->rdev.status_page->db_off = 0; } break; } else { if (cxgb4_dbfifo_count(ctx->dev->rdev.lldi.ports[0], 1) < (ctx->dev->rdev.lldi.dbfifo_int_thresh << DB_FC_DRAIN_THRESH)) { resume_a_chunk(ctx); } if (!list_empty(&ctx->dev->db_fc_list)) { spin_unlock_irq(&ctx->dev->lock); if (DB_FC_RESUME_DELAY) { set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(DB_FC_RESUME_DELAY); } spin_lock_irq(&ctx->dev->lock); if (ctx->dev->db_state != FLOW_CONTROL) break; } } } out: if (ctx->dev->db_state != NORMAL) ctx->dev->rdev.stats.db_fc_interruptions++; spin_unlock_irq(&ctx->dev->lock); } struct qp_list { unsigned idx; struct c4iw_qp **qps; }; static int add_and_ref_qp(int id, void *p, void *data) { struct qp_list *qp_listp = data; struct c4iw_qp *qp = p; c4iw_qp_add_ref(&qp->ibqp); qp_listp->qps[qp_listp->idx++] = qp; return 0; } static int count_qps(int id, void *p, void *data) { unsigned *countp = data; (*countp)++; return 0; } static void deref_qps(struct qp_list *qp_list) { int idx; for (idx = 0; idx < qp_list->idx; idx++) c4iw_qp_rem_ref(&qp_list->qps[idx]->ibqp); } static void recover_lost_dbs(struct uld_ctx *ctx, struct qp_list *qp_list) { int idx; int ret; for (idx = 0; idx < qp_list->idx; idx++) { struct c4iw_qp *qp = qp_list->qps[idx]; spin_lock_irq(&qp->rhp->lock); spin_lock(&qp->lock); ret = cxgb4_sync_txq_pidx(qp->rhp->rdev.lldi.ports[0], qp->wq.sq.qid, t4_sq_host_wq_pidx(&qp->wq), t4_sq_wq_size(&qp->wq)); if (ret) { pr_err(MOD "%s: Fatal error - " "DB overflow recovery failed - " "error syncing SQ qid %u\n", pci_name(ctx->lldi.pdev), qp->wq.sq.qid); spin_unlock(&qp->lock); spin_unlock_irq(&qp->rhp->lock); return; } qp->wq.sq.wq_pidx_inc = 0; ret = cxgb4_sync_txq_pidx(qp->rhp->rdev.lldi.ports[0], qp->wq.rq.qid, t4_rq_host_wq_pidx(&qp->wq), t4_rq_wq_size(&qp->wq)); if (ret) { pr_err(MOD "%s: Fatal error - " "DB overflow recovery failed - " "error syncing RQ qid %u\n", pci_name(ctx->lldi.pdev), qp->wq.rq.qid); spin_unlock(&qp->lock); spin_unlock_irq(&qp->rhp->lock); return; } qp->wq.rq.wq_pidx_inc = 0; spin_unlock(&qp->lock); spin_unlock_irq(&qp->rhp->lock); /* Wait for the dbfifo to drain */ while (cxgb4_dbfifo_count(qp->rhp->rdev.lldi.ports[0], 1) > 0) { set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(usecs_to_jiffies(10)); } } } static void recover_queues(struct uld_ctx *ctx) { int count = 0; struct qp_list qp_list; int ret; /* slow everybody down */ set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(usecs_to_jiffies(1000)); /* flush the SGE contexts */ ret = cxgb4_flush_eq_cache(ctx->dev->rdev.lldi.ports[0]); if (ret) { printk(KERN_ERR MOD "%s: Fatal error - DB overflow recovery failed\n", pci_name(ctx->lldi.pdev)); return; } /* Count active queues so we can build a list of queues to recover */ spin_lock_irq(&ctx->dev->lock); WARN_ON(ctx->dev->db_state != STOPPED); ctx->dev->db_state = RECOVERY; idr_for_each(&ctx->dev->qpidr, count_qps, &count); qp_list.qps = kzalloc(count * sizeof *qp_list.qps, GFP_ATOMIC); if (!qp_list.qps) { printk(KERN_ERR MOD "%s: Fatal error - DB overflow recovery failed\n", pci_name(ctx->lldi.pdev)); spin_unlock_irq(&ctx->dev->lock); return; } qp_list.idx = 0; /* add and ref each qp so it doesn't get freed */ idr_for_each(&ctx->dev->qpidr, add_and_ref_qp, &qp_list); spin_unlock_irq(&ctx->dev->lock); /* now traverse the list in a safe context to recover the db state*/ recover_lost_dbs(ctx, &qp_list); /* we're almost done! deref the qps and clean up */ deref_qps(&qp_list); kfree(qp_list.qps); spin_lock_irq(&ctx->dev->lock); WARN_ON(ctx->dev->db_state != RECOVERY); ctx->dev->db_state = STOPPED; spin_unlock_irq(&ctx->dev->lock); } static int c4iw_uld_control(void *handle, enum cxgb4_control control, ...) { struct uld_ctx *ctx = handle; switch (control) { case CXGB4_CONTROL_DB_FULL: stop_queues(ctx); ctx->dev->rdev.stats.db_full++; break; case CXGB4_CONTROL_DB_EMPTY: resume_queues(ctx); mutex_lock(&ctx->dev->rdev.stats.lock); ctx->dev->rdev.stats.db_empty++; mutex_unlock(&ctx->dev->rdev.stats.lock); break; case CXGB4_CONTROL_DB_DROP: recover_queues(ctx); mutex_lock(&ctx->dev->rdev.stats.lock); ctx->dev->rdev.stats.db_drop++; mutex_unlock(&ctx->dev->rdev.stats.lock); break; default: printk(KERN_WARNING MOD "%s: unknown control cmd %u\n", pci_name(ctx->lldi.pdev), control); break; } return 0; } static struct cxgb4_uld_info c4iw_uld_info = { .name = DRV_NAME, .add = c4iw_uld_add, .rx_handler = c4iw_uld_rx_handler, .state_change = c4iw_uld_state_change, .control = c4iw_uld_control, }; static int __init c4iw_init_module(void) { int err; err = c4iw_cm_init(); if (err) return err; c4iw_debugfs_root = debugfs_create_dir(DRV_NAME, NULL); if (!c4iw_debugfs_root) printk(KERN_WARNING MOD "could not create debugfs entry, continuing\n"); if (ibnl_add_client(RDMA_NL_C4IW, RDMA_NL_IWPM_NUM_OPS, c4iw_nl_cb_table)) pr_err("%s[%u]: Failed to add netlink callback\n" , __func__, __LINE__); err = iwpm_init(RDMA_NL_C4IW); if (err) { pr_err("port mapper initialization failed with %d\n", err); ibnl_remove_client(RDMA_NL_C4IW); c4iw_cm_term(); debugfs_remove_recursive(c4iw_debugfs_root); return err; } cxgb4_register_uld(CXGB4_ULD_RDMA, &c4iw_uld_info); return 0; } static void __exit c4iw_exit_module(void) { struct uld_ctx *ctx, *tmp; mutex_lock(&dev_mutex); list_for_each_entry_safe(ctx, tmp, &uld_ctx_list, entry) { if (ctx->dev) c4iw_remove(ctx); kfree(ctx); } mutex_unlock(&dev_mutex); cxgb4_unregister_uld(CXGB4_ULD_RDMA); iwpm_exit(RDMA_NL_C4IW); ibnl_remove_client(RDMA_NL_C4IW); c4iw_cm_term(); debugfs_remove_recursive(c4iw_debugfs_root); } module_init(c4iw_init_module); module_exit(c4iw_exit_module);