/*
* Copyright (C) 2012 Invensense, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
* GNU General Public License for more details.
*/

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/sysfs.h>
#include <linux/jiffies.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/kfifo.h>
#include <linux/spinlock.h>
#include <linux/iio/iio.h>
#include <linux/i2c-mux.h>
#include <linux/acpi.h>
#include "inv_mpu_iio.h"

/*
 * this is the gyro scale translated from dynamic range plus/minus
 * {250, 500, 1000, 2000} to rad/s
 */
static const int gyro_scale_6050[] = {133090, 266181, 532362, 1064724};

/*
 * this is the accel scale translated from dynamic range plus/minus
 * {2, 4, 8, 16} to m/s^2
 */
static const int accel_scale[] = {598, 1196, 2392, 4785};

static const struct inv_mpu6050_reg_map reg_set_6050 = {
	.sample_rate_div	= INV_MPU6050_REG_SAMPLE_RATE_DIV,
	.lpf                    = INV_MPU6050_REG_CONFIG,
	.user_ctrl              = INV_MPU6050_REG_USER_CTRL,
	.fifo_en                = INV_MPU6050_REG_FIFO_EN,
	.gyro_config            = INV_MPU6050_REG_GYRO_CONFIG,
	.accl_config            = INV_MPU6050_REG_ACCEL_CONFIG,
	.fifo_count_h           = INV_MPU6050_REG_FIFO_COUNT_H,
	.fifo_r_w               = INV_MPU6050_REG_FIFO_R_W,
	.raw_gyro               = INV_MPU6050_REG_RAW_GYRO,
	.raw_accl               = INV_MPU6050_REG_RAW_ACCEL,
	.temperature            = INV_MPU6050_REG_TEMPERATURE,
	.int_enable             = INV_MPU6050_REG_INT_ENABLE,
	.pwr_mgmt_1             = INV_MPU6050_REG_PWR_MGMT_1,
	.pwr_mgmt_2             = INV_MPU6050_REG_PWR_MGMT_2,
	.int_pin_cfg		= INV_MPU6050_REG_INT_PIN_CFG,
};

static const struct inv_mpu6050_chip_config chip_config_6050 = {
	.fsr = INV_MPU6050_FSR_2000DPS,
	.lpf = INV_MPU6050_FILTER_20HZ,
	.fifo_rate = INV_MPU6050_INIT_FIFO_RATE,
	.gyro_fifo_enable = false,
	.accl_fifo_enable = false,
	.accl_fs = INV_MPU6050_FS_02G,
};

static const struct inv_mpu6050_hw hw_info[INV_NUM_PARTS] = {
	{
		.num_reg = 117,
		.name = "MPU6050",
		.reg = &reg_set_6050,
		.config = &chip_config_6050,
	},
};

int inv_mpu6050_write_reg(struct inv_mpu6050_state *st, int reg, u8 d)
{
	return i2c_smbus_write_i2c_block_data(st->client, reg, 1, &d);
}

/*
 * The i2c read/write needs to happen in unlocked mode. As the parent
 * adapter is common. If we use locked versions, it will fail as
 * the mux adapter will lock the parent i2c adapter, while calling
 * select/deselect functions.
 */
static int inv_mpu6050_write_reg_unlocked(struct inv_mpu6050_state *st,
					  u8 reg, u8 d)
{
	int ret;
	u8 buf[2];
	struct i2c_msg msg[1] = {
		{
			.addr = st->client->addr,
			.flags = 0,
			.len = sizeof(buf),
			.buf = buf,
		}
	};

	buf[0] = reg;
	buf[1] = d;
	ret = __i2c_transfer(st->client->adapter, msg, 1);
	if (ret != 1)
		return ret;

	return 0;
}

static int inv_mpu6050_select_bypass(struct i2c_adapter *adap, void *mux_priv,
				     u32 chan_id)
{
	struct iio_dev *indio_dev = mux_priv;
	struct inv_mpu6050_state *st = iio_priv(indio_dev);
	int ret = 0;

	/* Use the same mutex which was used everywhere to protect power-op */
	mutex_lock(&indio_dev->mlock);
	if (!st->powerup_count) {
		ret = inv_mpu6050_write_reg_unlocked(st, st->reg->pwr_mgmt_1,
						     0);
		if (ret)
			goto write_error;

		msleep(INV_MPU6050_REG_UP_TIME);
	}
	if (!ret) {
		st->powerup_count++;
		ret = inv_mpu6050_write_reg_unlocked(st, st->reg->int_pin_cfg,
						     st->client->irq |
						     INV_MPU6050_BIT_BYPASS_EN);
	}
write_error:
	mutex_unlock(&indio_dev->mlock);

	return ret;
}

static int inv_mpu6050_deselect_bypass(struct i2c_adapter *adap,
				       void *mux_priv, u32 chan_id)
{
	struct iio_dev *indio_dev = mux_priv;
	struct inv_mpu6050_state *st = iio_priv(indio_dev);

	mutex_lock(&indio_dev->mlock);
	/* It doesn't really mattter, if any of the calls fails */
	inv_mpu6050_write_reg_unlocked(st, st->reg->int_pin_cfg,
				       st->client->irq);
	st->powerup_count--;
	if (!st->powerup_count)
		inv_mpu6050_write_reg_unlocked(st, st->reg->pwr_mgmt_1,
					       INV_MPU6050_BIT_SLEEP);
	mutex_unlock(&indio_dev->mlock);

	return 0;
}

int inv_mpu6050_switch_engine(struct inv_mpu6050_state *st, bool en, u32 mask)
{
	u8 d, mgmt_1;
	int result;

	/* switch clock needs to be careful. Only when gyro is on, can
	   clock source be switched to gyro. Otherwise, it must be set to
	   internal clock */
	if (INV_MPU6050_BIT_PWR_GYRO_STBY == mask) {
		result = i2c_smbus_read_i2c_block_data(st->client,
				       st->reg->pwr_mgmt_1, 1, &mgmt_1);
		if (result != 1)
			return result;

		mgmt_1 &= ~INV_MPU6050_BIT_CLK_MASK;
	}

	if ((INV_MPU6050_BIT_PWR_GYRO_STBY == mask) && (!en)) {
		/* turning off gyro requires switch to internal clock first.
		   Then turn off gyro engine */
		mgmt_1 |= INV_CLK_INTERNAL;
		result = inv_mpu6050_write_reg(st, st->reg->pwr_mgmt_1, mgmt_1);
		if (result)
			return result;
	}

	result = i2c_smbus_read_i2c_block_data(st->client,
				       st->reg->pwr_mgmt_2, 1, &d);
	if (result != 1)
		return result;
	if (en)
		d &= ~mask;
	else
		d |= mask;
	result = inv_mpu6050_write_reg(st, st->reg->pwr_mgmt_2, d);
	if (result)
		return result;

	if (en) {
		/* Wait for output stabilize */
		msleep(INV_MPU6050_TEMP_UP_TIME);
		if (INV_MPU6050_BIT_PWR_GYRO_STBY == mask) {
			/* switch internal clock to PLL */
			mgmt_1 |= INV_CLK_PLL;
			result = inv_mpu6050_write_reg(st,
					st->reg->pwr_mgmt_1, mgmt_1);
			if (result)
				return result;
		}
	}

	return 0;
}

int inv_mpu6050_set_power_itg(struct inv_mpu6050_state *st, bool power_on)
{
	int result = 0;

	if (power_on) {
		/* Already under indio-dev->mlock mutex */
		if (!st->powerup_count)
			result = inv_mpu6050_write_reg(st, st->reg->pwr_mgmt_1,
						       0);
		if (!result)
			st->powerup_count++;
	} else {
		st->powerup_count--;
		if (!st->powerup_count)
			result = inv_mpu6050_write_reg(st, st->reg->pwr_mgmt_1,
						       INV_MPU6050_BIT_SLEEP);
	}

	if (result)
		return result;

	if (power_on)
		msleep(INV_MPU6050_REG_UP_TIME);

	return 0;
}

/**
 *  inv_mpu6050_init_config() - Initialize hardware, disable FIFO.
 *
 *  Initial configuration:
 *  FSR: ± 2000DPS
 *  DLPF: 20Hz
 *  FIFO rate: 50Hz
 *  Clock source: Gyro PLL
 */
static int inv_mpu6050_init_config(struct iio_dev *indio_dev)
{
	int result;
	u8 d;
	struct inv_mpu6050_state *st = iio_priv(indio_dev);

	result = inv_mpu6050_set_power_itg(st, true);
	if (result)
		return result;
	d = (INV_MPU6050_FSR_2000DPS << INV_MPU6050_GYRO_CONFIG_FSR_SHIFT);
	result = inv_mpu6050_write_reg(st, st->reg->gyro_config, d);
	if (result)
		return result;

	d = INV_MPU6050_FILTER_20HZ;
	result = inv_mpu6050_write_reg(st, st->reg->lpf, d);
	if (result)
		return result;

	d = INV_MPU6050_ONE_K_HZ / INV_MPU6050_INIT_FIFO_RATE - 1;
	result = inv_mpu6050_write_reg(st, st->reg->sample_rate_div, d);
	if (result)
		return result;

	d = (INV_MPU6050_FS_02G << INV_MPU6050_ACCL_CONFIG_FSR_SHIFT);
	result = inv_mpu6050_write_reg(st, st->reg->accl_config, d);
	if (result)
		return result;

	memcpy(&st->chip_config, hw_info[st->chip_type].config,
		sizeof(struct inv_mpu6050_chip_config));
	result = inv_mpu6050_set_power_itg(st, false);

	return result;
}

static int inv_mpu6050_sensor_show(struct inv_mpu6050_state  *st, int reg,
				int axis, int *val)
{
	int ind, result;
	__be16 d;

	ind = (axis - IIO_MOD_X) * 2;
	result = i2c_smbus_read_i2c_block_data(st->client, reg + ind,  2,
						(u8 *)&d);
	if (result != 2)
		return -EINVAL;
	*val = (short)be16_to_cpup(&d);

	return IIO_VAL_INT;
}

static int inv_mpu6050_read_raw(struct iio_dev *indio_dev,
			      struct iio_chan_spec const *chan,
			      int *val,
			      int *val2,
			      long mask) {
	struct inv_mpu6050_state  *st = iio_priv(indio_dev);

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
	{
		int ret, result;

		ret = IIO_VAL_INT;
		result = 0;
		mutex_lock(&indio_dev->mlock);
		if (!st->chip_config.enable) {
			result = inv_mpu6050_set_power_itg(st, true);
			if (result)
				goto error_read_raw;
		}
		/* when enable is on, power is already on */
		switch (chan->type) {
		case IIO_ANGL_VEL:
			if (!st->chip_config.gyro_fifo_enable ||
					!st->chip_config.enable) {
				result = inv_mpu6050_switch_engine(st, true,
						INV_MPU6050_BIT_PWR_GYRO_STBY);
				if (result)
					goto error_read_raw;
			}
			ret =  inv_mpu6050_sensor_show(st, st->reg->raw_gyro,
						chan->channel2, val);
			if (!st->chip_config.gyro_fifo_enable ||
					!st->chip_config.enable) {
				result = inv_mpu6050_switch_engine(st, false,
						INV_MPU6050_BIT_PWR_GYRO_STBY);
				if (result)
					goto error_read_raw;
			}
			break;
		case IIO_ACCEL:
			if (!st->chip_config.accl_fifo_enable ||
					!st->chip_config.enable) {
				result = inv_mpu6050_switch_engine(st, true,
						INV_MPU6050_BIT_PWR_ACCL_STBY);
				if (result)
					goto error_read_raw;
			}
			ret = inv_mpu6050_sensor_show(st, st->reg->raw_accl,
						chan->channel2, val);
			if (!st->chip_config.accl_fifo_enable ||
					!st->chip_config.enable) {
				result = inv_mpu6050_switch_engine(st, false,
						INV_MPU6050_BIT_PWR_ACCL_STBY);
				if (result)
					goto error_read_raw;
			}
			break;
		case IIO_TEMP:
			/* wait for stablization */
			msleep(INV_MPU6050_SENSOR_UP_TIME);
			inv_mpu6050_sensor_show(st, st->reg->temperature,
							IIO_MOD_X, val);
			break;
		default:
			ret = -EINVAL;
			break;
		}
error_read_raw:
		if (!st->chip_config.enable)
			result |= inv_mpu6050_set_power_itg(st, false);
		mutex_unlock(&indio_dev->mlock);
		if (result)
			return result;

		return ret;
	}
	case IIO_CHAN_INFO_SCALE:
		switch (chan->type) {
		case IIO_ANGL_VEL:
			*val  = 0;
			*val2 = gyro_scale_6050[st->chip_config.fsr];

			return IIO_VAL_INT_PLUS_NANO;
		case IIO_ACCEL:
			*val = 0;
			*val2 = accel_scale[st->chip_config.accl_fs];

			return IIO_VAL_INT_PLUS_MICRO;
		case IIO_TEMP:
			*val = 0;
			*val2 = INV_MPU6050_TEMP_SCALE;

			return IIO_VAL_INT_PLUS_MICRO;
		default:
			return -EINVAL;
		}
	case IIO_CHAN_INFO_OFFSET:
		switch (chan->type) {
		case IIO_TEMP:
			*val = INV_MPU6050_TEMP_OFFSET;

			return IIO_VAL_INT;
		default:
			return -EINVAL;
		}
	default:
		return -EINVAL;
	}
}

static int inv_mpu6050_write_gyro_scale(struct inv_mpu6050_state *st, int val)
{
	int result, i;
	u8 d;

	for (i = 0; i < ARRAY_SIZE(gyro_scale_6050); ++i) {
		if (gyro_scale_6050[i] == val) {
			d = (i << INV_MPU6050_GYRO_CONFIG_FSR_SHIFT);
			result = inv_mpu6050_write_reg(st,
					st->reg->gyro_config, d);
			if (result)
				return result;

			st->chip_config.fsr = i;
			return 0;
		}
	}

	return -EINVAL;
}

static int inv_mpu6050_write_accel_scale(struct inv_mpu6050_state *st, int val)
{
	int result, i;
	u8 d;

	for (i = 0; i < ARRAY_SIZE(accel_scale); ++i) {
		if (accel_scale[i] == val) {
			d = (i << INV_MPU6050_ACCL_CONFIG_FSR_SHIFT);
			result = inv_mpu6050_write_reg(st,
					st->reg->accl_config, d);
			if (result)
				return result;

			st->chip_config.accl_fs = i;
			return 0;
		}
	}

	return -EINVAL;
}

static int inv_mpu6050_write_raw(struct iio_dev *indio_dev,
			       struct iio_chan_spec const *chan,
			       int val,
			       int val2,
			       long mask) {
	struct inv_mpu6050_state  *st = iio_priv(indio_dev);
	int result;

	mutex_lock(&indio_dev->mlock);
	/* we should only update scale when the chip is disabled, i.e.,
		not running */
	if (st->chip_config.enable) {
		result = -EBUSY;
		goto error_write_raw;
	}
	result = inv_mpu6050_set_power_itg(st, true);
	if (result)
		goto error_write_raw;

	switch (mask) {
	case IIO_CHAN_INFO_SCALE:
		switch (chan->type) {
		case IIO_ANGL_VEL:
			result = inv_mpu6050_write_gyro_scale(st, val2);
			break;
		case IIO_ACCEL:
			result = inv_mpu6050_write_accel_scale(st, val2);
			break;
		default:
			result = -EINVAL;
			break;
		}
		break;
	default:
		result = -EINVAL;
		break;
	}

error_write_raw:
	result |= inv_mpu6050_set_power_itg(st, false);
	mutex_unlock(&indio_dev->mlock);

	return result;
}

/**
 *  inv_mpu6050_set_lpf() - set low pass filer based on fifo rate.
 *
 *                  Based on the Nyquist principle, the sampling rate must
 *                  exceed twice of the bandwidth of the signal, or there
 *                  would be alising. This function basically search for the
 *                  correct low pass parameters based on the fifo rate, e.g,
 *                  sampling frequency.
 */
static int inv_mpu6050_set_lpf(struct inv_mpu6050_state *st, int rate)
{
	const int hz[] = {188, 98, 42, 20, 10, 5};
	const int d[] = {INV_MPU6050_FILTER_188HZ, INV_MPU6050_FILTER_98HZ,
			INV_MPU6050_FILTER_42HZ, INV_MPU6050_FILTER_20HZ,
			INV_MPU6050_FILTER_10HZ, INV_MPU6050_FILTER_5HZ};
	int i, h, result;
	u8 data;

	h = (rate >> 1);
	i = 0;
	while ((h < hz[i]) && (i < ARRAY_SIZE(d) - 1))
		i++;
	data = d[i];
	result = inv_mpu6050_write_reg(st, st->reg->lpf, data);
	if (result)
		return result;
	st->chip_config.lpf = data;

	return 0;
}

/**
 * inv_mpu6050_fifo_rate_store() - Set fifo rate.
 */
static ssize_t inv_mpu6050_fifo_rate_store(struct device *dev,
	struct device_attribute *attr, const char *buf, size_t count)
{
	s32 fifo_rate;
	u8 d;
	int result;
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct inv_mpu6050_state *st = iio_priv(indio_dev);

	if (kstrtoint(buf, 10, &fifo_rate))
		return -EINVAL;
	if (fifo_rate < INV_MPU6050_MIN_FIFO_RATE ||
				fifo_rate > INV_MPU6050_MAX_FIFO_RATE)
		return -EINVAL;
	if (fifo_rate == st->chip_config.fifo_rate)
		return count;

	mutex_lock(&indio_dev->mlock);
	if (st->chip_config.enable) {
		result = -EBUSY;
		goto fifo_rate_fail;
	}
	result = inv_mpu6050_set_power_itg(st, true);
	if (result)
		goto fifo_rate_fail;

	d = INV_MPU6050_ONE_K_HZ / fifo_rate - 1;
	result = inv_mpu6050_write_reg(st, st->reg->sample_rate_div, d);
	if (result)
		goto fifo_rate_fail;
	st->chip_config.fifo_rate = fifo_rate;

	result = inv_mpu6050_set_lpf(st, fifo_rate);
	if (result)
		goto fifo_rate_fail;

fifo_rate_fail:
	result |= inv_mpu6050_set_power_itg(st, false);
	mutex_unlock(&indio_dev->mlock);
	if (result)
		return result;

	return count;
}

/**
 * inv_fifo_rate_show() - Get the current sampling rate.
 */
static ssize_t inv_fifo_rate_show(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct inv_mpu6050_state *st = iio_priv(dev_to_iio_dev(dev));

	return sprintf(buf, "%d\n", st->chip_config.fifo_rate);
}

/**
 * inv_attr_show() - calling this function will show current
 *                    parameters.
 */
static ssize_t inv_attr_show(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct inv_mpu6050_state *st = iio_priv(dev_to_iio_dev(dev));
	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
	s8 *m;

	switch (this_attr->address) {
	/* In MPU6050, the two matrix are the same because gyro and accel
	   are integrated in one chip */
	case ATTR_GYRO_MATRIX:
	case ATTR_ACCL_MATRIX:
		m = st->plat_data.orientation;

		return sprintf(buf, "%d, %d, %d; %d, %d, %d; %d, %d, %d\n",
			m[0], m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8]);
	default:
		return -EINVAL;
	}
}

/**
 * inv_mpu6050_validate_trigger() - validate_trigger callback for invensense
 *                                  MPU6050 device.
 * @indio_dev: The IIO device
 * @trig: The new trigger
 *
 * Returns: 0 if the 'trig' matches the trigger registered by the MPU6050
 * device, -EINVAL otherwise.
 */
static int inv_mpu6050_validate_trigger(struct iio_dev *indio_dev,
					struct iio_trigger *trig)
{
	struct inv_mpu6050_state *st = iio_priv(indio_dev);

	if (st->trig != trig)
		return -EINVAL;

	return 0;
}

#define INV_MPU6050_CHAN(_type, _channel2, _index)                    \
	{                                                             \
		.type = _type,                                        \
		.modified = 1,                                        \
		.channel2 = _channel2,                                \
		.info_mask_shared_by_type =  BIT(IIO_CHAN_INFO_SCALE), \
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),         \
		.scan_index = _index,                                 \
		.scan_type = {                                        \
				.sign = 's',                          \
				.realbits = 16,                       \
				.storagebits = 16,                    \
				.shift = 0 ,                          \
				.endianness = IIO_BE,                 \
			     },                                       \
	}

static const struct iio_chan_spec inv_mpu_channels[] = {
	IIO_CHAN_SOFT_TIMESTAMP(INV_MPU6050_SCAN_TIMESTAMP),
	/*
	 * Note that temperature should only be via polled reading only,
	 * not the final scan elements output.
	 */
	{
		.type = IIO_TEMP,
		.info_mask_separate =  BIT(IIO_CHAN_INFO_RAW)
				| BIT(IIO_CHAN_INFO_OFFSET)
				| BIT(IIO_CHAN_INFO_SCALE),
		.scan_index = -1,
	},
	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_X, INV_MPU6050_SCAN_GYRO_X),
	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Y, INV_MPU6050_SCAN_GYRO_Y),
	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Z, INV_MPU6050_SCAN_GYRO_Z),

	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_X, INV_MPU6050_SCAN_ACCL_X),
	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Y, INV_MPU6050_SCAN_ACCL_Y),
	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Z, INV_MPU6050_SCAN_ACCL_Z),
};

/* constant IIO attribute */
static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("10 20 50 100 200 500");
static IIO_DEV_ATTR_SAMP_FREQ(S_IRUGO | S_IWUSR, inv_fifo_rate_show,
	inv_mpu6050_fifo_rate_store);
static IIO_DEVICE_ATTR(in_gyro_matrix, S_IRUGO, inv_attr_show, NULL,
	ATTR_GYRO_MATRIX);
static IIO_DEVICE_ATTR(in_accel_matrix, S_IRUGO, inv_attr_show, NULL,
	ATTR_ACCL_MATRIX);

static struct attribute *inv_attributes[] = {
	&iio_dev_attr_in_gyro_matrix.dev_attr.attr,
	&iio_dev_attr_in_accel_matrix.dev_attr.attr,
	&iio_dev_attr_sampling_frequency.dev_attr.attr,
	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
	NULL,
};

static const struct attribute_group inv_attribute_group = {
	.attrs = inv_attributes
};

static const struct iio_info mpu_info = {
	.driver_module = THIS_MODULE,
	.read_raw = &inv_mpu6050_read_raw,
	.write_raw = &inv_mpu6050_write_raw,
	.attrs = &inv_attribute_group,
	.validate_trigger = inv_mpu6050_validate_trigger,
};

/**
 *  inv_check_and_setup_chip() - check and setup chip.
 */
static int inv_check_and_setup_chip(struct inv_mpu6050_state *st,
		const struct i2c_device_id *id)
{
	int result;

	st->chip_type = INV_MPU6050;
	st->hw  = &hw_info[st->chip_type];
	st->reg = hw_info[st->chip_type].reg;

	/* reset to make sure previous state are not there */
	result = inv_mpu6050_write_reg(st, st->reg->pwr_mgmt_1,
					INV_MPU6050_BIT_H_RESET);
	if (result)
		return result;
	msleep(INV_MPU6050_POWER_UP_TIME);
	/* toggle power state. After reset, the sleep bit could be on
		or off depending on the OTP settings. Toggling power would
		make it in a definite state as well as making the hardware
		state align with the software state */
	result = inv_mpu6050_set_power_itg(st, false);
	if (result)
		return result;
	result = inv_mpu6050_set_power_itg(st, true);
	if (result)
		return result;

	result = inv_mpu6050_switch_engine(st, false,
					INV_MPU6050_BIT_PWR_ACCL_STBY);
	if (result)
		return result;
	result = inv_mpu6050_switch_engine(st, false,
					INV_MPU6050_BIT_PWR_GYRO_STBY);
	if (result)
		return result;

	return 0;
}

/**
 *  inv_mpu_probe() - probe function.
 *  @client:          i2c client.
 *  @id:              i2c device id.
 *
 *  Returns 0 on success, a negative error code otherwise.
 */
static int inv_mpu_probe(struct i2c_client *client,
	const struct i2c_device_id *id)
{
	struct inv_mpu6050_state *st;
	struct iio_dev *indio_dev;
	struct inv_mpu6050_platform_data *pdata;
	int result;

	if (!i2c_check_functionality(client->adapter,
		I2C_FUNC_SMBUS_I2C_BLOCK))
		return -ENOSYS;

	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*st));
	if (!indio_dev)
		return -ENOMEM;

	st = iio_priv(indio_dev);
	st->client = client;
	st->powerup_count = 0;
	pdata = dev_get_platdata(&client->dev);
	if (pdata)
		st->plat_data = *pdata;
	/* power is turned on inside check chip type*/
	result = inv_check_and_setup_chip(st, id);
	if (result)
		return result;

	result = inv_mpu6050_init_config(indio_dev);
	if (result) {
		dev_err(&client->dev,
			"Could not initialize device.\n");
		return result;
	}

	i2c_set_clientdata(client, indio_dev);
	indio_dev->dev.parent = &client->dev;
	/* id will be NULL when enumerated via ACPI */
	if (id)
		indio_dev->name = (char *)id->name;
	else
		indio_dev->name = (char *)dev_name(&client->dev);
	indio_dev->channels = inv_mpu_channels;
	indio_dev->num_channels = ARRAY_SIZE(inv_mpu_channels);

	indio_dev->info = &mpu_info;
	indio_dev->modes = INDIO_BUFFER_TRIGGERED;

	result = iio_triggered_buffer_setup(indio_dev,
					    inv_mpu6050_irq_handler,
					    inv_mpu6050_read_fifo,
					    NULL);
	if (result) {
		dev_err(&st->client->dev, "configure buffer fail %d\n",
				result);
		return result;
	}
	result = inv_mpu6050_probe_trigger(indio_dev);
	if (result) {
		dev_err(&st->client->dev, "trigger probe fail %d\n", result);
		goto out_unreg_ring;
	}

	INIT_KFIFO(st->timestamps);
	spin_lock_init(&st->time_stamp_lock);
	result = iio_device_register(indio_dev);
	if (result) {
		dev_err(&st->client->dev, "IIO register fail %d\n", result);
		goto out_remove_trigger;
	}

	st->mux_adapter = i2c_add_mux_adapter(client->adapter,
					      &client->dev,
					      indio_dev,
					      0, 0, 0,
					      inv_mpu6050_select_bypass,
					      inv_mpu6050_deselect_bypass);
	if (!st->mux_adapter) {
		result = -ENODEV;
		goto out_unreg_device;
	}

	result = inv_mpu_acpi_create_mux_client(st);
	if (result)
		goto out_del_mux;

	return 0;

out_del_mux:
	i2c_del_mux_adapter(st->mux_adapter);
out_unreg_device:
	iio_device_unregister(indio_dev);
out_remove_trigger:
	inv_mpu6050_remove_trigger(st);
out_unreg_ring:
	iio_triggered_buffer_cleanup(indio_dev);
	return result;
}

static int inv_mpu_remove(struct i2c_client *client)
{
	struct iio_dev *indio_dev = i2c_get_clientdata(client);
	struct inv_mpu6050_state *st = iio_priv(indio_dev);

	inv_mpu_acpi_delete_mux_client(st);
	i2c_del_mux_adapter(st->mux_adapter);
	iio_device_unregister(indio_dev);
	inv_mpu6050_remove_trigger(st);
	iio_triggered_buffer_cleanup(indio_dev);

	return 0;
}
#ifdef CONFIG_PM_SLEEP

static int inv_mpu_resume(struct device *dev)
{
	return inv_mpu6050_set_power_itg(
		iio_priv(i2c_get_clientdata(to_i2c_client(dev))), true);
}

static int inv_mpu_suspend(struct device *dev)
{
	return inv_mpu6050_set_power_itg(
		iio_priv(i2c_get_clientdata(to_i2c_client(dev))), false);
}
static SIMPLE_DEV_PM_OPS(inv_mpu_pmops, inv_mpu_suspend, inv_mpu_resume);

#define INV_MPU6050_PMOPS (&inv_mpu_pmops)
#else
#define INV_MPU6050_PMOPS NULL
#endif /* CONFIG_PM_SLEEP */

/*
 * device id table is used to identify what device can be
 * supported by this driver
 */
static const struct i2c_device_id inv_mpu_id[] = {
	{"mpu6050", INV_MPU6050},
	{"mpu6500", INV_MPU6500},
	{}
};

MODULE_DEVICE_TABLE(i2c, inv_mpu_id);

static const struct acpi_device_id inv_acpi_match[] = {
	{"INVN6500", 0},
	{ },
};

MODULE_DEVICE_TABLE(acpi, inv_acpi_match);

static struct i2c_driver inv_mpu_driver = {
	.probe		=	inv_mpu_probe,
	.remove		=	inv_mpu_remove,
	.id_table	=	inv_mpu_id,
	.driver = {
		.owner	=	THIS_MODULE,
		.name	=	"inv-mpu6050",
		.pm     =       INV_MPU6050_PMOPS,
		.acpi_match_table = ACPI_PTR(inv_acpi_match),
	},
};

module_i2c_driver(inv_mpu_driver);

MODULE_AUTHOR("Invensense Corporation");
MODULE_DESCRIPTION("Invensense device MPU6050 driver");
MODULE_LICENSE("GPL");