/* * Copyright (C) 2012 Invensense, Inc. * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <linux/module.h> #include <linux/slab.h> #include <linux/i2c.h> #include <linux/err.h> #include <linux/delay.h> #include <linux/sysfs.h> #include <linux/jiffies.h> #include <linux/irq.h> #include <linux/interrupt.h> #include <linux/kfifo.h> #include <linux/spinlock.h> #include <linux/iio/iio.h> #include <linux/i2c-mux.h> #include <linux/acpi.h> #include "inv_mpu_iio.h" /* * this is the gyro scale translated from dynamic range plus/minus * {250, 500, 1000, 2000} to rad/s */ static const int gyro_scale_6050[] = {133090, 266181, 532362, 1064724}; /* * this is the accel scale translated from dynamic range plus/minus * {2, 4, 8, 16} to m/s^2 */ static const int accel_scale[] = {598, 1196, 2392, 4785}; static const struct inv_mpu6050_reg_map reg_set_6050 = { .sample_rate_div = INV_MPU6050_REG_SAMPLE_RATE_DIV, .lpf = INV_MPU6050_REG_CONFIG, .user_ctrl = INV_MPU6050_REG_USER_CTRL, .fifo_en = INV_MPU6050_REG_FIFO_EN, .gyro_config = INV_MPU6050_REG_GYRO_CONFIG, .accl_config = INV_MPU6050_REG_ACCEL_CONFIG, .fifo_count_h = INV_MPU6050_REG_FIFO_COUNT_H, .fifo_r_w = INV_MPU6050_REG_FIFO_R_W, .raw_gyro = INV_MPU6050_REG_RAW_GYRO, .raw_accl = INV_MPU6050_REG_RAW_ACCEL, .temperature = INV_MPU6050_REG_TEMPERATURE, .int_enable = INV_MPU6050_REG_INT_ENABLE, .pwr_mgmt_1 = INV_MPU6050_REG_PWR_MGMT_1, .pwr_mgmt_2 = INV_MPU6050_REG_PWR_MGMT_2, .int_pin_cfg = INV_MPU6050_REG_INT_PIN_CFG, }; static const struct inv_mpu6050_chip_config chip_config_6050 = { .fsr = INV_MPU6050_FSR_2000DPS, .lpf = INV_MPU6050_FILTER_20HZ, .fifo_rate = INV_MPU6050_INIT_FIFO_RATE, .gyro_fifo_enable = false, .accl_fifo_enable = false, .accl_fs = INV_MPU6050_FS_02G, }; static const struct inv_mpu6050_hw hw_info[INV_NUM_PARTS] = { { .num_reg = 117, .name = "MPU6050", .reg = ®_set_6050, .config = &chip_config_6050, }, }; int inv_mpu6050_write_reg(struct inv_mpu6050_state *st, int reg, u8 d) { return i2c_smbus_write_i2c_block_data(st->client, reg, 1, &d); } /* * The i2c read/write needs to happen in unlocked mode. As the parent * adapter is common. If we use locked versions, it will fail as * the mux adapter will lock the parent i2c adapter, while calling * select/deselect functions. */ static int inv_mpu6050_write_reg_unlocked(struct inv_mpu6050_state *st, u8 reg, u8 d) { int ret; u8 buf[2]; struct i2c_msg msg[1] = { { .addr = st->client->addr, .flags = 0, .len = sizeof(buf), .buf = buf, } }; buf[0] = reg; buf[1] = d; ret = __i2c_transfer(st->client->adapter, msg, 1); if (ret != 1) return ret; return 0; } static int inv_mpu6050_select_bypass(struct i2c_adapter *adap, void *mux_priv, u32 chan_id) { struct iio_dev *indio_dev = mux_priv; struct inv_mpu6050_state *st = iio_priv(indio_dev); int ret = 0; /* Use the same mutex which was used everywhere to protect power-op */ mutex_lock(&indio_dev->mlock); if (!st->powerup_count) { ret = inv_mpu6050_write_reg_unlocked(st, st->reg->pwr_mgmt_1, 0); if (ret) goto write_error; msleep(INV_MPU6050_REG_UP_TIME); } if (!ret) { st->powerup_count++; ret = inv_mpu6050_write_reg_unlocked(st, st->reg->int_pin_cfg, st->client->irq | INV_MPU6050_BIT_BYPASS_EN); } write_error: mutex_unlock(&indio_dev->mlock); return ret; } static int inv_mpu6050_deselect_bypass(struct i2c_adapter *adap, void *mux_priv, u32 chan_id) { struct iio_dev *indio_dev = mux_priv; struct inv_mpu6050_state *st = iio_priv(indio_dev); mutex_lock(&indio_dev->mlock); /* It doesn't really mattter, if any of the calls fails */ inv_mpu6050_write_reg_unlocked(st, st->reg->int_pin_cfg, st->client->irq); st->powerup_count--; if (!st->powerup_count) inv_mpu6050_write_reg_unlocked(st, st->reg->pwr_mgmt_1, INV_MPU6050_BIT_SLEEP); mutex_unlock(&indio_dev->mlock); return 0; } int inv_mpu6050_switch_engine(struct inv_mpu6050_state *st, bool en, u32 mask) { u8 d, mgmt_1; int result; /* switch clock needs to be careful. Only when gyro is on, can clock source be switched to gyro. Otherwise, it must be set to internal clock */ if (INV_MPU6050_BIT_PWR_GYRO_STBY == mask) { result = i2c_smbus_read_i2c_block_data(st->client, st->reg->pwr_mgmt_1, 1, &mgmt_1); if (result != 1) return result; mgmt_1 &= ~INV_MPU6050_BIT_CLK_MASK; } if ((INV_MPU6050_BIT_PWR_GYRO_STBY == mask) && (!en)) { /* turning off gyro requires switch to internal clock first. Then turn off gyro engine */ mgmt_1 |= INV_CLK_INTERNAL; result = inv_mpu6050_write_reg(st, st->reg->pwr_mgmt_1, mgmt_1); if (result) return result; } result = i2c_smbus_read_i2c_block_data(st->client, st->reg->pwr_mgmt_2, 1, &d); if (result != 1) return result; if (en) d &= ~mask; else d |= mask; result = inv_mpu6050_write_reg(st, st->reg->pwr_mgmt_2, d); if (result) return result; if (en) { /* Wait for output stabilize */ msleep(INV_MPU6050_TEMP_UP_TIME); if (INV_MPU6050_BIT_PWR_GYRO_STBY == mask) { /* switch internal clock to PLL */ mgmt_1 |= INV_CLK_PLL; result = inv_mpu6050_write_reg(st, st->reg->pwr_mgmt_1, mgmt_1); if (result) return result; } } return 0; } int inv_mpu6050_set_power_itg(struct inv_mpu6050_state *st, bool power_on) { int result = 0; if (power_on) { /* Already under indio-dev->mlock mutex */ if (!st->powerup_count) result = inv_mpu6050_write_reg(st, st->reg->pwr_mgmt_1, 0); if (!result) st->powerup_count++; } else { st->powerup_count--; if (!st->powerup_count) result = inv_mpu6050_write_reg(st, st->reg->pwr_mgmt_1, INV_MPU6050_BIT_SLEEP); } if (result) return result; if (power_on) msleep(INV_MPU6050_REG_UP_TIME); return 0; } /** * inv_mpu6050_init_config() - Initialize hardware, disable FIFO. * * Initial configuration: * FSR: ± 2000DPS * DLPF: 20Hz * FIFO rate: 50Hz * Clock source: Gyro PLL */ static int inv_mpu6050_init_config(struct iio_dev *indio_dev) { int result; u8 d; struct inv_mpu6050_state *st = iio_priv(indio_dev); result = inv_mpu6050_set_power_itg(st, true); if (result) return result; d = (INV_MPU6050_FSR_2000DPS << INV_MPU6050_GYRO_CONFIG_FSR_SHIFT); result = inv_mpu6050_write_reg(st, st->reg->gyro_config, d); if (result) return result; d = INV_MPU6050_FILTER_20HZ; result = inv_mpu6050_write_reg(st, st->reg->lpf, d); if (result) return result; d = INV_MPU6050_ONE_K_HZ / INV_MPU6050_INIT_FIFO_RATE - 1; result = inv_mpu6050_write_reg(st, st->reg->sample_rate_div, d); if (result) return result; d = (INV_MPU6050_FS_02G << INV_MPU6050_ACCL_CONFIG_FSR_SHIFT); result = inv_mpu6050_write_reg(st, st->reg->accl_config, d); if (result) return result; memcpy(&st->chip_config, hw_info[st->chip_type].config, sizeof(struct inv_mpu6050_chip_config)); result = inv_mpu6050_set_power_itg(st, false); return result; } static int inv_mpu6050_sensor_show(struct inv_mpu6050_state *st, int reg, int axis, int *val) { int ind, result; __be16 d; ind = (axis - IIO_MOD_X) * 2; result = i2c_smbus_read_i2c_block_data(st->client, reg + ind, 2, (u8 *)&d); if (result != 2) return -EINVAL; *val = (short)be16_to_cpup(&d); return IIO_VAL_INT; } static int inv_mpu6050_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct inv_mpu6050_state *st = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_RAW: { int ret, result; ret = IIO_VAL_INT; result = 0; mutex_lock(&indio_dev->mlock); if (!st->chip_config.enable) { result = inv_mpu6050_set_power_itg(st, true); if (result) goto error_read_raw; } /* when enable is on, power is already on */ switch (chan->type) { case IIO_ANGL_VEL: if (!st->chip_config.gyro_fifo_enable || !st->chip_config.enable) { result = inv_mpu6050_switch_engine(st, true, INV_MPU6050_BIT_PWR_GYRO_STBY); if (result) goto error_read_raw; } ret = inv_mpu6050_sensor_show(st, st->reg->raw_gyro, chan->channel2, val); if (!st->chip_config.gyro_fifo_enable || !st->chip_config.enable) { result = inv_mpu6050_switch_engine(st, false, INV_MPU6050_BIT_PWR_GYRO_STBY); if (result) goto error_read_raw; } break; case IIO_ACCEL: if (!st->chip_config.accl_fifo_enable || !st->chip_config.enable) { result = inv_mpu6050_switch_engine(st, true, INV_MPU6050_BIT_PWR_ACCL_STBY); if (result) goto error_read_raw; } ret = inv_mpu6050_sensor_show(st, st->reg->raw_accl, chan->channel2, val); if (!st->chip_config.accl_fifo_enable || !st->chip_config.enable) { result = inv_mpu6050_switch_engine(st, false, INV_MPU6050_BIT_PWR_ACCL_STBY); if (result) goto error_read_raw; } break; case IIO_TEMP: /* wait for stablization */ msleep(INV_MPU6050_SENSOR_UP_TIME); inv_mpu6050_sensor_show(st, st->reg->temperature, IIO_MOD_X, val); break; default: ret = -EINVAL; break; } error_read_raw: if (!st->chip_config.enable) result |= inv_mpu6050_set_power_itg(st, false); mutex_unlock(&indio_dev->mlock); if (result) return result; return ret; } case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_ANGL_VEL: *val = 0; *val2 = gyro_scale_6050[st->chip_config.fsr]; return IIO_VAL_INT_PLUS_NANO; case IIO_ACCEL: *val = 0; *val2 = accel_scale[st->chip_config.accl_fs]; return IIO_VAL_INT_PLUS_MICRO; case IIO_TEMP: *val = 0; *val2 = INV_MPU6050_TEMP_SCALE; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } case IIO_CHAN_INFO_OFFSET: switch (chan->type) { case IIO_TEMP: *val = INV_MPU6050_TEMP_OFFSET; return IIO_VAL_INT; default: return -EINVAL; } default: return -EINVAL; } } static int inv_mpu6050_write_gyro_scale(struct inv_mpu6050_state *st, int val) { int result, i; u8 d; for (i = 0; i < ARRAY_SIZE(gyro_scale_6050); ++i) { if (gyro_scale_6050[i] == val) { d = (i << INV_MPU6050_GYRO_CONFIG_FSR_SHIFT); result = inv_mpu6050_write_reg(st, st->reg->gyro_config, d); if (result) return result; st->chip_config.fsr = i; return 0; } } return -EINVAL; } static int inv_mpu6050_write_accel_scale(struct inv_mpu6050_state *st, int val) { int result, i; u8 d; for (i = 0; i < ARRAY_SIZE(accel_scale); ++i) { if (accel_scale[i] == val) { d = (i << INV_MPU6050_ACCL_CONFIG_FSR_SHIFT); result = inv_mpu6050_write_reg(st, st->reg->accl_config, d); if (result) return result; st->chip_config.accl_fs = i; return 0; } } return -EINVAL; } static int inv_mpu6050_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct inv_mpu6050_state *st = iio_priv(indio_dev); int result; mutex_lock(&indio_dev->mlock); /* we should only update scale when the chip is disabled, i.e., not running */ if (st->chip_config.enable) { result = -EBUSY; goto error_write_raw; } result = inv_mpu6050_set_power_itg(st, true); if (result) goto error_write_raw; switch (mask) { case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_ANGL_VEL: result = inv_mpu6050_write_gyro_scale(st, val2); break; case IIO_ACCEL: result = inv_mpu6050_write_accel_scale(st, val2); break; default: result = -EINVAL; break; } break; default: result = -EINVAL; break; } error_write_raw: result |= inv_mpu6050_set_power_itg(st, false); mutex_unlock(&indio_dev->mlock); return result; } /** * inv_mpu6050_set_lpf() - set low pass filer based on fifo rate. * * Based on the Nyquist principle, the sampling rate must * exceed twice of the bandwidth of the signal, or there * would be alising. This function basically search for the * correct low pass parameters based on the fifo rate, e.g, * sampling frequency. */ static int inv_mpu6050_set_lpf(struct inv_mpu6050_state *st, int rate) { const int hz[] = {188, 98, 42, 20, 10, 5}; const int d[] = {INV_MPU6050_FILTER_188HZ, INV_MPU6050_FILTER_98HZ, INV_MPU6050_FILTER_42HZ, INV_MPU6050_FILTER_20HZ, INV_MPU6050_FILTER_10HZ, INV_MPU6050_FILTER_5HZ}; int i, h, result; u8 data; h = (rate >> 1); i = 0; while ((h < hz[i]) && (i < ARRAY_SIZE(d) - 1)) i++; data = d[i]; result = inv_mpu6050_write_reg(st, st->reg->lpf, data); if (result) return result; st->chip_config.lpf = data; return 0; } /** * inv_mpu6050_fifo_rate_store() - Set fifo rate. */ static ssize_t inv_mpu6050_fifo_rate_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { s32 fifo_rate; u8 d; int result; struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct inv_mpu6050_state *st = iio_priv(indio_dev); if (kstrtoint(buf, 10, &fifo_rate)) return -EINVAL; if (fifo_rate < INV_MPU6050_MIN_FIFO_RATE || fifo_rate > INV_MPU6050_MAX_FIFO_RATE) return -EINVAL; if (fifo_rate == st->chip_config.fifo_rate) return count; mutex_lock(&indio_dev->mlock); if (st->chip_config.enable) { result = -EBUSY; goto fifo_rate_fail; } result = inv_mpu6050_set_power_itg(st, true); if (result) goto fifo_rate_fail; d = INV_MPU6050_ONE_K_HZ / fifo_rate - 1; result = inv_mpu6050_write_reg(st, st->reg->sample_rate_div, d); if (result) goto fifo_rate_fail; st->chip_config.fifo_rate = fifo_rate; result = inv_mpu6050_set_lpf(st, fifo_rate); if (result) goto fifo_rate_fail; fifo_rate_fail: result |= inv_mpu6050_set_power_itg(st, false); mutex_unlock(&indio_dev->mlock); if (result) return result; return count; } /** * inv_fifo_rate_show() - Get the current sampling rate. */ static ssize_t inv_fifo_rate_show(struct device *dev, struct device_attribute *attr, char *buf) { struct inv_mpu6050_state *st = iio_priv(dev_to_iio_dev(dev)); return sprintf(buf, "%d\n", st->chip_config.fifo_rate); } /** * inv_attr_show() - calling this function will show current * parameters. */ static ssize_t inv_attr_show(struct device *dev, struct device_attribute *attr, char *buf) { struct inv_mpu6050_state *st = iio_priv(dev_to_iio_dev(dev)); struct iio_dev_attr *this_attr = to_iio_dev_attr(attr); s8 *m; switch (this_attr->address) { /* In MPU6050, the two matrix are the same because gyro and accel are integrated in one chip */ case ATTR_GYRO_MATRIX: case ATTR_ACCL_MATRIX: m = st->plat_data.orientation; return sprintf(buf, "%d, %d, %d; %d, %d, %d; %d, %d, %d\n", m[0], m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8]); default: return -EINVAL; } } /** * inv_mpu6050_validate_trigger() - validate_trigger callback for invensense * MPU6050 device. * @indio_dev: The IIO device * @trig: The new trigger * * Returns: 0 if the 'trig' matches the trigger registered by the MPU6050 * device, -EINVAL otherwise. */ static int inv_mpu6050_validate_trigger(struct iio_dev *indio_dev, struct iio_trigger *trig) { struct inv_mpu6050_state *st = iio_priv(indio_dev); if (st->trig != trig) return -EINVAL; return 0; } #define INV_MPU6050_CHAN(_type, _channel2, _index) \ { \ .type = _type, \ .modified = 1, \ .channel2 = _channel2, \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .scan_index = _index, \ .scan_type = { \ .sign = 's', \ .realbits = 16, \ .storagebits = 16, \ .shift = 0 , \ .endianness = IIO_BE, \ }, \ } static const struct iio_chan_spec inv_mpu_channels[] = { IIO_CHAN_SOFT_TIMESTAMP(INV_MPU6050_SCAN_TIMESTAMP), /* * Note that temperature should only be via polled reading only, * not the final scan elements output. */ { .type = IIO_TEMP, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_OFFSET) | BIT(IIO_CHAN_INFO_SCALE), .scan_index = -1, }, INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_X, INV_MPU6050_SCAN_GYRO_X), INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Y, INV_MPU6050_SCAN_GYRO_Y), INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Z, INV_MPU6050_SCAN_GYRO_Z), INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_X, INV_MPU6050_SCAN_ACCL_X), INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Y, INV_MPU6050_SCAN_ACCL_Y), INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Z, INV_MPU6050_SCAN_ACCL_Z), }; /* constant IIO attribute */ static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("10 20 50 100 200 500"); static IIO_DEV_ATTR_SAMP_FREQ(S_IRUGO | S_IWUSR, inv_fifo_rate_show, inv_mpu6050_fifo_rate_store); static IIO_DEVICE_ATTR(in_gyro_matrix, S_IRUGO, inv_attr_show, NULL, ATTR_GYRO_MATRIX); static IIO_DEVICE_ATTR(in_accel_matrix, S_IRUGO, inv_attr_show, NULL, ATTR_ACCL_MATRIX); static struct attribute *inv_attributes[] = { &iio_dev_attr_in_gyro_matrix.dev_attr.attr, &iio_dev_attr_in_accel_matrix.dev_attr.attr, &iio_dev_attr_sampling_frequency.dev_attr.attr, &iio_const_attr_sampling_frequency_available.dev_attr.attr, NULL, }; static const struct attribute_group inv_attribute_group = { .attrs = inv_attributes }; static const struct iio_info mpu_info = { .driver_module = THIS_MODULE, .read_raw = &inv_mpu6050_read_raw, .write_raw = &inv_mpu6050_write_raw, .attrs = &inv_attribute_group, .validate_trigger = inv_mpu6050_validate_trigger, }; /** * inv_check_and_setup_chip() - check and setup chip. */ static int inv_check_and_setup_chip(struct inv_mpu6050_state *st, const struct i2c_device_id *id) { int result; st->chip_type = INV_MPU6050; st->hw = &hw_info[st->chip_type]; st->reg = hw_info[st->chip_type].reg; /* reset to make sure previous state are not there */ result = inv_mpu6050_write_reg(st, st->reg->pwr_mgmt_1, INV_MPU6050_BIT_H_RESET); if (result) return result; msleep(INV_MPU6050_POWER_UP_TIME); /* toggle power state. After reset, the sleep bit could be on or off depending on the OTP settings. Toggling power would make it in a definite state as well as making the hardware state align with the software state */ result = inv_mpu6050_set_power_itg(st, false); if (result) return result; result = inv_mpu6050_set_power_itg(st, true); if (result) return result; result = inv_mpu6050_switch_engine(st, false, INV_MPU6050_BIT_PWR_ACCL_STBY); if (result) return result; result = inv_mpu6050_switch_engine(st, false, INV_MPU6050_BIT_PWR_GYRO_STBY); if (result) return result; return 0; } /** * inv_mpu_probe() - probe function. * @client: i2c client. * @id: i2c device id. * * Returns 0 on success, a negative error code otherwise. */ static int inv_mpu_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct inv_mpu6050_state *st; struct iio_dev *indio_dev; struct inv_mpu6050_platform_data *pdata; int result; if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_I2C_BLOCK)) return -ENOSYS; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*st)); if (!indio_dev) return -ENOMEM; st = iio_priv(indio_dev); st->client = client; st->powerup_count = 0; pdata = dev_get_platdata(&client->dev); if (pdata) st->plat_data = *pdata; /* power is turned on inside check chip type*/ result = inv_check_and_setup_chip(st, id); if (result) return result; result = inv_mpu6050_init_config(indio_dev); if (result) { dev_err(&client->dev, "Could not initialize device.\n"); return result; } i2c_set_clientdata(client, indio_dev); indio_dev->dev.parent = &client->dev; /* id will be NULL when enumerated via ACPI */ if (id) indio_dev->name = (char *)id->name; else indio_dev->name = (char *)dev_name(&client->dev); indio_dev->channels = inv_mpu_channels; indio_dev->num_channels = ARRAY_SIZE(inv_mpu_channels); indio_dev->info = &mpu_info; indio_dev->modes = INDIO_BUFFER_TRIGGERED; result = iio_triggered_buffer_setup(indio_dev, inv_mpu6050_irq_handler, inv_mpu6050_read_fifo, NULL); if (result) { dev_err(&st->client->dev, "configure buffer fail %d\n", result); return result; } result = inv_mpu6050_probe_trigger(indio_dev); if (result) { dev_err(&st->client->dev, "trigger probe fail %d\n", result); goto out_unreg_ring; } INIT_KFIFO(st->timestamps); spin_lock_init(&st->time_stamp_lock); result = iio_device_register(indio_dev); if (result) { dev_err(&st->client->dev, "IIO register fail %d\n", result); goto out_remove_trigger; } st->mux_adapter = i2c_add_mux_adapter(client->adapter, &client->dev, indio_dev, 0, 0, 0, inv_mpu6050_select_bypass, inv_mpu6050_deselect_bypass); if (!st->mux_adapter) { result = -ENODEV; goto out_unreg_device; } result = inv_mpu_acpi_create_mux_client(st); if (result) goto out_del_mux; return 0; out_del_mux: i2c_del_mux_adapter(st->mux_adapter); out_unreg_device: iio_device_unregister(indio_dev); out_remove_trigger: inv_mpu6050_remove_trigger(st); out_unreg_ring: iio_triggered_buffer_cleanup(indio_dev); return result; } static int inv_mpu_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); struct inv_mpu6050_state *st = iio_priv(indio_dev); inv_mpu_acpi_delete_mux_client(st); i2c_del_mux_adapter(st->mux_adapter); iio_device_unregister(indio_dev); inv_mpu6050_remove_trigger(st); iio_triggered_buffer_cleanup(indio_dev); return 0; } #ifdef CONFIG_PM_SLEEP static int inv_mpu_resume(struct device *dev) { return inv_mpu6050_set_power_itg( iio_priv(i2c_get_clientdata(to_i2c_client(dev))), true); } static int inv_mpu_suspend(struct device *dev) { return inv_mpu6050_set_power_itg( iio_priv(i2c_get_clientdata(to_i2c_client(dev))), false); } static SIMPLE_DEV_PM_OPS(inv_mpu_pmops, inv_mpu_suspend, inv_mpu_resume); #define INV_MPU6050_PMOPS (&inv_mpu_pmops) #else #define INV_MPU6050_PMOPS NULL #endif /* CONFIG_PM_SLEEP */ /* * device id table is used to identify what device can be * supported by this driver */ static const struct i2c_device_id inv_mpu_id[] = { {"mpu6050", INV_MPU6050}, {"mpu6500", INV_MPU6500}, {} }; MODULE_DEVICE_TABLE(i2c, inv_mpu_id); static const struct acpi_device_id inv_acpi_match[] = { {"INVN6500", 0}, { }, }; MODULE_DEVICE_TABLE(acpi, inv_acpi_match); static struct i2c_driver inv_mpu_driver = { .probe = inv_mpu_probe, .remove = inv_mpu_remove, .id_table = inv_mpu_id, .driver = { .owner = THIS_MODULE, .name = "inv-mpu6050", .pm = INV_MPU6050_PMOPS, .acpi_match_table = ACPI_PTR(inv_acpi_match), }, }; module_i2c_driver(inv_mpu_driver); MODULE_AUTHOR("Invensense Corporation"); MODULE_DESCRIPTION("Invensense device MPU6050 driver"); MODULE_LICENSE("GPL");